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Abstract 

 

A new method for the creation of 3D solitary topological modes, corresponding to vor-

tical droplets of a two-component dilute superfluid, is presented. We use the recently intro-

duced system of nonlinearly coupled Gross-Pitaevskii equations, which include contact attrac-

tion between the components, and quartic repulsion stemming from the Lee-Huang-Yang cor-

rection to the mean-field energy. Self-trapped vortex tori, carrying the topological charges 

1 2 1m m= =  or 1 2 2m m= =  in their components, are constructed by means of numerical and 

approximate analytical methods. The analysis reveals stability regions for the vortex droplets 

(in broad and relatively narrow parameter regions for 1,2 1m =  and 1,2 2m = , respectively). The 



2 
 

results provide the first example of stable 3D self-trapped states with the double vorticity (

1,2 2m = ), in any physical setting. The stable modes are shaped as flat-top ones, with the space 

between the inner hole, induced by the vorticity, and the outer boundary filled by a nearly 

constant density. On the other hand, all modes with hidden vorticity, i.e., topological charges of 

the two components 1 2 1m m=− = , are unstable. The stability of the droplets with 1,2 1m =  

against splitting (which is the main scenario of possible instability) is explained by estimating 

analytically the energy of the split and un-split states. The predicted results may be imple-

mented, exploiting dilute quantum droplets in mixtures of Bose-Einstein condensates. 

 

PhySH Subject Headings: Solitons; Bogoliubov-de Gennes equations; Superfluids; Mixtures of 

atomic and/or molecular quantum gases 

 

1. Introduction 

 

The possibility of creation of three-dimensional (3D) solitons in nonlinear media was 

first proposed about 40 year ago [1]. It remains a challenging problem that connects diverse 

areas of physics and keeps drawing much interest up to this day [2-9]. A commonly known 

obstacle preventing the creation of 3D solitons in experiments is the collapse instability [10] of 

2D and 3D states based on the ubiquitous cubic nonlinearity, which represents the Kerr self-

focusing in optics [11] or attractive contact interactions in atomic gases cooled down to a Bose-

Einstein condensate (BEC) [12]. Localized modes created in previous experiments may seem 

as nearly isotropic 3D fundamental (zero-vorticity) solitons – in particular, matter-wave soli-
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tons in BEC [13] – but their self-trapping is provided by the nonlinearity only in one direction, 

while in the others it is given by an external confining potential. In optics, the free-space col-

lapse may be arrested using nonlinearities of other types, such as quadratic, composite focus-

ing-defocusing, or time-delayed ones. However, severe experimental restrictions have led, 

thus far, only to the realization of effectively 2D stable self-trapping in these settings [14-16]. 

A still more challenging objective is the creation of stable 3D solitons with embedded 

vorticity (topological charge), m . While it was predicted that composite focusing-defocusing 

nonlinearities may readily create stable 2D vortex solitons with 1m≥  [17], so far experiments 

were solely able to exhibit details of the splitting instability of vortex-ring solitons in the effec-

tively 2D setting [18]. Only transient stabilization of a vortex ring with 1m=  under the addi-

tional action of three-photon absorption was demonstrated in a bulk optical medium with sa-

turable nonlinearity [19]. In BEC, stability of 2D vortex solitons in free space was recently pre-

dicted, at least up to 5m= , in a polariton-type system including two components of the 

mean-field (MF) wave function coupled by a microwave field [20]. Concerning 3D systems in 

free space, the only prediction is a stability region for solitons supported by the focusing-

defocusing cubic-quintic nonlinearity in the form of a vortex torus with 1m=  [21] (the stabili-

ty of 3D solitons with 0m=  in the same model is completely obvious [22]). The above discus-

sion focuses on self-trapping in uniform media/free space. The use of optical waveguides in 

the form of quasi-two-dimensional arrays, burnt in a bulk sample, makes it essentially easier 

to create quasi-discrete "light bullets" with embedded vorticity [23]. 

A breakthrough in the theoretical and experimental study of stable self-trapping in the 

3D geometry has taken place in the course of the last two years. Works [24,25] theoretically 
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proposed the possibility to create stable droplets in binary superfluids with an extremely low 

density, assuming intrinsic self-repulsion in each component, and dominating attraction be-

tween them. The collapse of the system, which is driven by the attractive interaction in 3D 

[10], is arrested by the beyond-MF correction to the energy resulting from zero-point quantum 

fluctuations around the MF state. The latter was derived by Lee, Huang, and Yang (LHY) in 

1957 [26], and extended to binary mixtures in Ref. [27]. At low energies, an effective descrip-

tion of the system is provided by the addition of a repulsive quartic term to each Gross-

Pitaevskii equation (GPE) describing the two-component system. Modifications of the system 

incorporating a linear Rabi coupling between the two components [28], or a linear spin-orbit 

coupling between them [29] were recently proposed as well. The use of binary condensates is 

a crucial condition for the realization of this approach, as the combination of the attractive 

cross-interaction, which is necessary for the self-trapping of 3D solitons, with the intrinsic 

self-repulsion induced by the LHY effect, which secures the stabilization against the col-

lapse, is not possible in a single-component superfluid with only contact inter-atomic inte-

ractions. On the other hand, a single-component condensate made of dipolar atoms is suffi-

cient for the creation of multidimensional solitons if the attraction is provided by long-

range dipole-dipole forces, while the contact interaction, including the LHY term, remains 

repulsive [30-32]. 

The above-mentioned prediction was quickly followed by its experimental implementa-

tion. First, droplets were created in single-component dipolar condensates of 164Dy [30] and 

166Er [31]. Due to the nature of the dipole-dipole interactions, the resulting droplets feature 

strong anisotropy. In addition to the experimental work, various aspects of the dynamics of 
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droplets in dipolar superfluids were analyzed theoretically [32]. A possibility of the creation 

of dipolar droplets with embedded vorticity was recently considered too [33]. Like in many 

other models, all such vortex states are completely unstable, i.e., the use of dipolar condensates 

does not offer a solution to the problem of the creation of stable vortex solitons. 

The creation of 3D zero-vorticity droplets, supported by the contact interactions, includ-

ing the LHY effect, in binary mixtures of different internal states of 39K condensates was dem-

onstrated very recently [34-36]. In these experiments, the necessary relation between the re-

pulsive and attractive intra- and inter-component interactions is provided by suitable Fesh-

bach resonances [37]. The experiments were performed both in the presence of confining po-

tentials acting in one or two directions, and in free space. 

The advent of this completely new technique for the realization of stable self-trapping in 3D 

ultra-dilute superfluids suggests the possibility to create stable droplets with embedded vortici-

ty, which may assume both unitary and multiple values, 1m= and 2m≥ . The development of 

appropriate methods to achieve this goal is the subject of the present work. The possibility of 

the creation of such states is quite significant because in single-component dipolar conden-

sates with LHY corrections only unstable vortex solitons may exist [33]. Furthermore, the 

only previously published prediction for the creation of stable 3D vortex rings with 1m=  in 

free space relied on the 3D nonlinear Schrödinger equation (NLSE) with cubic-quintic nonli-

nearities. The latter is not accessible to BEC experiments, and in optics it has only been im-

plemented in an effectively 2D setting [15]. We explicitly predict broad stability regions for 3D 

vortex rings with 1m= and 2. This constitutes the first prediction of stable vortex solitons 

with a multiple topological charge in 3D. Note that stable modes with 2m> can be found too, 
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but in a region which may be hard to access experimentally. While accurate results are pro-

duced by means of systematic numerical calculations, we also develop an analytical approxi-

mation to explain the stability of the 3D vortex rings against splitting, based on energy esti-

mates for the un-split and split states. The analytical approach may be applied as well to a 

broad class of models in which 3D (or 2D) vortex solitons with "flat-top" (nearly constant-

internal-density) profiles are created by competing nonlinearities. The theoretical results re-

ported here suggest the possibility to create stable 3D droplets of swirling superfluids in cur-

rent experiments  [34-36]. To this end, vorticity should be imprinted onto binary droplets with 

0m=  via rotation of the system or by exploiting a twisted laser beam [38]. 

 

2. The model and analytical results 

 

We model the binary superfluids using the system of coupled GPEs for the two- compo-

nent wave function 1,2ψ , which have been extended to include the LHY quartic repulsion 

terms, in addition to the usual mean-field cubic ones. Equal scattering lengths a of the contact 

interactions in both component are assumed here. We do not expect deviations from this con-

dition to cause essential changes in the results. In the scaled form, the equations read [24,25] 
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where 2 2 2 2 2 2 2/ / /x y z∇ =∂ ∂ +∂ ∂ +∂ ∂ , the strength of the cubic self-repulsion is scaled to be 1, 

while 0g>  and 3/2
LHY (128/3) 2/g aπ≈  are the relative strengths of the cross-attraction and 

additional LHY repulsion, respectively, a  being the intra-component scattering length. The 

extended GPE system (1) is valid for the description of relatively broad spatial patterns. This 

condition holds for the vortex droplets produced below because the diameter of their inner 

hole, induced by the vorticity, remains larger than the characteristic length associated to the 

most energetic Bogoliubov branch of the spectrum. This is the condition for which the validity 

of the equations was established [24,25]. It is relevant to mention that a more general treat-

ment of the system including the LHY effect in the dilute binary condensate is possible, with-

out resorting to the perturbative form of the GPEs, but rather running Monte-Carlo simula-

tions of a multi-particle quantum system [39]. 

In fact, g  is the single irreducible parameter of the system, as additional rescaling 

{ } { }LHY LHY LHY
2 1

1,2 1,2, , (1/2) , ,g g t g tψ ψ− − ′ ′ ′→r r , where { , , }x y z=r , allows one to set LHY 1/2g ≡ , all 

numerical results being presented below for this value. In general, we use the cross-attraction 

strength 1.75g= . Although variations of the latter parameter cannot be absorbed by rescaling, 

they do not affect the results significantly. Equation (1) conserves two norms 1,2N , the total 

energy E , and the total linear P  and angular M  momenta, the z -component of the latter 

written below too: 
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We search for stationary solutions for vortex droplets, with chemical potentials 1,2μ  and 

integer topological charges 1,2m  of their components. In cylindrical coordinates ( , , )zρ θ  they 

are written as 1,2 1,2 1,2 1,2( , )exp( )u z im i tψ ρ θ μ= − , where the real wave functions 1,2u  obey the eq-

uations 

 

 LHY

22 2
1,2 2 3 2

1,2 1,2 1,2 1,2 1,2 2,1 1,222 2

1 1
( ) 0.

2

m
u u u g u u gu u

z
μ

ρ ρ ρρ

⎛ ⎞∂ ∂ ∂ ⎟⎜+ + − + − + + =⎟⎜ ⎟⎟⎜⎝ ⎠∂∂ ∂
 (3) 

 

As follows from Eq. (3), the angular momentum of the stationary vortex mode is 

1 1 2 2zM N m N m= + . In this work, we focus on the basic configuration, with 1 2μ μ=  and 

1 2m m=±  corresponding to identical stationary components 1 2u u=  of the binary condensate. 

In this case, Eq. (3) gives rise to localized modes under the condition of 1g> . In the limit of 

1 0g− →+ , the amplitude and chemical potential of the modes decrease as 1A g−∼ , 

3( 1)gμ −∼ , while their radial and axial sizes and norm grow as 3/2, ( 1)R Z g −−∼ , 

5/2( 1)N g −−∼ . The same asymptotic relations, with ( 1)g−  replaced by g , remain valid in the 

opposite limit, g→∞ . On the other hand, for fixed g , the asymptotic behavior corresponding 

to both LHY 0g →+  and LHYg →∞  is LHY
2gμ −∼ , LHY

1A g−∼ , LHY,R Z g∼ , LHYN g∼ . 

In the case of equal vorticities of the components, 1 2m m m= ≡ , the total angular momen-

tum is Nm , while for the vortex droplets with 1 2m m=−  it is zero, hence modes of this type 

are called hidden-vorticity states [40]. While stationary shapes of explicit- and hidden-vorticity 

states are identical, their stability is drastically different. As shown below, the latter are com-

pletely unstable in the present system. 
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In Figs. 1 and 2, we show numerically that stable vortex modes always feature a flat-top 

profile, with a nearly constant amplitude of the wave function in a broad area of the ( ),zρ  

plane – in fact, between the inner hole induced by the vorticity and an outer boundary of the 

droplet. The limit value of the nearly constant wave function with amplitude coA , filling the 

droplet, corresponds to the cutoff chemical potential, coμ , below which the 3D modes do not 

exist. Both coA  and coμ  can be found exactly. To this end, we notice that, in the limit of 

co 0μ μ− →+ , the self-trapped modes become extremely broad, hence sufficiently far from the 

center the radial equation (3) for 1,2( ) ( )u uρ ρ≡  becomes quasi-one-dimensional: 

 

 LHY
2 2 3 4(1/2) / ( 1) 0.u d u d g u g uμ ρ+ + − − =  (4a) 

 

This equation can be derived from a formal Hamiltonian, 

 

 LHY
2 2 4 5(1/2)( / ) (1/2) (1/4)( 1) (1/5) ,du d u g u g uρ μ= + + − −H  (4b) 

 

where localized solutions, with ( ) 0u ρ=∞ = , correspond to 0=H . Further, the asymptotical-

ly constant (flat) state implies setting 2 2/ / 0d u d du dρ ρ= =  and 0=H  in Eqs. (4), which leads 

to a system of two algebraic equations for coμ  and coA . Its solution is 

 

 ( ) ( )LHY LHY
2 13

co co25/216 ( 1) , 5/6 ( 1) .g gg A gμ − −=− − = −  (5) 
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This method allows one to find the asymptotic values of the chemical potential and field am-

plitude in any model producing flat-top states, including the 2D case. 

The radius of the hole at the center of the vortex droplet may be evaluated by means of 

the Thomas-Fermi approximation (TFA), which is applicable to vortices in media with repul-

sive nonlinearity [42]. In the framework of the TFA, one drops derivatives in Eq. (3), arriving 

at the simplified equation: either 0u=  or LHY
2 3 2 2( 1) /2g u g u m ρ μ− − = − . In the core of the vor-

tex, ( )u ρ  must vanish at 0ρ→ . As a solution of the latter TFA equation, ( )u ρ  can follow this 

trend, decreasing from asymptotic value (5) up to LHY
1

min (2/3)( 1)u g g−= − , attained at 

LHY
2 2 2 2 3

min (108/7) ( 1)m g gρ ρ −= = − . With the further decrease of ρ  the TFA solution has no oth-

er option but jumping down to 0u= . Thus, minρ  is the TFA prediction for the radius of the 

central hole. In particular, for the parameters of Fig. 2(b), min 3ρ ≈  is qualitatively consistent 

with the figure, and the prediction of min mρ ∼  is consistent with Figs. 4 and 5. 

The quasi-one-dimensional approximation based on Eq. (4b) with 0=H  can be used to 

calculate the surface-energy density for the outer and inner boundaries of the two-component 

droplet: co

LHY
7/2 3

0
( / ) 0.045( 1)

a
du d du g gσ ρ −= ≈ −∫ , where identity 1( / )d du d duρ ρ −≡  is used and 

the numerical factor is produced by the integral. One can derive a condition securing the 

energy stability of the droplet against the fission, taking into account the surface energy, 

the droplet's intrinsic vortex energy with density 22 /ρ ψ θ− ∂ ∂ , and the kinetic energy of 

two splinters produced by possible fission of the droplet with 1m= . Momenta of the 

splinters, which give rise to the kinetic energy, are determined by the conservation of the 

original intrinsic angular momentum (spin) of the vortex. The latter is converted into the 

orbital angular momentum of the separating splinters. Thus, assuming a spherical shape of 
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the droplet, with outer radius R  determined by the half-norm and nearly-constant density 

2
coA , 3 2

co/2 (4 /3)N R Aπ= , and the central hole of radius minρ , the condition guaranteeing that 

the total energy of the original vortex droplet is smaller than the energy of the splinter pair 

takes the following form for large N : 

 

 { }
2/31/3 2
co co1/3 2/3

min1/3 2 3
co min

4 3
( /2) ln 2 .

3 32 1 8

A A N
N

A

π
ρ

σ π ρ
⎡ ⎛ ⎞ ⎤⎛ ⎞ ⎟⎟ ⎜⎜> − +⎢ ⎥⎟⎟ ⎜⎜ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠⎢ ⎥− ⎣ ⎦

 (6) 

 

Note that this condition takes into account the fact that the spherical splinters have only an 

outer surface, but no inner one, unlike the original doughnut-shaped vortex. In Eq. (6), the 

left-hand side represents the increase of the overall surface energy due to the fission, the loga-

rithmic term on the right-hand side represents the original vortex energy (it is the dominant 

term on the right side for sufficiently large N ), the next negative term is the opposite contri-

bution to the energy balance from the splinters' kinetic energy, and the last term accounts for 

the surface energy of the inner hole in the original vortex droplet. While the approximation 

given by Eq. (6) is not accurate enough for detailed comparison with numerical data, it readily 

explains the stabilization of the vortex droplet for N  large enough, for this model and others 

with the flat-top shape of vortex solitons. On the other hand, for the hidden-vorticity mode 

(zero total angular momentum), the kinetic energy of the splinters does not appear in the 

energy balance, as there is no source for it, which makes the hidden-vorticity state more 

prone to the fission instability. 
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3. Numerical results 

 

Families of numerically found zero-vorticity and vortex droplets for 1 2 0,1,2m m= = , in-

cluding their stability, are characterized by dependences of the norm vs. 1 2μ μ=  shown in Fig. 

1(a). In particular, the stability of the fundamental modes with 1 2 0m m= =  exactly follows the 

Vakhitov-Kolokolov (VK) criterion, / 0dN dμ< , which is a necessary condition for the stabili-

ty of self-trapped modes supported by any attractive nonlinearity, irrespective of the spatial 

dimension [41,10]. Note that the branches of ( )N μ  curves with the norm diverging at 1,2 0μ → , 

which corresponds to the decaying amplitude 1,2 1,2max{ ( )}A u x≡  and diverging width [see 

Fig. 1(c)], are definitely unstable according to the VK criterion. The presence of these branches 

is a characteristic feature of the 3D setting. On the other hand, the divergence of the norm at 

1,2 coμ μ→ , where the cutoff value coμ  [dashed line in Fig. 1(a)] is exactly predicted by Eq. (5), 

implies the expansion of the above-mentioned flat-top states, filled by the wave function with 

the asymptotically constant value, which is also exactly predicted by Eq. (5). In particular, it 

does not depend on 1,2m . A typical example is displayed in Fig. 2(b). In agreement with the 

above analysis, the outer radius of the droplets grows with N  as 2 1/3
co(3 /4 )N Aπ , while the 

radius of the inner hole remains constant. An essential property of the 3D modes is that they 

exist with the norm exceeding a minimum value, minN , similar to what is known about other 

3D models with competing nonlinearities [21]. The dependence of the droplet's energy on the 

norm shows a typical cusp-like shape for all values of 1,2m  [Fig. 1(b)]. Naturally, for fixed N  

the energy of the self-trapped modes grows with the increase of the vorticity, driving the 

modes towards instability. Nevertheless, nontrivial findings produced by the present analysis 
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are stability regions for the vortex droplets with 1,2 1m = , and even for 1,2 2m = , see details be-

low. 

The rigorous stability analysis is based on the consideration of weakly perturbed solu-

tions, 1,2 1,2
1,2 1,2 1,2 1,2( ) im i tt ik t iku e e e θ μλ θ λ θψ α β ∗ −+ ∗ −= + + , where 1,2 1,2,α β  are eigenmodes of small 

perturbations, r iiλ λ λ≡ +  is the corresponding instability growth rate, which may be complex, 

and k  is an integer azimuthal perturbation index. The linearization of Eq. (1) for small pertur-

bations leads to the corresponding Bogoliubov – de Gennes equations: 
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⎛ ⎞⎟⎜ + + + +⎟⎜ ⎟⎝ ⎠

 (7) 

 

which were solved numerically. Representative dependencies of real parts rλ , i.e., the growth 

rate of the instability, on the chemical potential of the underlying stationary states with vortic-

ities 1,2 1m =  and 2 are shown in Figs. 3(a) and 3(b). Typically, the imaginary part of the 

growth rate is comparable to its real part. Concerning the zero-vorticity states, the analysis 

demonstrates that (as mentioned above) the VK criterion is sufficient for their stability. How-

ever, this is not true for the vortex modes. 

The central result of this work is that vortex droplets with 1,2 1m =  and 2 are stable in a 

certain interval, co stμ μ μ< < , as shown in Fig. 3(c) for 1,2 1m = . It is relevant to present the sta-

bility region vs. g , as the relative strength of the inter-component attraction may be adjusted 
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experimentally by means of a Feshbach resonance [37]. Moreover, as mentioned above, g  is 

the only irreducible parameter in Eq. (1). Interestingly, the stability interval of μ  expands with 

the increase of g . The stability domain in the ( , )g N  plane is presented in Fig. 3(d). Note that, 

in terms of the norm, the stability domain for the vortex droplets is bounded only from below, 

i.e., droplets with stN N>  are stable for arbitrarily large values of N . As seen in Fig. 3(d), the 

vortex droplets also exist in the adjacent interval of min stN N N< < , where they are unstable 

Note that the threshold value of the norm for the stability, stN , rapidly decreases with in-

crease of g . On the other hand, the divergence of stN  at min 1.3g g→ �  implies that smaller 

values of g cannot provide for stable equilibrium between the inter-component attraction and 

self-repulsion, including the LHY effect. 

Figure 3(a) demonstrates that the most dangerous perturbation eigenmode for the drop-

lets with 1,2 1m =  has azimuthal index 2k= . It tends to split the vortex mode in two frag-

ments, see Fig. 4. The growth rate for this perturbation decreases and eventually vanishes 

with the increase of the norm of the vortex droplet, as it develops the flat-top (constant-inner-

density) shape. The vortex becomes completely stable in a sufficiently broad range of chemical 

potentials, co 1,2 stμ μ μ< < . 

The predicted stability of such states at moderate values of the norm is promising for 

their experimental realization. Although the droplets realized in Refs. [34-36] are not yet in a 

regime where the density shows a flat-top profile and vortex droplets are stable, other BEC 

mixtures could be exploited to observe them easier. For instance, in a 87Rb-41K mixture [43], 

stable vortex droplets with densities ~5·1015 atoms/cm3 and inner vortex diameter 0.5 mμ∼  

might be created for parameters displayed in Fig. 3. 
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Representative scenarios of the evolution of unstable droplets with 1,2 1m = , along with 

an example of the stable evolution, are displayed in Fig. 4 in the form of isosurfaces corres-

ponding to a fixed density. In these cases, the evolution of unstable states was initiated by per-

turbations proportional to eigenmodes obtained from the numerical solution of Eq. (7). Unst-

able droplets split into several fragments, flying away tangentially to the initial ring in order 

to conserve the total angular momentum. The number of fragments is determined by the per-

turbation azimuthal index, k . For 1k= , the original unstable vortex mode transforms into a 

stable zero-vorticity droplet, shedding off the initial angular momentum with emitted matter 

waves. If the instability is seeded by random initial perturbations, rather than by specially 

chosen eigenmodes, fission into two fragments is typically observed, because the correspond-

ing instability mode has the largest rλ  in Fig. 3(a). On the other hand, the 3D vortex rings 

which are predicted to be stable keep their shapes in direct simulations over indefinitely long 

time intervals (which actually exceed the experimental lifetime of the BECs), see the bottom 

row in Fig. 4. 

The linear-stability analysis for the vortex droplets with 1,2 2m =  shows that the spec-

trum of unstable perturbations includes larger values of azimuthal index k . The most destruc-

tive perturbations have 2 4k≤ ≤ , depending on the chemical potential of the stationary state. 

A remarkable fact is that these 3D vortex rings, carrying a multiple topological charge, also 

have a stability domain clearly visible in Fig. 3(b), even if it is relatively narrow. This finding 

offers the first example of stable 3D self-trapped states with higher values of the topological 

charge in any matter-wave or optics setting. The stability is achieved for sufficiently broad 

states with a large norm. Figure 5 shows that, due to the richer spectrum of unstable perturba-
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tion eigenmodes, unstable droplets with 1,2 2m =  may split into a larger number of fragments 

than their counterparts with 1,2 1m = . If the instability is seeded by random perturbation and 

1,2μ  is not too large, the double-vorticity droplet usually splits in four fragments, in accor-

dance with the prediction provided by Fig. 3(b). A typical example of the evolution of a stable 

vortex droplet with 1,2 2m = , perturbed by broadband noise, is displayed in the bottom row of 

Fig. 5. 

The existence of stable droplets with even higher vorticities is expected too, but, due to 

the rapid shrinkage of the stability domain (in terms of μ) with the increase of the vorticity, 

such states may stabilize at values of the norm too large to be realized experimentally. Finally, 

the hidden-vorticity modes with 1 2 1m m=− = , which have characteristics and shapes identic-

al to those displayed in Figs. 1 and 2, turn out to be unstable against fission in the parameter 

regime that may be relevant to experiments. This result is obtained through both the calcula-

tion of the stability eigenvalues and direct simulations. Fission dynamics of such states is il-

lustrated in Fig. 6. In contrast to the case of 1 2 1m m= = , fragments resulting from the decay 

of the droplets with 1 2 1m m=− =  fly apart in the radial direction, rather than tangentially 

to the initial ring. This is due to the fact that the original state has zero angular momentum. 

Shapes of the 1ψ  and 2ψ  components remain close, but not identical, in the course of the 

fission. 

 

4. Conclusions 
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In this work we have predicted a new scenario for the creation of self-trapped vortex 

rings, a type of 3D topological self-bound state never observed in any physical setting (even in 

effectively 2D geometries). We have predicted that these vortex rings should be stable in 

droplets of attractive two-component swirling superfluids. This system is described by a sys-

tem of two coupled Gross-Pitaevskii equations with inter-component attraction and quartic 

beyond-mean-field repulsion due to the LHY (Lee-Huang-Yang) correction to the energies. 

Exploiting this model, we have constructed stationary states in the form of vortex rings with 

embedded topological charges 1 2 1m m= =  and 1 2 2m m= =  of the two components. These so-

lutions represent 3D superfluid droplets with intrinsic vorticity. The latter can be imprinted 

onto the droplets either via rotation of the system or exploiting a twisted laser beam. Our 

main result is the discovery of stability regions for the vortex droplets, which are broad for 

1,2 1m =  and narrower for 1,2 2m = . They constitute  the first stable 3D states with double in-

trinsic vorticity predicted in any physical context. The stable modes feature flat-top shapes, 

i.e., ones with a nearly constant density filling the space between the inner hole, induced by 

the vorticity, and the outer boundary of the droplet. In addition, we have found that the drop-

lets with hidden vorticity, i.e., topological charges 1 2 1m m=− =  in the two components, are 

completely unstable in the relevant parameter region. We investigate the stability of the vor-

tex rings with 1,2 1m =  against fission, using both systematic numerical studies and analytical 

estimates for the energy of the system. The analytical method can be applied to a broad class 

of models generating flat-top states, in 3D and 2D settings alike. Other analytical methods de-

veloped in this work, such as the prediction of the density filling the flat-top area and the ra-

dius of the vorticity-induced hole, may also be applied to a broad class of models. 
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The results reported here may stimulate the creation of 3D vortex droplets using mix-

tures of Bose-Einstein condensates, where droplets were recently demonstrated.  

The present analysis may be developed in other directions. In particular, a natural objec-

tive is to consider interactions (collisions) of zero-vorticity and vortical droplets (in particular, 

of droplets with opposite topological charges, 1,2 1m =  and 1,2 1m =− ). A challenging objective 

is to explore whether stable hopfions, i.e., vortex tori with an intrinsic twist, may exist. They  

represents the second independent topological charge of the self-trapped mode [44]. 
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