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Static, dynamic, and topological properties of hollow systems differ from those that are fully
filled due to the presence of a boundary associated with an inner surface. Hollow Bose-Einstein
condensates (BECs) naturally occur in various ultracold atomic systems and possibly within neutron
stars but have hitherto not been experimentally realized in isolation on Earth due to gravitational
sag. Motivated by the expected first realization of fully closed BEC shells in the microgravity
conditions of the Cold Atomic Laboratory aboard the International Space Station, we present a
comprehensive study of spherically symmetric hollow BECs as well as the hollowing transition from
a filled sphere BEC into a thin shell through central density depletion. We employ complementary
analytic and numerical techniques in order to study equilibrium density profiles and the collective
mode structures of condensate shells hosted by a range of trapping potentials. We identify concrete
and robust signatures of the evolution from filled to hollow structures and the effects of the emergence
of an inner boundary, inclusive of a dip in breathing-mode-type collective mode frequencies and a
restructuring of surface mode structure across the transition. By extending our analysis to a two-
dimensional transition of a disk to a ring, we show that the collective mode signatures are an
essential feature of hollowing, independent of the specific geometry. Finally, we relate our work
to past and ongoing experimental efforts and consider the influence of gravity on thin condensate
shells. We identify the conditions under which gravitational sag is highly destructive and study the
mode-mixing effects of microgravity on the collective modes of these shells.

I. INTRODUCTION AND MOTIVATION

The realization of Bose-Einstein condensation in dilute
ultracold atomic gases gave rise to spectacular directions
in testing and exploring quantum phenomena at macro-
scopic scales [1–6]. Since the advent of this rich field, con-
trol and manipulation of these quantum fluids in diverse
trapping potentials have yielded Bose-Einstein conden-
sates (BECs) in a variety of geometries [7–18]. Here, we
consider a fundamentally new geometry for a BEC—a
hollow spherical shell. We theoretically study its evo-
lution from a filled sphere to one having a small hol-
low region at its center to the thin spherical shell limit.
Hitherto, creating hollow spheres has been an experimen-
tal challenge on Earth due to gravitational sag. Our
study is particularly timely as the first realization of a
shell-shaped condensate [19, 20] is expected to take place
within a “bubble trap” [21] under microgravity condi-
tions in the space-based Cold Atomic Laboratory [22],
recently launched to provide opportunities to investi-
gate BEC behaviors that are unobservable in terrestrial
labs [23].

A BEC in a shell-shaped geometry is fundamentally in-
teresting from multiple perspectives: i) Tuning between
the filled sphere and thin shell limit offers a means of
achieving dimensional cross-over from three-dimensional
(3D) to two-dimensional (2D) behavior. We expect ther-
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modynamics and collective mode properties to be acutely
sensitive to dimensionality. ii) The point at which the
sphere initially hollows represents a change in topology.
In contrast to other studies of topological transitions in
quantum fluids, which require measuring Berry phases
and related global invariants in momentum space, this
topological change directly involves physical geometry.
The filled and hollow spheres correspond to different sec-
ond homotopy groups in that unlike for the filled conden-
sate, a spherical surface within the hollow BEC that sur-
rounds its center cannot be continuously deformed into
a point. iii) The change in topology has physical con-
sequences as it is accompanied by the appearance of a
new, inner boundary. As we show here, the boundary
has a marked effect on collective-mode structures. In
terms of dimensional cross-over and topological change,
the hollowing out of the spherical BEC is a higher dimen-
sional analog of BEC systems that have recently gener-
ated much interest upon their realization—annular and
toroidal BECs [12, 13]. iv) The shell BEC also offers
noteworthy features that are not present in these geome-
tries, such as new vortex phenomena when subject to
rotation and associated Kosterlitz-Thouless physics [24]
on a curved, edgeless surface in the thin shell limit.

Shell-shaped BECs appear in a range of strongly corre-
lated system from the micron to the astronomical scale;
the BEC studied here, being in isolation, provides the
simplest such instance and thus acts as a test bed for
more complex situations. As an established case, shell-
shaped condensate regions occur in 3D optical lattice
systems of ultracold bosons [25–28], produced by the in-
terplay between weak tunneling-to-interaction ratio (or
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strong lattice potential) [29–31] and inhomogeneous bo-
son density due to harmonic confinement [32–34]. In
the case of co-existing phases, superfluid (SF) regions
are confined by surrounding Mott-insulator (MI) regions
of the same bosons creating an effective trapping poten-
tial [35, 36], rather than by an external trap. In addi-
tion, condensate shells are expected in Bose-Fermi mix-
tures [37–39], where a shell of Bose gas results from a
phase separation from a core of fermions. At the astro-
nomical scale, signals from neutron stars acting as radio
pulsars have given rise to models that suggest the ex-
istence of macroscopic quantum states of matter, some
possibly corresponding to shell crusts of neutron super-
fluids [40, 41].

In previous work [42], we presented preliminary ev-
idence that a three-dimensional topological hollowing
transition in a BEC should be accompanied by specific
signatures in the collective mode spectra, and illustrated
these features using numerical solutions to the hydrody-
namic equations for the specific case of the bubble-trap
potential. In this work, we broaden and generalize the
analysis of shell-shaped condensates and the hollowing
transition, and directly address the experimental feasi-
bility of detecting such a topological change. To that
end, we use a family of trapping potentials (including
the bubble-trap) that can continuously tune between the
filled sphere and the thin-shell limits. We perform an
analysis of two concrete condensate properties—density
profiles and collective mode structure, shown schemati-
cally in Fig. 1, and show that the two are intertwined
during the topological transition in which the filled con-
densate becomes hollow. By employing a generalized
trapping potential that allows us to adjust the density
profile near the center of the BEC as it hollows, we are
able to distinguish universal topological hollowing fea-
tures in the collective mode spectra from those that are
trap-geometry-dependent. Thus, the work presented here
provides a deeper understanding of physical mechanic-
sms that result in signatures of the topological change
in the shape of the BEC. Collective modes were the first
phenomenon to be studied after the successful produc-
tion of BECs and are well understood in the filled sphere
case [43–56]; by taking the sphere as one limit in our
family of BEC shapes, we show that the collective mode
frequencies in the filled sphere and thin shell limits reflect
the 3D and 2D limiting behaviors of the hollowing sys-
tem. We additionally use an in-situ numerical simulation
of an experimental probe of collective modes to show that
predicted hydrodynamic features in the spectra would in
fact be relevant in experimental settings.

As our main results, we find that the crossover between
the filled sphere and thin shell limits has several rich fea-
tures and that the collective mode spectra in the system
are excellent probes of the transition from filled to hollow
geometry, in that: i) the mode spectrum in the limiting
case of the thin shell is significantly different from that
of the filled sphere, which should be testable in the CAL
trap, ii) a dip in the frequency of breathing-type or radial

collective modes (having nodes purely along the radial
direction) accompanies the hollowing transition when an
inner boundary first appears, iii) a reconfiguration of the
surface (high angular momentum) collective modes oc-
curs at the hollowing transition, due to the appearance
of the new surface. By employing a family of trapping
potentials, we show that the dip feature is universal to
the hollowing transition, but its sharpness depends on
the details of how central condensate density depletes.
Additionally, we identify features in the surface mode
spectra that are specific to the hollowing in a bubble-trap
that would be absent for other trap geometries (such as
the degeneracy in frequencies of modes localized at the
inner and outer condensate shell surface, respectively).
As the emergence of an additional boundary over the
course of the hollowing-out deformation renders the filled
sphere and the hollow shell condensates topologically dis-
tinct, our discussion identifies concrete, experimentally
testable, features of a real-space topological transition.

Turning to the experimental realization of a shell con-
densate, this requires a combination of factors, all ex-
pected to be achieved in the near future. The bubble
trap, first envisioned by Zobay and Garraway [21] re-
lies on radiofrequency dressing. Recently, the technique
has been successfully used for double-well interferome-
try, ring-trap, and bubble-trap studies in one, two, and
three dimensions, respectively [17, 57–63]. The 3D sys-
tem can suffer sag due to the effect of gravity on the
system. While previous experimental work with this ge-
ometry has so far been limited to the disk-shaped BEC
produced under large gravitational sag [62, 63], a fully-
covered shell-shaped condensate may be produced in the
presence of gravity if particular experimental parameters
can be achieved. Alternately, the effects of gravity can
be lessened by performing the experiment in micrograv-
ity. Two experimental microgravity facilities currently
exist: the ZARM drop tower [64] in Bremen, Germany
and NASA’s Cold Atom Laboratory (CAL) aboard the
International Space Station [22]. A series of experiments
employing a bubble trap in the latter setting is expected
to investigate the physics of closed BEC shells.

The role of gravity in the realization and behavior of
BEC shells is thus significant. In addition to the gravity-
free collective mode analysis, we therefore include the
effects of gravity in two ways. First, we estimate the
strength of gravity required to alter the BEC shell struc-
ture and show that typical strengths on Earth far surpass
this limit. We also provide density profiles of shells in the
presence of a gravitational field and show the sag effect.
The effect, as a function of field strength, opens up the
shell at a pole, altering the topology, and progresses to
flatten the opened shell. Second, assuming microgravity
conditions, we perturbatively analyze the effects of weak
gravity on collective modes. As might be expected, the
field breaks spherical symmetry, and modes differing by a
unit of angular momentum in the spherically symmetric
case become coupled.

Our comprehensive study of the evolution of a BEC
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FIG. 1. (Color online) Top row: schematic equilibrium den-
sity profiles of a spherical BEC evolving from filled (left two
panels) to hollow (right two) geometries. The middle two
columns are close to the hollowing transition. Second and
third rows: density deviation of collective modes (ν, `) = (1, 0)
and (1, 1), respectively, for the corresponding equilibrium den-
sity profile in the same column. Bottom row: density devia-
tion of high angular momentum (` = 20) surface modes on a
filled BEC (left, on the outer surface only) and a hollow BEC
(right, on either the inner or outer surface). The density and
density deviations are scaled by colors in the corresponding
bar graph.

from a filled sphere to a thin shell serves multiple pur-
poses. It introduces a balance of analytic and numerical
techniques appropriate for studying condensate equilib-
rium profiles and collective mode structures in hollow
geometries. It presents concrete results for detecting a
hollowing transition in such systems by pinpointing sig-
natures in the BEC’s collective mode spectrum associ-
ated with the topological change of acquiring a new in-
ner boundary. Appropriate to realistic settings, it as-
sesses the effects of gravity and provides experimental
estimates. We begin in Sec. II with a description of equi-
librium properties of a BEC system in trapping potentials
capable of evolving from a filled sphere to a thin shell as
a function of an experimentally accessible tuning param-
eter. We incorporate a combination of techniques that
best capture the associated BEC density profiles. We
then introduce two techniques in Sec. III for studying
dynamics using hydrodynamics in one case and numeri-
cal evolution following a sudden trap change in the other.
In Sec. IV, we discuss the collective mode structures for
the limiting cases of the well known filled sphere as well
as the thin shell. In Sec. V, we perform a thorough analy-
sis of the collective mode structure evolution between the
limiting cases, first analyzing radially symmetric modes,

then exploring higher angular momentum modes includ-
ing surface modes. In Sec. VI we show that features in the
evolution of the collective mode spectra can be attributed
to the hollowing of the condensate density at the center of
the system. In Sec. VII, we turn to the presence of grav-
ity, obtaining bounds for when the shell structure can be
preserved in spite of a gravitational sag We also perform
a perturbative treatment of gravitational effects on the
collective mode structure. We then end our exposition
with considerations for realistic experimental settings in
Sec. VIII and a conclusion in Sec. IX.

II. EQUILIBRIUM PROFILES

Here, we establish the equilibrium properties of hollow
shell BECs upon which we build our collective mode de-
scription. We consider the limiting cases of a harmonic
trap for the filled sphere geometry and a radially shifted
harmonic trap for the thin shell condensate. A “bub-
ble trap” proposed in the literature [21] and related to
the experimental CAL trap can be tuned between these
two limiting cases. We then consider a generalized trap-
ping potential which can tune the condensate equilib-
rium density in the center of the system as it hollows,
thereby allowing us to isolate the effect of density in
the creation of a new inner boundary. We analyze the
equilibrium condensate density in these traps, and note
that the Thomas-Fermi approximation (which neglects
the kinetic energy of the condensate) is a good approx-
imation for many analyses, and pinpoints hollowing-out
features by modeling sharp boundaries for the conden-
sate. Since accounting for realistic condensate profiles
and soft boundaries requires going beyond the Thomas-
Fermi approximation, we also employ numerical methods
for determining ground state densities.

We describe the condensate wavefunction ψ(r, t)
within the standard time-dependent Gross-Pitaevskii
(GP) equation, given by

i~∂tψ(r, t) =

[
− ~2

2m
∇2 + V (r) + U0|ψ(r, t)|2

]
ψ(r, t),

(1)

where m is the particle mass, V is the trapping potential,
and U0 = 4π~2as/m is the interaction strength (pro-
portional to the two-body scattering length as) [5]. In
considering equilibrium properties, we employ the time-
independent version of the GP equation obtained by as-
suming a condensate wavefunction of the stationary form
ψ(r, t) = ψ(r) exp(−iµt/~) , where µ is the chemical po-
tential of the system. The equilibrium condensate density
is then given by neq(r) = |ψ(r)|2.

A. Trapping potentials

We begin by defining trapping potentials that host the
limiting cases of the filled spherical condensate and the
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thin condensate shell, and then discuss two possible trap-
ping potentials for capturing the physics of the interme-
diate shell regime. Equilibrium density distributions of
condensates are primarily determined by the trapping po-
tential, with details such as their widths and maximum
radii being influenced by the strength of interactions be-
tween the atoms. In the equations below, we adopt di-
mensionless length units, rescaled by an oscillator length
Sl =

√
~/(2mω) where ω is a relevant frequency, for

instance, of the bare harmonic confining trap prior to
rf-dressing.

As the simplest and best understood case, we consider
the spherically symmetric harmonic trap, which produces
a fully filled spherical condensate. The associated trap-
ping potential takes the form

V0(r) =
1

2
mω2

0S
2
l r

2, (2)

where ω0 is the single-particle frequency of small oscilla-
tions and r is the dimensionless radial distance from the
origin (spherical center).

In the opposite limit of a very thin spherical condensate
shell, a simple trapping potential that would produce this
shape is a radially shifted harmonic trap of the form,

Vsh(r) =
1

2
mω2

shS
2
l (r − r0)2, (3)

where the location of potential minimum r0 is nonzero,
and ωsh is the frequency of single-particle oscillations
near this radius. Several salient features of the equilib-
rium density and collective mode structure of the thin
shell limit are well captured by analyzing condensates in
this radially shifted potential. In addition, this potential
is a good approximation for any trapping potential with
a radially shifted minimum in the thin shell limit.

However, the radially shifted harmonic potential is un-
physical for situations where the condensate density is
finite close to the trap center; the slope of the poten-
tial is discontinuous at r = 0. For a more realistic trap
producing a hollow condensate, we consider a “bubble
trap” [21, 62, 63], which has been recognized as a good
candidate. Such a trap is achievable in the cold atomic
setting by employing time-dependent, radio frequency in-
duced adiabatic potentials within a conventional mag-
netic trapping geometry. Its form is given by

Vbubble = mω2
0S

2
l

√
(r2 −∆)2/4 + Ω2, (4)

where ∆ and Ω are the effective (dimensionless) detun-
ing between the applied rf-field and the energy states
used to prepare the condensate and the Rabi coupling be-
tween these states, respectively. Note that the minimum
of this potential is found at r =

√
∆ and the frequency

of single-particle small oscillations around this minimum
is
√

∆/Ωω0.
The parameters ∆ and Ω together allow for tuning be-

tween the filled condensate and the thin shell. When
∆ = Ω = 0, the bubble-trap potential reduces to a har-
monic trap with frequency ω0. For large ∆, it is approx-
imated near its minimum by a radially shifted harmonic

trap [Eq. (3)] with frequency ωsh =
√

∆/Ωω0. Slowly
increasing or decreasing the trap parameter ∆ results in
a continuous deformation between the two limiting ge-
ometries of a filled sphere and a thin spherical shell.

While the change from a filled to a hollow system is
topological in nature (an inner surface is created), be-
cause condensates have continuous density profiles, the
hollowing in a real system will be gradual. The density
at the center becomes smaller until it is effectively zero.
One of the main questions addressed in this work is: what
are the signatures of this transition in the collective mode
spectrum of the system?

In order to tune the detailed behavior of the condensate
density during the hollowing transition, we also consider
the following general radially shifted trapping potential

Vgt(r) =
1

2
mω2

gtR
2S2

l

[( r
R

)α
− γ
]2
, (5)

where R represents the (dimensionless) characteristic size
of the system (or exactly the outer sharp boundary under
the Thomas-Fermi approximation). Here, 0 ≤ γ ≤ 1 is a
dimensionless parameter that tunes the radially shifted
trap minimum for realizing the evolution between filled
sphere and thin shell, and α determines the polynomial
growth of condensate density in the radial direction from
the boundary. Note that the radially shifted harmonic
trap of Eq. (3) is a special case of the general trap having
α = 1. In Sec. VI, we will use this general potential to
understand the universal features of the collective-mode
spectrum that occur as the system becomes hollow in the
center.

B. Evolution of equilibrium density from filled
sphere to thin shell

Having enumerated the trapping potentials used in our
studies, we next find the equilibrium density profiles of
condensates confined to these traps.
Thomas-Fermi approximation – In the limit of

strong interactions the Thomas-Fermi approximation, in
which the kinetic energy term in Eq. (1) is disregarded, is
commonly used. In this approximation, the equilibrium
density profile is given by

neq(r) =
V (R)− V (r)

U
, (6)

where R is the outer radius of the condensate, U =
U0S

−3
l , and the chemical potential is equal to µ = V (R).

The strong interaction limit is defined by Nas/Sl � 1
for N particles, where Sl the characteristic length of the
trapping potential defined in Sec. II A.

Within this approximation, the condensate density
neq(r) and boundary neq(R) = 0 are determined by
the trap geometry and the total number of particles
N =

∫
neq(r)dr. This approximation can be used to show

that a BEC in the bubble trap with a slowly changing de-
tuning ∆ transitions from a filled sphere to a hollow shell
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FIG. 2. (Color online) Ground state density profiles neq(r)
(multiplied by 1000) in the bubble trap for ∆ = 0 (lighter blue
curves), 25 (light green), 50 (dark red), 100 (darker gray), and
200 (black). The various values of ∆ show the evolution from
the spherical (filled) condensate in a harmonic trap at ∆ = 0
to a thin-shell condensate for large ∆ (the 3D visualization
can be found in the top row of Fig. 1). The solid (dashed)
curves are obtained from the numerical solution of the GP
equation (the Thomas-Fermi approximation). Here, we use
∆/Ω = 1 and an interaction constant u = 10, 000.

when ∆ = R2/2 (where we have set ∆ = Ω for conve-
nience).

Beyond Thomas-Fermi – A more accurate numer-
ical solution for the ground state of the GP equation
(for any value of interaction strength) can be found us-
ing an imaginary-time algorithm [65]. In Fig. 2, we
show the evolution of the numerical ground state in the
bubble trap as the detuning ∆ is varied from 0 to 200
(corresponding to evolution from a filled, harmonically
trapped, sphere to a thin spherical shell) with ∆/Ω = 1
fixed. The equilibrium density given by the Thomas-
Fermi approximation is shown for comparison. While
for the most part the density profiles match each other,
those found through the exact numerical calculation show
a more realistic, smooth decrease in density at the edges
of the condensate.

We note that for intermediate interaction strength U ,
the relative interaction energy (as measured by the ra-
tio of U0

2

∫
|ψ|4dr to the total energy) can decrease con-

siderably as one moves from a filled sphere to a thin
shell when the number of trapped particles N is kept
fixed. This is due to the large decrease in maximum
particle density n = |ψ|2 as the shell becomes thin. In
order to compare with results of the Thomas-Fermi ap-
proximation in the thin shell limit, we have used a rel-
atively large value of dimensionless interaction strength
u = 8πNas/Sl = 10, 000 in our numerics, where Sl is
the oscillator length for the harmonic trap when ∆ = 0.
For 87Rb and a bare trap frequency of 10–100 Hz, for
instance, this corresponds to N = 2×105–5×104 atoms.

Taking into account the analyses and arguments above,
in what follows, we either employ the Thomas-Fermi ap-
proximation or the numerical ground state, as appropri-
ate.

III. METHODS AND APPROACHES FOR
DYNAMICS OF COLLECTIVE MODES

Having discussed the equilibrium behavior of a trapped
condensate, in this section we consider its dynamics. In
order to study the collective motions of spherically sym-
metric BECs we present four complementary methods
appropriate in different regimes: i) The first method uses
a hydrodynamic approach combined with Thomas-Fermi
equilibrium density profiles, which leads to a differential
eigenvalue problem for all possible collective motions of
small density deviations of a given condensate geometry.
This method provides a good approximation for collec-
tive mode spectra in any spherically symmetric trap. ii)
Second, we employ a fully-numerical approach that mim-
ics the experimental excitation of collective oscillations
through sudden changes in trap potential. While more
realistic, this method can only capture low-lying collec-
tive modes due to finite resolution. iii) A hybrid method
uses the hydrodynamic equations, but applied to the nu-
merical ground-state density and has the advantages of
the simpler Thomas-Fermi hydrodynamic approach, but
with realistic treatment of the condensate boundaries.
iv) A fourth method focuses on surface modes localized
to the boundary of the system by linearizing the hydro-
dynamic eigenproblem close to the boundaries of the con-
densate.

A. Hydrodynamic treatment

Here, we describe the condensate’s collective dynamics
in terms of hydrodynamic density oscillations. The small
density fluctuation δn(r, t) out of the equilibrium conden-
sate density neq(r) is described by the standard hydro-
dynamic equation of motion (see details in Refs. [5, 46]),

mS2
l ∂

2
t δn = U∇ · (neq∇δn) +O(δn2, ∂3δn, ∂2neq).(7)

We will use this expression for specific trap geometries
under a number of assumptions about the nature of the
collective modes. First, the nonlinear terms of δn are
negligible when we assume that deviations away from the
equilibrium density are small, i.e., the amplitude of the
collective mode oscillations is small. Furthermore, the
higher derivatives of δn are negligible if the oscillations in
the condensate density are smooth, i.e., δn varies only on
length scales much larger than the local coherence length
ad
√
ad/as where ad is the inter-particle spacing [5]. The

second derivative of neq, associated with the kinetic en-
ergy arising from the density variation due to the trap, is
also negligible in the strong interaction (Thomas-Fermi)
limit.

Assuming normal-mode oscillations δn(r, t) =
δn(r)eiωt, Eq. (7) takes the form,

−mS
2
l

U
ω2δn = ∇neq · ∇δn+ neq∇2δn. (8)
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The eigenvalues and eigenfunctions satisfying this expres-
sion correspond to collective modes with oscillation fre-
quencies ω and profiles δn(r), respectively. We note that
this expression shows that the hydrodynamic approach
can be applied for any equilibrium density profile. While
for the most part we will use the density obtained from
the Thomas-Fermi approximation, we will use the numer-
ical ground-state density found from the imaginary-time
algorithm for comparison.

For traps with spherical symmetry, we can decompose
δn(r) = D(r)Y`m`

(θ, ϕ), where Y`m`
are the usual spher-

ical harmonics and find that Eq. (8) reduces to

mS2
l

U
ω2r2D = − d

dr

(
r2neq

dD

dr

)
+ `(`+ 1)neqD. (9)

Using the Thomas-Fermi equilibrium density profile of
Eq. (6) the eigenproblem becomes

mS2
l ω

2D =
dV

dr

dD

dr
− [V (R)− V (r)]

×
[
dD2

dr2
+

2

r

dD

dr
− `(`+ 1)

r2
D

]
. (10)

Equations (9) and (10) have analytic solutions in two
limiting cases of filled sphere and thin shell, which are
studied in Sec. IV, or can be analyzed with perturbation
theory, as for the finite thin-shell case in Sec. IV B or
for the gravity effects studied in Sec. VII B. In general,
our eigenproblem is of the Sturm–Liouville form and can
hence be treated with a finite-difference method, whose
technical details are presented in Appendix A. Our hy-
drodynamic results for the evolution between filled sphere
and hollow shell in Secs. V and VI are obtained from the
finite-difference method.

Surface modes – Here, we highlight the case of collec-
tive modes localized near the edges of the condensate—its
surface modes. Following the earlier work in Ref. [66], we
note that in order to identify surface modes it is appro-
priate to expand the Thomas-Fermi equilibrium density
profile about r = rb for V (rb) = µ, the position of the
condensate boundary. Consequently, the Thomas-Fermi
equilibrium density profile can be expressed as

neq(r) =
F · (r− rb)

U
, (11)

where F = −∇V (rb).
Denoting the direction of ∇V by x and the position

of the boundary (which is a 2D equipotential surface) by
x = xb, we proceed to estimate the size of the region
near the boundary within which this treatment of the
condensate equilibrium density is reliable. Recalling that
the Thomas-Fermi approximation follows from neglecting
the contribution of the kinetic energy in the GP equation,
Eq. (1), we estimate that kinetic energy dominates for
xb − x ≤ δsm where

δsm =

(
~

2m|F|

)1/3

. (12)

If the trapping potential varies slowly on the length scale
δsm, it is then a good approximation to expand the po-
tential and the Thomas-Fermi equilibrium density about
r = rb as suggested above [5].

We next solve the hydrodynamic equations for the lin-
earized potential V (x) = Fx with x defined so that it
vanishes at rb. First, we note that in the y and z direc-
tions, defined relative to x, there is translational invari-
ance so that a density oscillation δn = δn(x, y, z)e−iωt

must correspond to a plane wave in these two variables.
As in [66] we chose the z−direction as the direction of
propagation of this collective mode and denote its wave-
number by q. Consequently, the collective motion only
has x and z dependence and we can re-write the hydro-
dynamic equation as

mS2
l ω

2δn(x, z) = F
∂δn(x, z)

∂x
+ Fx

[
∂2δn(x, z)

∂x2

+
∂2δn(x, z)

∂z2

]
. (13)

Solutions to this expression can take the form,

δn(x, z) = f(qx)eqx+iqz, (14)

for some smooth function f(qx). We note that in this
ansatz, the exponential factor in the variable x corre-
sponds to an exponential decay away from the condensate
boundary. We obtain the frequencies for modes described
by Eq. (14) as

mS2
l ω

2
in,out = (1 + 2νin,out)Fin,outqin,out, (15)

while the modes themselves are of the form

δn(x, y, z, t) = Cνin,outLνin,out(−2qin,outx)×
eqin,outx+iqin,outz−iωin,outt,

where Cνin,out
is the overall magnitude and Lνin,out are La-

guerre polynomials. Here, indices νin,out count the num-
ber of radial nodes of a collective mode confined to a
particular boundary surface of the condensate.

The specific behavior of surface modes, depending on
the specific physical topology of the condensate, is fur-
ther discussed in Sec. IV C for the limiting shell case and
in Secs. V B and VI C for the evolution between filled
sphere and hollow shell in the bubble and general traps,
respectively.

B. Sudden quench numerics

While the hydrodynamic treatment described above is
adequate for obtaining the collective mode spectrum, our
numerical simulations serve as a good complement. They
even capture physics beyond the hydrodynamic regime
for the bubble trap geometry, which can access the filled
sphere and thin shell limits as well as the evolution be-
tween them. Taking inspiration from experimental meth-
ods for exciting collective modes of trapped BECs [44], we
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theoretically probe the excitations of the system by direct
simulation of the GP equation after a small and sudden
change in the trap potential takes the system slightly out
of equilibrium.

After first finding the numerical ground state of the
GP equation describing a BEC confined by the bubble
trap for one set of values of trap parameters ∆0 and
Ω0, we then time-evolve this initial state using the GP
equation with different values of trap parameters ∆ and
Ω. This results in time-oscillating features in the time-
evolved condensate wavefunction ψ(r, t). The frequencies
of these oscillations can be extracted by using a fast-
Fourier transform in the time domain. For small changes
(∆0 − ∆ � ∆0 and likewise for Ω) these simulations
should probe the linear response and low-lying modes of
the system.

In practice we use the explicit time-marching method
of Ref. [67] to time-evolve the initial numerical ground
state (found in Sec. II B) for two types of quenches. In
one case we let ∆/Ω 6= ∆0/Ω0 change while keeping
∆ = ∆0 fixed, which fixes the mean radius of the shell
but allows the tightness of the confinement to change.
For a hollow shell, this quench is expected to primarily
excite modes in which the thickness of the shell oscil-
lates. Alternatively, we change ∆ 6= ∆0 while keeping
∆/Ω = ∆0/Ω0 fixed so that the tightness of the trap is
constant while the mean radius of the shell varies. This
method is found to more equally excite modes with both
even and odd values of ν (which denotes the number of
radial nodes in the collective mode). The two methods
agree when the same mode frequencies are resolvable. Be-
cause these quenches both preserve spherical symmetry,
they only probe spherically symmetric ( ` = 0) modes
of the system. In principle, appropriate quenches could
be designed to probe non-symmetric states as well (such
as an offset of the center of the trap in the x direction,
resulting in excitation of the center-of-mass modes). In
what follows, we concentrate on numerical resolution of
the spherically symmetric modes only.

IV. COLLECTIVE MODES: LIMITING CASES

In this section we apply the hydrodynamic approach of
Sec. III A to a filled spherical condensate and a thin con-
densate shell. In this detailed treatment, we establish the
full frequency spectrum and associated mode behaviors
of these two limiting cases of our general hollowing sys-
tem. Because of the spherical symmetry of the system,
the collective modes can be characterized by two quan-
tum numbers: one for the number of radial nodes, ν, and
one for the orbital angular momentum denoted by the in-
dex `. We find that the presence of an inner boundary
in condensate shells produces features that are not found
in fully filled spherical BECs even for the same quan-
tum numbers. These results not only provide a check
for the full evolution between the limits when analyzing
the bubble trap and other cases in subsequent sections,

they also provide a better understanding of the inter-
mediate crossover regime and corroborate predictions for
this regime.

A. Filled sphere: quadratic potential

We first recapitulate the results of hydrodynamic ap-
proach for the well understood case of a condensate in
a spherically symmetric harmonic trap, Eq. (2), V0 =
1
2mω0

2S2
l r

2. We assume the strong interaction regime
where the Thomas-Fermi approximation is applicable.

Solving Eq. (10) one obtains [5, 46]

ωsp
ν,` = ω0

√
`+ 3ν + 2ν`+ 2ν2, (16)

where ν is a radial index as above and ` is an index of
the orbital angular momentum. We see from Eq. (16)
that in addition to the trivial mode ωsp

0,0 = 0, which cor-
responds to a uniform density deviation but does not
physically exist in real systems, any nonzero mode has
frequency ωsp

ν,` ≥ ω0. A schematic density deviation pro-

file for (ν, `) = (1, 0) [(1, 1)] is presented in the leftmost
panel of the second (third) row of Fig. 1. We see that
ν and ` count the nodes, at which the density devia-
tion vanishes, in radial and angular directions, respec-
tively. The ` = 0 modes exhibit only the radial expan-
sion and contraction (spherically symmetric) and are re-
ferred as breathing modes. The ` = 1 modes exhibit
a center-of-mass oscillation between the south and north
hemispheres and are referred as sloshing or dipole modes.
The breathing, sloshing, and quadrupole (` = 2) modes
have been experimentally observed [43, 44, 55, 56] in good
agreement with the theoretical predictions.

B. Thin shell: radially shifted quadratic potential

As discussed in Sec. II, the shell-shaped condensate
can be realized by trapping in a radially shifted harmonic
potential, Eq. (3),

Vsh(r) =
1

2
mω2

shS
2
l (r − r0)2.

The potential minimum (or condensate density maxi-
mum) appears at r = r0. Under the Thomas-Fermi ap-
proximation, given the shell’s outer radius R = Rout =
r0 + δ and δ < r0, Eq. (6) yields the inner radius
Rin = r0− δ. Here, the condensate shell has two distinct
radii, Rin and Rout, in contrast to a single outer radius
R for the fully filled spherical condensate. Evaluating
the integral N =

∫
neq(r)dr, we find the relationship be-

tween the total number of particles, N and the shell’s
dimensionless thickness 2δ:

N =
8πmω2

shS
2
l

3U
δ3(r2

0 +
δ2

5
). (17)
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If δ � r0, this reduces to

2δ =

(
3UN

πmω2
shS

2
l r

2
0

)1/3

. (18)

We define the “thin shell limit” by c ≡ r0/δ � 1 and
solve Eq. (10) for the collective modes in this limit.

We let η = r−r0
δ (so −1 ≤ η ≤ 1), λ = (ω/ωsh)

2
, as

well as y(η)/(η + c) = D(r) and express Eq. (10) as[
(1− η2)

d2

dη2
− 2η

d

dη
+ 2λ

+
2η

η + c
− `(`+ 1)

1− η2

(η + c)2

]
y = 0. (19)

In the limit of a very thin shell (c → ∞), we can ignore
the last two terms in Eq. (19). The solutions are Leg-

endre polynomials yν(η) =
√

2ν+1
2 Pν(η) having eigenfre-

quencies

ωsh
ν,` = ωsh

√
ν(ν + 1)/2. (20)

Here, similar to the filled sphere case, the thin shell case
has nonzero breathing mode frequencies higher than the
characteristic trapping frequency. But in contrast to the
filled case, all ` modes are nearly degenerate compared
with the radial energy scale. The rightmost panel of sec-
ond (third) row of Fig. 1 shows a schematic density de-
viation profile for (ν, `) = (1, 0) [(1, 1)], from which we
see nodal structures similar to the filled sphere case. For
a very thin shell, however, the energy associated with a
collective mode is largely unaffected by the number of
angular nodes. In other words, the radial behavior of
the collective mode determines its eigenfrequency. We
note that this degeneracy of ` modes has previously been
shown [68] to characterize the collective modes of thin
ring-shaped BECs as well. Additionally, we note that,
unlike the indices νin,out of Eq. (15), ν denotes the num-
ber of radial zeroes of a collective mode spanning the full
extent of the condensate shell.

For a slightly thicker shell in which c deviates from
the infinite limit, we calculate the correction to ωsh

ν,` by

treating the last two terms in Eq. (19) perturbatively.
We obtain(

ωsh
ν,`

ωsh

)2

=
ν(ν + 1)

2

[
1 +

4c−2

(2ν − 1)(2ν + 3)

]
+

c−2`(`+ 1)

4

[
1− 1

(2ν − 1)(2ν + 3)

]
.(21)

The leading corrections to the frequency are of the
order O(c−2). In a shell with a large but finite c, the
frequency spectrum of the lowest-lying collective modes
(low ν and ` indices) has the form of bands corresponding
to different ν separated by O(ωsh), with each band hav-
ing fine levels corresponding to different ` separated by
O(c−2ωsh). As a result, the two energy scales for radial
and angular motions are well separated in a thin shell.

As the thickness of the shell increases, the effects of the
angular oscillations on its collective mode frequency and
energy become more prominent.

In the ν = 0 case, we obtain purely angular collective
modes

ωsh
0,` = c−1ωsh

√
`(`+ 1)/3. (22)

Accordingly, we expect the collective modes of a very thin
shell that do not have any radial nodes to correspond to
very low (but still nonzero) frequencies. Such low fre-
quency excitations (compared with the trap frequency)
do not exist in the filled-sphere condensate.

Additionally, we note that the presence of an inner
boundary for a shell condensate can have important ef-
fects on its collective modes. In the limit of large ` (� c),
the term `(`+ 1)(1− η2)/(η+ c)2 in Eq. (19) dominates.
This term behaves as a potential barrier between the in-
ner and outer boundaries η = ±1, respectively, and fa-
vors low-frequency modes localizing on either the inner
or outer shell surface (potential minimum). This is dif-
ferent from the filled-sphere condensate, which does not
have an inner boundary. We proceed to discuss these sur-
face modes below, and later in Sec. V B, we show how this
effect causes a sudden change in the spectrum of large `
modes as a bubble-trap system evolves from a sphere to
a shell.

C. Surface modes

Noting that the most striking difference between a fully
filled spherical BEC and a hollow condensate shell is the
presence of an additional, inner boundary for the latter,
we employ the techniques presented in Sec. III A in or-
der to study the collective modes localized at condensate
boundaries.

For the collective modes localized at the outer edge of
the fully filled spherical BEC it is known that [66]

ωsp
ν,` = ω0

√
`(2ν + 1). (23)

In presenting this result we note that this expression is
exactly the large ` � 1 limit of the collective mode fre-
quencies given by Eq. (16).

To study the modes confined to the inner and outer
surfaces of the hollow condensate shell we first consider
the radially shifted quadratic potential of trapping fre-
quency ωsh in Eq. (3) and obtain

mS2
l ω

2
in,out = (1 + 2νin,out)Fin,outqin,out, (24)

or, more precisely,

ωsh
in,out = ωsh

√
`(1 + 2νin)

|R− r0|
rin,out

, (25)

where we identify the wavenumbers q = `/rin,out and
calulate rin = 2r0 − R and Fin,out = ±ω2

sh(R − r0). We
note that collective modes on the inner surface have a



9

higher frequency, for the same number of radial and an-
gular nodes (ν and `), than those on the outer surface.
Recalling that the radially shifted trapping potential cap-
tures the salient characteristics of thin BEC shell dynam-
ics, we note that these expressions are only representa-
tive of condensate behavior for r0 ≈ R. This implies
that in the thin shell limit, where the areas of the inner
and the outer boundary are comparable, frequencies of
surface modes hosted on either are nearly equivalent as
well. At the same time, we note that this analysis is only
applicable to shells of thickness δ > 2δsm as in thinner
condensate shells the kinetic energy near the condensate
boundaries cannot be neglected [recall Eq. (12)] and the
surface modes exhibit significant overlap and thus cannot
be treated as fully confined to either condensate bound-
ary.

This thin-shell result can be compared with the case of
a more general, thicker condensate shell described by the
bubble trap of Eq. (4). In this case, the surface modes of
the condensate have frequencies given by

ω2
in,out =

ω2
0`(R

2 −∆)√
(∆−R2)2/4 + Ω2

(2ν + 1), (26)

where the wavenumber associated with each surface
mode is qin,out = `/Rin,out. In other words, for the bub-
ble trap, Finqin = Foutqout leads to a degeneracy in the
frequency of surface modes at the inner and outer sur-
faces. This degeneracy implies that for a hollow conden-
sate with two surfaces that are separated by a substan-
tial thickness, even though the inner surface is smaller
in area, its stiffness is lower and can support more oscil-
lations per unit distance (since qin > qout), bringing the
frequency of oscillations with ν nodes on the two surfaces
into alignment.

In terms of surface modes we can therefore identify two
different regimes for spherically symmetric BECs: the
fully filled BEC sphere where only the outer condensate
boundary is available for localization of oscillations, and
a hollow BEC shell of nontrivial thickness where the os-
cillations confined to the inner boundary attain the same
frequencies as those confined to its outer surface. In the
very thin shell limit these modes overlap, and their radial
nodes do not remain well separated. We note that in all
of these regimes the form of the collective modes is func-
tionally the same up to factors that explicitly depend on
rin,out thus capturing the effects of two boundaries and
finite thickness in the case of hollow condensates. In the
following sections we discuss the way in which these two
regimes connect as a filled spherical BEC hollows out and
deforms into a thin, hollow shell.

V. COLLECTIVE MODES: EVOLUTION FROM
FILLED SPHERE TO THIN SHELL

We next examine the evolution of a fully filled spherical
condensate to a hollow, thin shell geometry and its effect
on the system’s collective modes. In the extreme limits

of the filled sphere and thin shell, we have given analytic
predictions in Sec. IV above.

In Sec. V A, we show that the collective mode structure
progression for breathing modes from the filled sphere to
the thin shell limits detailed above is characterized by
a distinctive feature—a dip in frequency. The dip oc-
curs at the point in parameter space when the density
at the center of the condensate first begins to vanish—at
the hollowing transition. We find that at this transition,
density deviations for the radial collective modes local-
ize near the hollowing region. We argue that since the
condensate density in this region is highly reduced, the
stiffness associated with these modes is also lowered at
this point, accounting for the reduced collective mode
frequencies.

Density distortions in high angular momentum modes
are mainly confined to the boundary surface of the con-
densate. The effect of an emerging new surface on the
surface mode frequencies is thus dramatic. In Sec. V B,
we detail the evolution of the surface mode structure
through the hollowing transition and find a distinct re-
arrangement of the spectrum at the hollowing transition.
We argue that with a new surface present any nodes in
the transverse (radial) direction can be distributed be-
tween the two (inner and outer) boundary surfaces, thus
reducing the energetic cost of hosting these nodes and
causing sudden changes in the mode frequencies.

In this section, we analyze systems in the bubble trap
potential of Eq. (4), beginning with a survey of the evo-
lution of the spherically symmetric mode frequencies and
the corresponding distortions in the condensate density,
using the Thomas-Fermi approximation in the hydrody-
namic approach. We then corroborate and deepen this
analysis using the quench numerics approach of section
III B. We then analyze finite angular modes with ` 6= 0,
including surface modes. A more focused analysis is per-
formed in Sec. VI using different trapping potentials to
show that the frequency dip and the surface mode redis-
tribution are robust for a variety of spherically symmetric
configurations.

A. Evolution of spherically symmetric modes in
the bubble trap

We begin our collective mode analyses by solving the
hydrodynamic differential problem in a bubble trap ge-
ometry in the Thomas-Fermi limit, given by Eq. (10),
using a finite-difference method. This calculation is car-

ried out over a range of mean shell radii
√

∆̃ ≡
√

∆/R
thus allowing us to obtain frequencies corresponding to
the same collective mode at various stages of the evolu-
tion between a filled sphere (∆ = ∆̃ = 0) and a very thin

shell (∆ ≈ R2 or ∆̃ ≈ 1). We keep the outer edge of the
condensate R fixed while the total number of atoms is
allowed to vary—this corresponds to working with con-
stant chemical potential µ. This analysis is expected to
capture the physics of a condensate in the strong inter-
action limit.
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FIG. 3. (Color online) Oscillation frequencies ω, found via the
hydrodynamic equation, Eq. (10), with Thomas-Fermi equi-
librium profiles, of the three lowest-lying nonzero spherically
symmetric (l = 0) collective modes ν = 1, 2, 3 (dark red,
green, and light blue curves, respectively) vs the bubble-trap

detuning ∆̃ [given ∆/Ω = 1 in Eq. (4)]. The zero mode

(black) is also presented for comparison. As ∆̃ increases, the

BEC evolves from a filled sphere ∆̃ = 0 toward a hollow thin
shell ∆̃→ 1, through a hollowing transition at ∆̃ = 0.5. In the
sphere and thin-shell limits, the frequencies agree with the ex-
act solutions of Eqs. (16) and (20), respectively. Around the
transition point, the collective-mode evolution is character-
ized by a dip in frequency, which is singular in the Thomas-
Fermi approximation due to the appearance of a sharp new
boundary.

The Thomas-Fermi density profile gives densities cor-
responding to a filled sphere at ∆̃ = 0, a filled sphere with
depleted central density for 0 < ∆̃ < 0.5, and a hollow
shell for 0.5 < ∆̃ < 1 (the thin-shell limit is ∆̃→ 1). The

hollow shell has an inner boundary at Rin = R
√

2∆̃− 1,
while the filled geometries have no inner boundary. The
condition ∆̃ = 0.5 demarcates the sharp transition be-
tween the filled and hollow systems. In finite-difference
numerics, we section the interval [0, R] ([Rin, R]) for the
filled (hollow) case into 2d lattice sites and turn the rel-
evant differential equation into a generalized eigenprob-
lem for a finite-size (2d + 1)× (2d + 1) matrix (see more
details in Appendix A). We choose a sufficiently large
d that guarantees the convergence of the solution. The
data points presented below are for d = 16 (unless men-
tioned otherwise).

In Fig. 3, we plot the oscillation frequencies for the
lowest-lying spherically symmetric (` = 0) collective
modes, including a zero mode and three nonzero modes,
as a function of ∆̃, representing the deformation of the
condensate from a filled sphere (∆̃ = 0) to a thin shell

(∆̃→ 1). Note that the zero mode ν = 0, corresponding
to a constant density-deviation profile, is not physically
detectable for any ∆̃. We find that the curves do not
cross each other and the set of frequencies can distin-
guish between different stages of the deformation. Fre-
quency values in the two limiting cases are consistent
with those predicted for the filled-sphere and thin-shell
limits in Eqs. (16) and (20), respectively. There is a
frequency dip in each of the three physical modes when
the shell develops an inner boundary at ∆̃ = 0.5. The

Δ

=0 0.4 0.499

0.501 0.6 0.99

δ
n(
r)
,n
eq
(r
)

0 R 0 R 0 R

Rin R Rin R Rin R

FIG. 4. (Color online) Normalized density deviation profiles
δn(r) of the three physical breathing modes in Fig. 3 (same
convention) and equilibrium profile neq(r) (dashed curves).

Individual panels correspond to three filled cases ∆̃ = 0, 0.4,
and 0.499, and three hollow cases 0.501, 0.6, and 0.99 (as la-
beled inside). Around the hollowing-out transition, the den-
sity deviation profiles tend to concentrate on the spherical
center. This is energetically favorable and related to the de-
velopment of frequency dip, as discussed in Sec. VI B.

frequencies monotonically decrease (increase) with ∆̃ if

∆̃ < 0.5 (> 0.5). We have confirmed the stability of this
dip structure as the continuum limit is approached (up
to d = 23). The frequency dip presents a clear signature
for the hollowing transition in the system. The physical
behavior giving rise to this feature is explored below and
in more detail in Sec. VI.

We now turn to the behavior of the density deviations
δn(r) [recalling that the collective modes of the conden-
sate correspond to δn(r) = D(r)Y`m(θ, ϕ)] and their evo-
lution as the system transitions from filled sphere to thin
shell. In Fig. 4 we show δn for the lowest three modes
and the equilibrium density neq at six values of ∆̃. We
see that at any stage in the evolution between the sphere
and the thin shell, the number of nodes in δn is always
equal to the mode index ν, and the maximum amplitude
occurs at the center (the inner boundary r = Rin) if the

center is filled (hollow). When ∆̃ increases from zero,
the central equilibrium density starts to drop. As we ap-
proach the hollowing transition at ∆̃ = 0.5, the central
density drops to zero and the density deviations attain
large amplitudes, localizing at the center of the system.
(Note that we still assume a strong interaction such that
the linearization of Eq. (7) is valid, i.e., for given scatter-
ing length as and characteristic interparticle spacing ad,
ad
√
ad/as is small compared with the length scale of the

concentration.) For ∆̃ > 0.5, i.e. the hollow-shell regime,
the density remains zero at Rin (6= 0) and the density de-

viations delocalize from Rin as ∆̃ increases. We recover
the Legendre polynomials in the density-deviation pro-
files in the thin shell limit of ∆̃ = 0.99, as we have shown
in Sec. IV B.

We emphasize the frequency dip at the hollowing tran-
sition ∆̃ = 0.5 and the concentration of density devia-
tions around the center as the main results of this sec-
tion. In assessing the generality of this frequency drop as
a signature of a hollow condensate, realistic factors such
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FIG. 5. (Color online) Oscillation frequencies ω, found via
the hydrodynamic equation, Eq. (9), with equilibrium pro-
files given by the numerical solution to the GP equation, of
the three lowest-lying nonzero spherically symmetric (l = 0)
collective modes ν = 1, 2, 3 (circles, squares, and triangles, re-
spectively) vs the bubble-trap detuning ∆. The bubble-trap
parameters are set by ∆/Ω = 1 and the interaction strength is
u = 104. The equilibrium profiles corresponding to five of the
data points are shown in Fig. 2. Compared to the Thomas-
Fermi results in Fig. 3, the dip in frequency is softened but
clearly presents a hollowing transition region (shaded region)
between filled and hollow topologies.

as moderate interaction strength and non-sharp bound-
aries need to be taken into account.

As a first step in moving beyond the Thomas-Fermi
approximation, we recall that the hydrodynamic formal-
ism for the BEC’s dynamical behavior can be applied to
any equilibrium density profile, in particular to the nu-
merical ground state of the GP equation. In Fig. 5 we
plot the frequencies of the ν = 1, 2, 3 spherically symmet-
ric (` = 0) collective modes calculated by using hydrody-
namic equation, Eq. (9), with the GP equilibrium density
profile found by employing the imaginary-time algorithm.
We see that the limiting behavior of the collective mode
frequencies is consistent with our discussion in Sec. IV
regardless of whether we use the Thomas-Fermi density
profile or the more realistic numerical GP result. The
dip feature is still present, indicating the development of
an inner boundary, but the GP profiles give a less sharp
frequency dip compared to the Thomas-Fermi results. In
fact, the transition itself spreads across a region, as op-
posed to a single point. The softened dip feature still
reflects the transition region (shaded) between filled and
hollow behaviors. The sharpness of the frequency dip is
associated with the use of the Thomas-Fermi approxima-
tion in which the density profile decreases to zero at con-
densate edges in an abrupt fashion (as shown in Fig. 2).
We will discuss the relevant physics in details in Sec. VI B

To capture the most general physics beyond both the
Thomas-Fermi approximation and the hydrodynamic ap-
proach, we perform sudden quench numerical simulations
using the method described in Sec. III B. We simulate
BECs throughout their evolution in a bubble-trap from
a filled sphere at ∆ = 0 to a thin shell at large values of ∆.
Fig. 6 shows the measured frequencies of the three lowest-
lying nonzero spherically symmetric collective modes as
a function of ∆ ranging from 0 to 200, holding ∆/Ω = 1

and the total number of particles N fixed.
We note the general agreement of the frequency spec-

trum found using this method with the hydrodynamic
results shown in Figs. 3 and 5. This method also gives a
more rounded dip feature than that obtained using the
Thomas-Fermi approximation. This further supports the
idea that the sharpness of the frequency dip is related to
the suddenness with which the sphere hollows as a func-
tion of ∆. We observe that the frequency of the ν = 1
mode (shown in red) shows behavior very similar to the
results of the hydrodynamic approach with the numeri-
cal ground state. As also found with the hydrodynamic
approach applied to the numerical ground state, the fre-
quencies of the three modes are well separated when the
sphere hollows out i.e. at the value of ∆ where the fre-
quency dips.

Figure 7 shows the deviations of condensate density
from equilibrium in the numerical time evolution after a
quench for values of ∆ that results in the deformation
from the filled sphere to the thin shell. We note these
density deviations generally reflect those found from the
hydrodynamic approach in the Thomas-Fermi approxi-
mation (Fig. 4), in that they also show localization of
the oscillations to the inner boundary for ∆ ≈ 60 where
the frequency dip occurs as the center of the system be-
comes hollow.

Arguably these numerical results are more representa-
tive of true physical behavior of an experimental sys-
tem than those obtained using the hydrodynamic ap-
proach, which involves a number of previously noted as-
sumptions. The similarity between the two results, es-
pecially prominent for hollow shells, justifies the use of
the more numerically efficient Thomas-Fermi hydrody-
namic approximation. Most importantly, it corroborates
our prediction that the dip in the frequency at the val-
ues of ∆ where the system transitions between the filled
sphere and hollow shell is a physical feature that could
be observed in an experimental setting.

B. Evolution of modes having ` 6= 0 in the bubble
trap

We now examine how collective modes having ` 6= 0
evolve as the condensate is hollowed. We first note
that in the eigenvalue problem of Eq. (9) or (10), the
nonzero ` brings in the term [V (R)− V (r)]`(`+ 1)/r2 ∝
neq(r)`(` + 1)/r2, often called a “centrifugal” term be-
cause of its relationship with the angular momentum
of the system. Without this term (` = 0), the RHS
of Eq. (10) has only r-derivative terms, which naturally
guarantee a (unphysical) zero-frequency mode ν = 0 hav-
ing a uniform density-deviation profile. We will see be-
low that this mode shifts to a finite frequency and hence
becomes a physical solution as the centrifugal term con-
tributes for any nonzero `. In addition, if ` is large enough
such that the centrifugal term dominates over the deriva-
tive terms, we shall expect that the low-frequency modes
are strongly affected by the potential minima, which
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FIG. 6. (Color online) Oscillation frequencies ω, found via
quench numerics, of the three lowest-lying nonzero spheri-
cally symmetric (l = 0) collective modes ν = 1, 2, 3 (same
convention as Fig. 5) vs the bubble-trap detuning ∆. The
bubble-trap parameters are set by ∆/Ω = 1 and the interac-
tion strength is u = 104. In going beyond the Thomas-Fermi
approximation of Fig. 5, the singularity in the dip feature
around the hollowing transition is softened and spread across
the shaded region. However, the drop in frequency from the
filled ∆ = 0 point and the asymptote to the thin-shell limit
for large ∆ persists and the spectrum demonstrates that the
collective-mode features through the topological transition
are robust beyond the hydrodynamic approximation.
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FIG. 7. (Color online) (Color online) Density deviation pro-
files δn(r) of the three breathing modes in Fig. 6 (same con-
vention) and equilibrium profile neq(r) (dashed curves). Indi-
vidual panels correspond to ∆ = 0, 25, 50, 60, 70, and 200 (as
labeled inside). The radial coordinate (x-axis) is presented in
the same units as Fig. 2. Similar to the hydrodynamic results
in Fig. 4, the density deviation profiles tend to concentrate
(but less significantly so) around the spherical center in the
hollowing transition region.

correspond to the boundary of the condensate (where
neq = 0). In this case, a filled condensate with only an
outer boundary is quite different from a hollow conden-
sate with both inner and outer boundaries, so the high-`
collective modes can drastically change when the bubble-
trap system starts to hollow out.

We first study the ` = 1 case. Figure 8(a) shows
the ν ≤ 3 modes obtained from the hydrodynamic ap-
proach using Thomas-Fermi equilibrium profiles. We see
that the ν = 0 mode now has a finite (and hence phys-
ically detectable) frequency that is of the order O(ωsh)
on the filled-sphere side and almost zero in the thin-shell
limit, in agreement with the limiting cases studied in in
Secs. IV A and IV B. The monotonically decreasing curve
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FIG. 8. (Color online) (a) [(b)] Oscillation frequencies ω vs

∆̃ for ` = 1 (` = 20) and ν = 0, 1, 2, 3 (same convention as
Fig. 3). The ` = 1 (low-`) modes exhibit similar features,

including the dip across the hollowing transition ∆̃ = 0.5, as
the ` = 0 modes in Fig. 3, except that the ν = 0 mode here
has nonzero frequency. The ` = 20 (high-`) modes exhibit
sudden drops at the transition. (c) Density deviation profiles

δn corresponding to one mode (∆̃, ν) = (0.49, 0) (dark red)
right before the hollowing (axis on bottom), and two modes
(0.51, 0) (green) and (0.51, 1) (light blue) right after it (axis
on top) in panel (b). (d) Same convention as (c) except for
modes (0.49, 1) right before the hollowing and (0.51, 2) and
(0.51, 3) right after it. (c) and (d) confirm that the high-`
modes are surface modes—with density deviation localizing
around the condensate surfaces. Before the hollowing (∆̃ =
0.49), the density deviations of all modes localize around the

only surface r = R, while after the hollowing (∆̃ = 0.51),
half of them remain around the outer surface r = R, and
the other half redistribute around the newly emerging inner
surface r = Rin ≈ 0.

also shows how these two different energy scales continu-
ously connect through the deformation. The three ν > 0
modes exhibit similar qualitative features and dip struc-
tures to those of the ` = 0 case, except the filled-sphere
frequencies in the ` = 1 case increase by O(ωsh) due to
the angular oscillation.

We next study a large-` case where the centrifugal term
dominates. Figure 8(b) shows the same ν ≤ 3 modes for
` = 20. We see that the ν = 0 curve still continuously
decreases to zero as we proceed from the filled sphere to
the thin shell. For the ν > 0 modes, the dip structure
disappears, and the curves exhibit a sudden drop upon
the hollowing transition ∆̃ = 0.5. The ν = 1 mode makes
a drop to become nearly degenerate with the ν = 0 mode,
and the ν = 2 and ν = 3 modes become equal and con-
tinue the evolution of the ν = 1 mode before the drop. In
fact, the νth mode right before the hollowing point and
the (2ν)th and (2ν + 1)th modes right after it are nearly
degenerate such that the νth-mode frequency curve ap-
pears to split into two upon the hollowing transition.

We further investigate this splitting in the high-` spec-
trum by comparing the radial density-deviation profiles
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δn(r) of three nearly degenerate modes—one just before

the hollowing (∆̃ = 0.49) and two just after the hollow-

ing (∆̃ = 0.51). In Fig. 8(c)[(d)] we plot the density
deviation profiles for 6 specific modes in Fig. 8(b). We
see that before the hollowing transition, the modes con-
centrate near the outer boundary. After hollowing one of
the nearly degenerate pair modes localizes near the outer
boundary while the other does near the newly created in-
ner boundary. This indicates that the inner minimum of
the centrifugal term provides a hollow condensate with
additional degrees of freedom for accommodating its col-
lective modes. As the shell becomes thinner, the pair of
nearly degenerate modes further split due to a coupling
between them through the r-derivative terms in Eq. (10).

Our findings show i) how the frequencies of pure an-
gular modes (ν = 0, ` 6= 0) of a spherical condensate de-
crease during the evolution to a shell condensate and ii)
how the high angular modes qualitatively change when
the inner boundary is created. These results may find
applications in non-destructive measurements for deter-
mining the interior structre of a condensate. We will
further investigate the relation between the high angular
modes and the surface modes in Sec. VI C.

VI. PHYSICS OF THE HOLLOWING-OUT
SIGNATURES

In this section we use our generalized radially shifted
trapping potential in order to study the signatures of the
hollowing transition over a family of spherically symmet-
ric geometries, These geometries have differing rate of
decrease of the condensate equilibrium density near the
hollowing center. We provide physical interpretations for
the universal signatures of the hollowing transition as
well as for the distinct features that arise from specific
hollowing-out conditions. i) We conclude that the sharp-
ness of the nonmonotonic spectral features, namely, the
dip at the hollowing transition depends on the rate of
central condensate density decay. As a result, the exper-
imentally observed spectrum should still exhibit a univer-
sal dip upon the transition. However, the dip is less sharp
than the predictions using Thomas-Fermi approximation
due to the more realistic equilibrium density distribution
with continuous “tails” at the boundaries. ii) Addition-
ally, while the sudden drop of the surface-mode spectrum
is a universal signature due to the emergence of any new
surface upon the hollowing transition, the double degen-
eracy between inner and outer surface modes of a hollow
shell only occurs for specific geometries, including that
of the bubble-trap confinement.

In Sec. VI A, we discuss the general radially shifted po-
tential given in Eq. (5) having two parameters: γ, which
tunes the BEC geometry from filled sphere to hollow
shell, and α, which controls the decay of the equilibrium
density near the center of the system as it hollows. In
Sec. VI B, by varying the behavior of the central den-
sity, we show that the radial collective mode spectrum
exhibits a universal dip at the hollowing transition, but

FIG. 9. (Color online) (a) Thomas-Fermi inner boundary Rgt
in

(dark red) and maximum-density position rgt0 (green) vs γ
for a condensate in the general trap, given by Eq. (5) for
α = 2. Insets from left to right: schematic density profiles
of the condensate at γ = 0, 0.3, 0.5, and 0.8, respectively.
(b) Thomas-Fermi density profiles ngt

eq(r) around the center
for α = 1 (dark red), 1.5 (green), and 2 (light blue) at the
hollowing transition γ = 0.5.

that the sharpness of the dip depends on α. We also use
an energetic argument followed by a variational calcu-
lation to further understand the frequency dip and the
associated concentration of density deviations near the
hollowing center. In Sec. VI C, we show that while the
hollowing transition always leads to new surface modes
on the inner surface, the mode frequencies depend on the
surface stiffness, which in turn depends on α. The fre-
quency degeneracy of the inner and outer surface modes,
which we have observed in the bubble trap, corresponds
to a special case where α = 2. In Sec. VI D, we study the
hollowing-out physics in a 2D system and show that the
collective-mode features are dimension independent.

A. General radially shifted potential

Here we consider the potential given in Eq. (5):

Vgt(r) =
1

2
mω2

gtR
2S2

l

[( r
R

)α
− γ
]2
,

where γ is a dimensionless parameter that tunes the con-
densate between sphere and shell geometries, α tunes the
condensate equilibrium density profile near the hollowing
center, and R specifies a characteristic size.

To understand the geometry of a condensate subject to
this trap, we focus on the Thomas-Fermi density profile,

ngt
eq(r) = ngt

0

[
1−

( r
R

)α] [( r
R

)α
− (2γ − 1)

]
, (27)

with an overall magnitude ngt
0 = m(ωgt

t )2S2
l R

2/(2U).
The condensate has its outer boundary at r = R (where
ngt

eq vanishes) and its density maximum at r = γ1/αR ≡
rgt
0 . This density profile shows that the general trap pro-

duces a filled sphere condensate for γ = 0, a thin-shell
condensate for γ → 1, and transitions between them as
γ is varied.

At γ = 0, the condensate forms a fully filled sphere
with density ngt

eq ∝ 1−(r/R)2α, exhibiting monotonically
decreasing density as one moves radially out from the ori-
gin. As γ starts to increase from zero, the maximum den-
sity position shifts to a finite radius. For 0 < γ < 0.5, the
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condensate density at the origin, ngt
eq(0) = ngt

0 (1 − 2γ),
remains finite and a local minimum. At γ = 0.5, the con-
densate density at the origin becomes zero, signaling the
transition from filled to hollow geometry. For γ > 0.5,
we have a hollow shell system with an inner boundary
at Rgt

in = (2γ − 1)1/αR. As γ → 1, the condensate ap-
proaches the thin-shell limit, where V gt(r) can be ap-
proximated by the thin-shell potential of Eq. (3) having

parameter values r0 = rgt
0 and ωsh

t = γ1−1/ααωgt
t ∼ αω

gt
t

(and hence c = 1/[γ−1/α − 1]� 1).

In Fig. 9(a), we plot Rgt
in and rgt

0 vs γ and schematic
density profiles (insets) for α = 2 (quartic double-well)
case. The curves show the continuous evolution of the
condensate peak density and inner boundary, while the
schematics show the density at four stages of the evolu-
tion: sphere (γ = 0), thick shell with filled center (0.3),
thick shell at the hollowing transition (0.5), and thin shell
(0.8). The variable α determines the power law of the
equilibrium profile’s growth at the center of the system as
ngt

eq ∝ rα. In Fig. 9(b), we plot the Thomas-Fermi profiles
near the center of the system at the hollowing transition
(γ = 0.5) for various α. For the bubble-trap potential,
the Thomas-Fermi density corresponds to α = 2, while
the numerical GP solution behaves as α < 2 since the
condensate wave function has a continuous “tail” at its
boundaries.

In Sec. V, we presented results on the collective mode
spectrum for the breathing modes in the Thomas-Fermi
approximation and using the numerical ground state den-
sity, in the bubble-trap potential. We found some uni-
versal features (e.g., a dip in the frequency spectrum),
as well as some notable differences (e.g., the sharpness
of the dip). We see that analyzing the collective modes
in the general potential of Eq. (5) and varying α will
allow us to distinguish universal signatures of the hol-
lowing transition from those that depend on the central
density profile. In the following two sections, we provide
a detailed analysis of the effect of α on the spectra of
the radial and surface collective modes. We note that
for α ≤ 1, the density profile has a kink (discontinuity
in its derivative) at the center, which leads to divergent
kinetic energy density |∂rψ(0)|2 and is hence unphysical.
Consequently, below we only consider α > 1.

B. Spherically symmetric modes at the hollowing
transition

From both the hydrodynamic treatment and the sud-
den quench numerics, we have observed a dip in the
frequency spectrum of radial collective modes when the
spherical BEC in bubble trap starts to hollow out at
its center. However, the results based on a Thomas-
Fermi equilibrium density profile show a sharper dip (as
in Fig. 3) than those based on a profile from the GP equa-
tion (as in Figs. 5 and 6). In addition, we find that the
former have density deviations more localizing near the
trap center (r = 0) than the latter for values of ∆ near the
hollowing transition. Because the most significant dif-

ference between the Thomas-Fermi and GP equilibrium
density profiles lies in the central region at the hollowing
transition, and the concentrated density deviations are
mainly determined by the equilibrium density near the
center [through Eq. (8)], one can hypothesize that the
shape of central equilibrium density and the sharpness of
the frequency dip are closely related. In this section, we
study a convenient model using the general-trap profile
of Eq. (27) to verify this relationship and confirm that
the GP equilibrium density profile leads to a less sharp
frequency dip, which should better characterize results
in real experimental systems. We also provide evidence
based on energetics points and supported by a variational
calculation that the frequency dip is always accompanied
by the concentration of density deviations at the hollow-
ing transition.

The shape of the central density of a hollowing conden-
sate can be characterized by a power-law index α, such
that neq(r) ∝ rα. As we have shown in Sec. VI A, the
general-trap potential can both tune through the sphere-
to-shell evolution and control the index α, thus making it
ideal for studying the effects of central density during the
hollowing transition. Tuning α at γ = 0.5, the transition
point between filled and hollow topologies, can help the-
oretically isolate the effects of the central density growth
(∝ rα). We comment that for a bubble-trap potential,
the central Thomas-Fermi profile varies as r2 when the
system is hollowing out. However, the solution of the GP
equation is distinctly different due to relatively smooth
“tail” near the center associated with a relatively large
kinetic energy contribution in this region, which is ig-
nored in the Thomas-Fermi approximation. Therefore a
more realistic description of the frequency dip in a bubble
traps can be captured by the density growth of modified
profile with α < 2 than by the original Thomas-Fermi
one.

Figure 10(a) shows the frequency of the lowest nonzero
radial collective mode (ν = 1, ` = 0) as a function of γ
at various α ≤ 2, obtained from the hydrodynamic ap-
proach. The frequency dip is clearly identifiable near
γ = 0.5 in all three curves, but its sharpness changes
with the growth rate α. More precisely, we see that for
α < 2, the frequency-dip structure is smoother and the
minimum-frequency point shifts slightly to γ > 0.5. In
Fig. 10(b), we plot the density deviation profiles δn(r)
corresponding to each α in (a) at γ = 0.5. We see that
the density deviations become less concentrated at the
center as α decreases from 2. As a result, the α = 2 den-
sity growth, leading to sharp frequency dips and highly
concentrated density deviations, agrees with the results
for a bubble-trap system with Thomas-Fermi density pro-
files (as in Figs. 4 and 5). On the other hand, the α < 2
density growth, leading to less sharp frequency dip and
less concentrated density deviations, agrees with the re-
sults using the GP density profiles (as in Figs. 5, 6, and
7). Therefore, the general-trap model captures the main
features of the spherically symmetric collective mode fre-
quency spectra during the hollowing transition. We con-
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FIG. 10. (Color online) (a) Oscillation frequencies ω for the
lowest nonzero breathing mode (ν = 1, ` = 0) as a function of
γ for α = 2 (dark red), 1.7 (green), and 1.4 (light blue), ob-
tained by solving the hydrodynamic equation for the general-
trap Thomas-Fermi profiles in Eq. (27). (b) The correspond-
ing density deviation profiles δn at the hollowing transition,
γ = 0.5. (c) Oscillation frequencies ω obtained from the varia-
tional method. (d) Variational frequency function at γ = 0.5.
Panels (b–d) have the same convention as (a). Panels (a) and
(b) show the dependence of the frequency dip sharpness and
the concentration of density deviation profiles on the growth
rate of the equilibrium density profile from the hollowing-out
center. Panels (c) and (d) show that the dependence orig-
inates from the orthonormality and energy minimization of
collective mode.

clude that for a bubble-trap system, using the Thomas-
Fermi profile in a general trap and setting α < 2 can
mimic the more realistic GP profile without the need for
numerics.

We next discuss the relationship between the frequency
dip and the concentration of density deviations at the
hollowing transition. To first provide an energetic ar-
gument for interpreting the frequencies of the collective
modes: the νth collective mode has a radial density devi-
ation profile that is orthogonal to all the lower-frequency
modes and minimizes the energy (frequency). This is a
direct result of the orthonormality of the eigen-solutions
of Eq. (8),

−mS
2
l

U
ω2δn = ∇neq · ∇δn+ neq∇2δn.

We see from Eq. (8) that the equilibrium density profile
contributes to two terms, neq and ∇neq. For most of
the evolution from a filled sphere to a thin shell, these
two terms are not simultaneously zero—we note that at
the filled center ∇neq(0) = 0 but neq(0) 6= 0, and at
the inner boundary of a fully hollow shell, neq(Rin) = 0
but ∇neq(Rin) 6= 0. At least one of these two terms
increases the energy (frequency) and hence disfavors the
concentration of density deviations.

However, when the system is at the hollowing tran-
sition, both of these terms can become very small in
the central region, i.e., the whole differential operator on
RHS of Eq. (8) nearly vanishes. In this case, a concen-

tration of density deviation profiles near the center of the
system will have a very small energy (frequency) expense
and should hence be favored in the low-frequency modes
of the system (any density deviation profile spreading
away from the center will instead result in a higher fre-
quency). This very small contribution from the RHS of
Eq. (8) also leads the mode frequencies to be much lower
than those in the filled sphere and the hollow shell (where
either neq or ∇neq contributes)—hence forming a dip in
the frequency spectrum.

We further verify this energetic argument by solving
Eq. (9) for the first breathing mode (ν = 1, ` = 0) by
a variational calculation. We consider a variational den-
sity deviation profile D1(r) that has one node (ν = 1) and
is orthogonal to the zero mode (ν = 0) with a uniform
density deviation D0. We then solve for D1(r) by mini-
mizing the oscillation frequency functional. We adopt a
variational ansatz,

D1(r) =
1

(r/a)
2

+ 1
− b. (28)

This density deviation profile has a node at r =
a
√
b−1 − 1. Orthogonality to the zero mode can be guar-

anteed by choosing b such that
∫
D0D1(r)r2dr = 0. With

this ansatz, we compute the frequency ω as the expecta-
tion value of the differential operator of Eq. (9), namely,

mS2
l

U
ω2 =

∫
neq(∂rD1)

2
r2dr∫

D2
1r

2dr
. (29)

The solution can then be obtained by minimizing ω with
respect to the only free parameter a.

In Fig. 10(c), we plot the variational results for vari-
ous values of α. We see that the frequency dips upon the
hollowing out and that the dependence of dip sharpness
on the density profile are identical to those in Fig. 10(a)
given by the hydrodynamic equation. In Fig. 10(d), we
plot the frequency of this mode at the hollowing transi-
tion, γ = 0.5, as a function of the variational parameter
a, which is also the full width at half maximum of the
density deviation profile. We see that for the α = 2 case
(with a sharp dip in the spectrum), a→ 0 directly leads
to the minimization of frequency, and that therefore the
density deviation will be localized to the center. For the
α < 2 cases (with a smooth dip), the frequency minimiza-
tion occurs at nonzero a, giving density deviations with
some small, but nonzero, width. These variational results
not only agree with those given the hydrodynamic equa-
tion but also corroborate the energetic argument that the
density deviations localizing near the hollowing center is
directly related to the dip in frequency.

We conclude that independent of the specific shape of
the confining trap, any condensate system that transi-
tions between a filled sphere and a hollow shell will dis-
play a universal signature of its hollowing. Specifically,
radial collective mode spectrum exhibits a frequency min-
imum at the hollowing transition. This is a rather re-
markable result since it allows one to deduce the appear-
ance of a hollowing region deep within the condensate by
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imaging lowest-lying collective excitations of the system,
which can be observed on even the outer surface, possibly
even non-destructively.

C. Surface modes at the hollowing transition

We now turn to large-` collective modes, which mani-
fest themselves as distortions localized near the boundary
as the condensate’s surface modes [66]. The localization
of these modes is due to the dominant centrifugal term
`(` + 1)neq in Eq. (9), which becomes small only near
the boundary, where neq = 0. For our hollowing system,
the significant feature is that a hollow spherical shell sup-
ports similar minima in this term on both its inner and
outer surfaces. When the system becomes hollow, the
creation of the new inner boundary enables the localiza-
tion of large-` density deviations to the inner surface.
The availability of the new surface doubles the surface
mode spectrum such that half of modes remain at the
outer surface but the other half redistribute to the inner
surface.

The surface mode frequencies are determined by the
properties of the surfaces, as discussed in section IV C
and seen specifically in Eq. (15). Focussing on the
general-trap potential in the shell region, γ ≥ 0.5,
we linearize the trapping potential and the correspond-
ing Thomas-Fermi equilibrium density close to the in-
ner/outer boundaries, Rin and Rout = R, respectively, in
order to find

nTF
eq (xin,out) = −Fin,out

U
xin,out, (30)

with Fin,out = −∇Vgt(Rin,out) and xin,out ≤ 0 the local
variable pointing along the direction of Fin,out. Employ-
ing the equilibrium density profile of Eq. (27) to leading
order in |r − Rin,out| in the hydrodynamic equation of
motion, Eq. (13) yields the wave-number associated with
each surface mode given by qin,out = `/Rin,out and

ω2
out = αω2

gtS
2
l `(1− γ)(2νin,out + 1),

ω2
in = αω2

gtS
2
l `(2γ − 1)1−2/α(1− γ)(2νin,out + 1).(31)

As before, indices νin and νout in these expressions count
the nodes of radial oscillations confined to the inner or the
outer boundary surface, respectively (rather than count-
ing the total number of radial nodes νin + νout across the
entire shell which is denoted by ν).

We note that for the α = 2 case [including the bubble-
trap one in Fig. 8(b)], there is a degeneracy in the fre-
quency of surface modes at the inner and outer surfaces:
ω2

in = ω2
out. If α 6= 2, this double degeneracy no longer

exists, but the frequency spectrum still exhibits a clear
drop due to the mode redistribution to the newly emerg-
ing inner surface. In Fig. 11(a) [(b)], we plot the oscilla-
tion frequency spectrum of the high angular momentum
mode ` = 20 for the general-trap case with α = 2 (1.85).
We see that near the hollowing-out region γ & 0.5, the
double degeneracy occurs at α = 2 but no longer exists
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FIG. 11. (Color online) (a) [(b)] Oscillation frequencies ω
of high angular momentum modes ` = 20 in the general-
trap case vs γ for ν = 0, 1, 2, 3 (same convention as Fig. 3)
and α = 2 (1.85). Comparing (a) and (b), we see that the
sudden drop of surface-mode frequency is a universal feature
for the hollowing transition, but the degeneracy between outer
and inner surface modes of hollow condensates only occurs at
α = 2.
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FIG. 12. (Color online)(a) [(b)] Oscillation frequencies ω of a

2D condensate vs 2D bubble-trap parameter ∆̃ for breathing
modes ` = 0 (edge modes ` = 20) and ν = 0, 1, 2, 3 (same con-
vention as Fig. 3). Both panels show the same collective-mode
features in the filled-to-hollow evolution and upon the hollow-
ing transition as in 3D cases, indicating that the hollowing-out
physics is dimension independent.

at α = 1.85, in agreement with the surface-mode charac-
teristics in Eq. (31). In the thin-shell region γ . 1, the
modes strongly couple with each other and are no longer
degenerate (neither localize near the surface anymore).
The restructuring of the large-` surface mode spectrum
is a direct and universal signature of a newly emerging
surface and hence the hollowing transition.

D. The hollowing transition in two dimensions

Here, we investigate whether the hollowing-out physics
we have found for a 3D spherical system also occurs in
an analogous 2D geometry. We obtain the collective-
mode frequency spectra of a condensate in a 2D bubble
trap, which realizes the hollowing transition from a filled
disk to a hollow ring. The trap takes the same form
as the 3D bubble trap of Eq. (4) except the coordinates
are restricted to the x-y plane (z = 0). The 2D density
deviation profile for a circularly symmetric condensate
has the form δn(r) = D(r)ei`φ. Employing this form in
hydrodynamical equation of Eq. (8) yields the differential
eigenequation,

mS2
l

U
ω2rD = − d

dr

(
rneq

dD

dr

)
+
`2neq

r
D. (32)

In Fig. 12, we show the 2D collective-mode spectrum
for the Thomas-Fermi equilibrium density profile neq,
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which exhibits a sharp hollowing transition at ∆̃ = 0.5
(just as in the 3D case). Panel (a) shows that the breath-

ing mode (` = 0) frequencies are nonmonotonic with ∆̃
and develop a sharp dip at the 2D hollowing transition.
A variational analysis confirms that the frequency dip
in this 2D system can be derived from the orthonormal-
ity and energy minimization of the collective modes and
is associated with the density deviation concentrating in
the central hollowing region. Panel (b) shows that the
high-` (` = 20) mode frequencies exhibit a sudden drop
at the transition. Examining the density deviation pro-
files, we find that the high-` modes are edge modes, anal-
ogous to the surface modes in the 3D case. The frequency
drop of these edge modes at the hollowing transition re-
sults from the redistribution of half of the radial nodes to
the newly-emerging inner edge of the ring. Performing a
similar analysis for the edge modes in this disk geometry
as we did for the surface modes in the spherical geome-
try, we confirm that the degeneracy of outer and inner
edge modes in the hollow region is due to the quadratic
growth rate of the equilibrium density profile from the
center, a specific property of the bubble trap.

In summary, by considering a radially symmetric sys-
tem in two dimensions, we see that signatures of the hol-
lowing transition exhibited by the collective-mode spec-
trum are the same in both three and two dimensions.
This indicates that the signatures are due to the physics
of central hollowing, rather than on details of geometry or
dimension. We remark that both disk-shaped and ring-
shaped BECs have been well-studied theoretically [68, 69]
and experimentally [12, 13]. The transition regime be-
tween these 2D topologies is potentially achievable but
has not been studied, to our knowledge. Our findings not
only detail the collective-mode physics in the transition
regime but also reveal universal features in hollowing-out
condensate systems.

VII. EFFECTS OF GRAVITY

So far we have examined the equilibrium profiles and
dynamical behavior of spherically symmetric BECs as
their spatial topology is changed from filled to hollow.
We now discuss gravitational effects which cannot be
neglected in experimental shell traps on Earth. Cru-
cially, unlike in a harmonically trapped system, in a shell-
shaped trapped system the gravitational force tends to
cause sag: mass accumulation at the lower vertical points
in the system and a depletion around the highest. This
gravitational sag has been experimentally shown to pro-
duce quasi 2D systems having no closed shell-like surfaces
under ordinary gravitational conditions on Earth. We
estimate the gravitational strength at which the density
of the top region of the condensate becomes completely
depleted for a thin shell geometry within the Thomas-
Fermi approximation and arrive at a precise value for
the critical number of atoms to produce a closed thin
shell structure. Finally, in a perturbative treatment, we
analyze the effect of low gravity on the collective mode

FIG. 13. (Color online) Thomas-Fermi density profiles for
condensates confined by the bubble trap without gravity (left)
and under the influence of gravitational fields 0.0014g (mid-
dle) and 0.007g (right), where g is the gravitational accel-
eration on Earth. These profiles are generated for 105 87Rb
atoms forming a condensate shell with outer radius 20 µm and
thickness 4 µm in the absence of gravity. The colors in the bar
graph represent density normalized by nM = 3.1× 1013/cm3.
As the strength of the gravitational field increases, we observe
a density depletion at the top of the condensate shell and a
density maximum at its bottom.

structure of a very thin condensate shell. We find that
gravity couples modes with adjacent angular momentum
indices. This is consistent with the fact that a condensate
shell in a gravitational field is not fully spherically sym-
metric. Our estimates show that for typical cold atomic
experimental settings, microgravity facilities are the most
promising for studying the rich collective mode structure
of closed condensate shells.

A. Behavior of equilibrium density and open shells

First, we identify the condition for treating gravity as
a small effect compared to the strength of interactions
between the atoms in the condensate. We work in the
strong interaction and thin shell limits of the radially
shifted harmonic potential discussed in Sec. IV B. This
geometry can be achieved by the bubble trap. In order
to arrive at the needed condition, we consider the case
in which the effect of gravity shifts the trap minimum
by an amount much smaller than the thickness of the
BEC shell, as determined by the strength of interatomic
interaction. More precisely, as noted in Sec. IV B, the
thickness of the condensate shell can be obtained from
the Thomas-Fermi density profile after fixing the number
of particles, N , as was found in Eq. (18),

δ =
1

2

(
3UN

mπω2
shS

2
l r

2
0

)1/3

.

The displacement of the trap minimum away from its
center due to gravity [70] is equal to

rdisp =
g

ω2
shSl

. (33)

Hence, the influence of gravity is small compared to
the strength of interactions in the condensate when

rdisp � δ. (34)
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When this condition is satisfied, we expect the BEC shell
to be largely unchanged in shape despite the influence
of gravity. In experimental efforts of Refs. [62, 63], the
quantity analogous to Eq. (33) is reported to be compa-
rable to the entire size of the condensate cloud. In this
case, the condition for weak gravity is clearly violated
and a radical, flattening, deformation of the condensate
shell is found by the authors.

As an intermediate stage between these two
possibilities—weak gravity that does not change
the shape of the condensate shell and very strong gravity
that effectively collapses it into a quasi 2D geometry—we
consider a set of experimental parameters for which
gravity deforms the BEC shell to have most density
at its bottom and a heavily depleted top region. This
change in condensate density is shown for the bubble
trap and multiple values of gravitational field smaller
than Earth’s gravity in Fig. 13.

To examine the deformation analytically, we work
within the Thomas-Fermi approximation and consider
the thin shell limit of the potential described by Eq. (3)
with an added gravitational term. Specifically, adding
−gr cos θ to the potential and completing the square, we
obtain

V (r, θ) =
mω2

shS
2
l

2

[
(r − r0) +

g cos θ

ω2
shSl

]2

+

(
mgSlr0 cos θ − mg2 cos2 θ

2ω2
sh

)
, (35)

where r0 is the trap minimum in the absence of gravity.
For the bubble trap, the frequency of small single-particle
oscillations is given by ωsh =

√
∆/Ωω0 and the trap min-

imum is r0 =
√

∆.
The potential in Eq. (35) is equivalent to a radially

shifted harmonic trap in the variable r − r0, with the
trap minimum vertically displaced away from the center
of the condensate shell. This vertical displacement is
equivalent to adding a potential term

Voffset(θ) = mgSlr0 cos θ − mg2 cos2 θ

2ω2
sh

. (36)

From the Thomas-Fermi equilibrium density, Eq. (6), we
see that the density at the top of the shell vanishes when
the chemical potential is equal to µc = Voffset(θ = 0).
This corresponds to the condensate shell “opening up”
and can, in extreme cases, lead to the shell approaching
a quasi 2D geometry as in Refs. [62, 63].

When the chemical potential attains the critical value
µc, the inner and the outer radii of the shell are the so-
lutions of µc − V (r) = 0. Previously, when the effects
of gravity were not take into account, we typically fixed
the outer radius of the condensate as r = R, with R be-
ing some constant chosen in accordance with experimen-
tal data. Once gravity is accounted for, the condensate
shell is not perfectly spherically symmetric, so there is no
longer a single, θ-independent, outer radius R. Similarly,

in the presence of gravity, the thickness of the shell varies
with the polar angle as

δ(θ) = 2r0

√
g̃(1− cos θ)(2− g̃ − g̃ cos θ), (37)

where we have introduced the dimensionless parameter
g̃ = g/Slr0ω

2
sh. We take the condensate shell correspond-

ing to the potential of Eq. (35) to be very thin for g̃ � 1
and refer to these values of g̃ as the thin shell limit in
analogy with our discussion in Sec. IV B.

We note that δ(0) = 0, as expected since we have cho-
sen the chemical potential to cause a density depletion at
the top of the condensate shell. Additionally, for θ = 0
we find rmax = rmin = r0 − g

ω2
shSl

and since these values

should correspond to coordinates on top of the BEC shell
we require that

r0 >
g

ω2
shSl

. (38)

This is a rather natural constraint given that in the clas-
sical problem of an oscillator in a gravitational field, the
frequency of oscillation is given by ω =

√
g/L for L the

size of the object that is oscillating. In other words,
the condition in Eq. (38) requires the trapping frequency
to be larger than the oscillation frequency naturally as-
sociated with gravitational effects. These observations
fully characterize the geometry of the condensate shell
deformed by gravity.

Furthermore, as is relevant in experimental settings,
total particle number conservation requires

Nc = 2π

∫ rmax

rmin

∫ π

0

neq(r, θ)r
2 sin θdrdθ, (39)

which, evaluated in the thin shell limit, is equivalent to

Nc =
128mπg3/2r

7/2
0 S

1/2
l

15Uωsh
. (40)

Since this expression only includes the gravitational ac-
celeration and trap parameters (the minimum of the har-
monic trapping potential r0 and the frequency of single-
particle oscillations around the trap minimum ωsh), it
can be used to predict at what particle number the ef-
fects of gravity will cause a density depletion at the top
of the condensate shell.

Accordingly, given fixed trap parameters, a value of N
can be chosen in such a way that the thin condensate
shell keeps an approximately uniform density profile re-
gardless of gravitational effects: choosing a number of
atoms larger than Nc guarantees a smaller deformation
of the shape of the BEC shell under the influence of grav-
ity. In the limit of g → 0 the number of atoms needed in
order to form a condensate shell robust to the influence
of gravity, Nc, vanishes and it also diminishes as ωsh,
the trapping frequency, is increased. In other words, an
equivalent of the weak gravity regime can be reached by
using tighter confinement for the trapped atoms as well.
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Furthermore, Eq. (40) implies that given a fixed num-
ber of atoms forming the condensate, a critical value of
the gravitational constant gc can be estimated as

gc =
(15UωshN)2/3

(128mπ)2/3r
7/3
0 S

1/3
l

. (41)

In experimental setups where the measured value of g is
larger than gc, the condensate shell is expected to open
up on top, rather than maintaining its bubble-like shape,
as depicted in Fig. 13. If the effective value of the grav-
itational constant can be lowered through experimental
techniques, or use of special microgravity facilities, we
propose that realizing geff smaller than gc will result in a
robust shell-like geometry of the condensate.

Under experimental conditions within which the value
of gravitational acceleration cannot be changed, the ex-
pression in Eq. (40) suggests a way in which shell-shaped
condensates can also be achieved and maintained with-
out significant gravitational sag. In cases where N � Nc
is within the range of plausible experimental parameters,
gravity can be treated as a small effect on an otherwise
stable condensate shell of approximately uniform thick-
ness. We proceed to examine the collective motions of
condensate shells under such conditions.

B. Collective modes in presence of gravity

We turn to a discussion of condensate shell dynamics
in the presence of gravity. In particular, we consider in-
cluding gravity in the hydrodynamic formalism. Within
this approach, we use the gravitational GP equation and
apply the Thomas-Fermi approximation with gravity ex-
plicitly accounted for.

We start by considering an addition of the gravita-
tional potential term to Eq. (1) so that V (r) = Vtrap(r)+
mgz and consequently obtain

−~2

2m
∇2ψ(r, t) + Vtrap(r)ψ(r, t)−mgzψ(r, t)

+U0|ψ(r, t)|2ψ(r, t) = i~∂tψ(r, t), (42)

a GP equation with an explicit gravitational term. Fur-
ther, the corresponding Thomas-Fermi density profile
reads

neq(r) =
µ− Vtrap(r)−mgz

U
. (43)

The hydrodynamic equations appropriate for a BEC
in a nonzero gravitational field are then

ω2δn(r) =
1

mS2
l

∂Vtrap(r)

∂r

∂δn(r)

∂r
+

g

Sl
cos θ

∂δn(r)

∂r

− g

rSl
sin θ

∂δn(r)

∂θ
−
[
µ− Vtrap(r)

mS2
l

− gr

Sl
cos θ

]
∇2δn(r).

(44)

This expression, Eq. (44), is the nonzero gravity equiva-
lent of Eq. (8) with the Thomas-Fermi equilibrium den-
sity profile, Eq. (43). As in previous sections, we use

dimensionless length units rescaled by Sl =
√

~/(2mω).
We proceed to treat the gravitational terms in this

equation perturbatively: we assume that the trap pa-
rameters have been chosen in accordance with Eq. (40)
so that the shape of the shell is largely unchanged by
gravitational effects. Additionally, we note that choosing
N ≥ Nc satisfies the condition in Eq. (34) thus justi-
fying our treatment of the condensate shell thickness as
effectively uniform.

As shown in Sec. IV B, for a very thin condensate shell
the collective modes are analytically described by

δn(r) =

√
ν(ν + 1)

2
Pν

(
r − r0

δ

)
Y lm`

(θ, φ), (45)

where Pν(x) are the Legendre polynomials, with the cor-
responding frequencies given by Eq. (20),

ωsh
ν,` = ωsh

√
ν(ν + 1)/2.

Corrections to these frequencies due to the effects of grav-
ity are then given by the eigenvalues of a matrix with
entries equal to

〈δn(r)`ν,m`
|Vg(r, θ)|δn(r)`

′

ν′,m′
`
〉 =

g

Sl
〈δn(r)`ν,m`

|

−1

r
sin θ

∂

∂θ
+ cos θ

∂

∂r
+ r cos θ∇2|δn(r)`

′

ν′,m′
`
〉. (46)

In the thin-shell limit, c� 1, we only consider the matrix
elements of Eq. (46) to leading order in c−1, or equiva-
lently, the thickness of the condensate shell, δ. Carrying
out this calculation (see more details in Appendix B) we
find

〈δn(r)`ν,m`
|Vg(r, θ)|δn(r)`

′

ν′,m′
`
〉 ≈ gδr0

Sl

ν(ν + 1)

2ν + 1
×

[f(`, `′,m`,m`′)δ`,`′+1 + g(`, `′,m`,m`′)δ`,`′−1], (47)

where the numerical factors f(`, `′,m`,m`′) and
g(`, `′,m`,m`′) are given in Appendix B. Noting the Kro-
necker delta functions in Eq. (47) we conclude that for a
fixed ν and ` finding the eigenfrequencies and eigenmodes
of the system under the influence of gravity is reduced to
diagonalizing a matrix with nonzero entries only for

{ν′, `′,m′`} = {ν, `± 1,m`}. (48)

Consequently, the effect of weak gravity (gravity in the
regime where it can be treated perturbatively) on the
collective modes of the spherically symmetric thin con-
densate shell is to mix modes with adjacent angular mo-
mentum indices. Therefore, if a collective mode with
a fixed number of radial nodes ν and a fixed number
of angular modes ` is induced under conditions of weak
gravity in a thin shell BEC, the number of angular nodes
will change while the radial density-deviation profile re-
mains the same. Since the overlap between the collective
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modes under consideration, Eq. (47) is weighted by both
the thickness of the shell and the minimum of the har-
monic trapping potential, the mixing effect will be more
or less prominent depending on the size of the conden-
sate shell. Further, the same conclusion of gravitation-
ally induced mode mixing can be obtained by making an

ansatz δn(r, θ, φ) = D(r)
∑∞
`=0

∑`
m`=−` C`m`

Y `m`
(θ, φ),

for C`m`
some appropriate set of constants, and seeking

a complete solution to the eigenproblem of Eq. (44).
Finally, we emphasize that Eq. (47) is obtained not

only in the weak gravity regime but also the thin shell
limit so that the mode mixing effect on a thicker shell
would be qualitatively different than on a thin one. To
gain insight into the behavior of a thicker shell described
by a smaller value of c (larger δ) we note that evaluating
the matrix element of Eq. (47) to quadratic order (see
Appendix B for more details) in the shell thickness yields
terms such as

2δ2

(
ν 1 ν′

0 0 0

)2

(49)

where we use the Wigner-j symbol. As this symbol is pro-
portional to a Clesbsh-Gordan coefficient, we can identify
a selection rule for this expression. More precisely, terms
of this form vanish unless ν′ = ν ± 1. Consequently,
we posit that away from the thin shell limit (assuming
that gravity can still be treated as weak compared to
the strength of interactions between the atoms making
up the condensate), gravitational pull leads not only to
the mixing of modes with adjacent angular node indices
` but also those with adjacent radial node indices ν. The
practical impact of the analysis of gravitational effects
presented in this section is discussed below.

VIII. APPLICATIONS/EXPERIMENTAL
FEASIBILITY

Having presented an extensive study of spherically
symmetric hollow condensates and their behavior in var-
ious limits, we turn to a discussion of experimental fea-
sibility of achieving these configurations. We start by
providing a few estimates for experimentally measur-
able quantities, such as condensate density and collective
mode frequency, then turn to the effects of gravity, given
its striking influence on shell-shaped BECs on Earth.

As a realistic example, we consider a fully filled spheri-
cal 87Rb condensate made up of N = 105 atoms and cre-
ated by the potential of Eq. (2) with the bare frequency
ω = 2π × 500 Hz and condensate size of R = 10 µm.
The maximum density of such a system is on the order
of 1016 cm−3 while for a condensate shell of the same size
and equivalent confining frequency with c = r0/δ ≈ 1000,
we find that the maximum condensate density is on the
order of 1018 cm−3. Comparing their respective breath-
ing mode frequencies shown in Fig. 3 we find that the
(ν, `) = (1, 0) mode in the filled condensate corresponds
to ωsp

1,0 ≈ 2π× 1.12 kHz while the same mode in the thin

shell is characterized by ωsh
1,0 ≈ 2π × 0.50 kHz with the

correction given by Eq. (21) on the order of 10−6% and
therefore negligible. In other words, recalling our dis-
cussing in Sec. V A and Fig. 3, we predict that when the
(ν, `) = (1, 0) mode is induced in the fully filled spherical
condensate, if the system transitions to a thin shell, its
eigenfrequency decreases from 2π × 1.12 kHz to a value
slightly smaller than 2πω ≈ 2π × 0.50 kHz at the hol-
lowing transition and then increases to reach this value
in the very thin shell limit. The adiabatic change in the
condensate shape from a filled sphere to a very thin, hol-
low shell therefore results in approximately halving the
lowest-lying collective mode frequency. Similarly, we cal-
culate ωsp

2,0 ≈ 2π×1.87 kHz and ωsh
2,0 ≈ 2π×0.87 kHz – a

53% decrease from the fully filled sphere limit to the thin
hollow shell geometry. More generally, for all low-lying,
` = 0 modes that are experimentally accessible we pre-
dict the decrease in the collective mode frequency at the
hollowing point, compared to the oscillation frequency of
the same mode in the fully filled spherical BEC to be
rather prominent, on the order of 50% or more. Some-
what higher spherically symmetric modes, such as ν = 3,
are good candidates for experimental detection of the fur-
ther decrease of collective mode frequency at the hollow-
ing point compared to the thin-shell limit as well. The
collective mode with ν = 3 shows a 20% change between
the hollowing point and the thin-shell limit, which makes
it suitable for full observation of the non-monotonicity of
the collective mode frequency spectrum of a hollowing
BEC.

Additionally, we note that collective modes with low
angular momentum values, such as ` = 1 or ` = 2 exhibit
frequency dip features similar to those in frequencies of
spherically symmetric ` = 0 modes. In a realistic ex-
perimental system that might not have perfect spherical
symmetry, such low-` collective modes would be the most
likely candidate of study.

Comparing the modes with ν = 1 but different ` we
find that ωsp

1,1 ≈ 2π × 1.41 kHz while ωsp
1,10 = 2π × 2.96

kHz and ωsp
1,20 = 2π×4.03 kHz. Identifying large ` modes,

such as ` = 10 and ` = 20, with excitations of the conden-
sate localized to a particular boundary surface, we note
that these surface modes typically have high oscillation
frequencies compared to modes with the same number of
radial nodes ν but fewer oscillations in the angular di-
rection. Given our calculations in Sec. IV B this effect
of increasing ` is not present in the thin shell limit since
all of the collective modes in this configuration are de-
generate with respect to a change in the number of their
angular nodes.

For ` = 20 we further examine the drop in collec-
tive mode frequency due to the redistribution of surface
modes when an inner boundary is available. Noting that
collective modes with total number of radial zeroes equal
to 2ν and 2ν + 1 become degenerate immediately after
the hollowing out transition takes place, we find that
ωsp

1,20 = 2π × 4.03 kHz and ωsp
0,20 = 2π × 2.24 kHz in the

sphere limit drop to ωsh
1,20 = 2π × 1.50 kHz. This drop

constitutes a decrease on the order of 60% and 30%, re-
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spectively. Consequently we identify the redistribution
of surface modes as a rather strong effect on collective
mode frequencies.

Finally, repeating our analysis for a thicker shell with
c ≈ 20, we find that the corrections to the collective mode
frequencies of the shell due to its nontrivial thickness be-
come approximately 3% of the value obtained while as-
suming the thin-shell condition c → ∞ is satisfied. As
this is not a very large correction, we conclude that a
number of our thin-shell results can potentially be ob-
served in experiments even when creating a very thin
condensate shell is not feasible.

We turn now to the effects of gravity in experimentally
realistic systems. In contrast to fully filled spherical con-
densates that are simply shifted by gravity with no ef-
fect on their shape, the geometry of a hollow condensate
shell is, as we have shown in Sec. VII, rather sensitive to
the presence of a gravitational field. Accordingly, experi-
mental parameters such as the trapping frequency, inter-
atomic interaction strength and the number of atoms in
the condensate have to be chosen to satisfy the criteria
given by Eq. (40); otherwise the density of the conden-
sate shell is heavily depleted on its top while the majority
of atoms pool at its bottom.

In the presence of ordinary gravity, Eq. (40) constrains
the shell radius to be rather small, or the trapping fre-
quencies to be rather high. Consequently, a realization
of a robust, fully shell-shaped BEC on Earth presents
an experimental challenge. We estimate that a thin con-
densate shell made up of 87Rb atoms confined by a trap
with a bare frequency of 2π× 500 Hz and size on the or-
der of R ∼ 10µm would have to be made up of Nc ∼ 107

atoms in order to maintain approximately uniform den-
sity and robust shape under the influence of gravity. As
current experimental efforts [19, 20] show that even lower
bare frequencies are optimal for experiments using an
RF-dressed bubble trap, we conclude that the number of
atoms needed in order for the condensate shell to main-
tain its shape despite gravitational sag is impractically
high. In other words, experimental investigations of the
behavior and properties of 87Rb BEC shells in Earth’s
gravity are not feasible and microgravity environments
need to be sought. For example, we estimate that for a
87Rb condensate shell composed of 200,000 atoms, as is
the case in Ref. [63], of the same size (R ∼ 10µm) would
show significant lack of density on its top and largely
consist of a pool of atoms at the trap bottom unless (ef-
fective) gravitational acceleration in its environment was
smaller than gc ∼ 0.2 m/s2.

While gravitational sag is often compensated for in ex-
perimental studies of ultracold atomic systems on Earth,
the shell-shaped geometry makes standard methods such
as magnetic levitation or the use of the dipole force chal-
lenging. Since the bubble trap employs a dressed-state
potential, magnetic levitation is not feasible because the
atoms in the condensate are in superpositions of all inter-
nal magnetic states. Further, though a dipole force due
to a gradient of optical intensity (for instance, achieved

by using a far-detuned Gaussian beam) could in princi-
ple be used to counteract the effects of gravity, the need
for high precision in designing such a gradient makes this
approach very difficult. Consequently, we identify micro-
gravity environments, rather than terrestrial setups with
gravitational compensation, as an optimal choice for ex-
perimentally realizing hollow BEC shells.

In cases where a thin-shell can be produced, most likely
in microgravity environments such as the ZARM drop
tower [64] and the MAIUS sounding rocket [71] in Ger-
many, and NASA’s Cold Atom Laboratory aboard the
International Space Station [22], we also estimate the cor-
rections to the frequencies of the collective modes due to
their mixing under the influence of gravity. While the
magnitude of these corrections depends on the specific
` values of the modes being combined, we generally es-
timate them to be rather small. In particular for the
ν = 1, ` = 1,m` = 0 mode of a thin 87Rb condensate
shell of the size on the order of 1 µm and a bare fre-
quency of ω0 = 2π × 500 Hz in microgravity g ≈ 10−5

we find the fractional correction to the collective mode
frequency ω to be ωgrav/ω = 1.00015. This is a change in
the collective mode frequency of approximately 0.015 %,
which is well below the detection limit in experiments.
The magnitude of gravitational mode mixing corrections
increases in size with increasing ν, and similarly with in-
creasing `. For instance, for high-` collective modes such
as described by ν = 1 and ` = 20 the effect of gravity
leads to a 2.5 % change in collective mode frequency. As
this is still a small correction, we take the strength of
gravity rather than the magnitude of ` or ν to be the
dominant factor for the importance of mode mixing. In
other words, the presence or absence of mode-mixing ef-
fects in thin, spherically symmetric condensate shells can
be interpreted as an indicator of the strength of gravity
in experiments where a fully covered shell is realized.

More precisely, we posit that since the change in the
frequencies of the collective modes due to mode mixing
is rather small in microgravitational environments, the
presence of large frequency corrections due to mode mix-
ing points toward a larger value of gravitational accel-
eration. For instance, recalling that we estimated that
the condensate shell in Ref. [63] would retain its shape
for gc ≈ 0.2 m/s2 we calculate that the frequency of the
(ν, `) = (1, 0) breathing mode in a thin shell of the same
size (R ∼ 10µm) in a gravitational field determined by
gc would change approximately 27% due to mode mix-
ing. This correction is almost 20,000 times larger than it
would be in microgravity. Additionally, a similar mode-
mixing behavior would be observed in condensate shells
with anisotropy along the z-direction, or clouds closer to
the “cigar-shape” rather than a sphere geometry. There-
fore, the absence of strong experimental signatures of
mode mixing offers a confirmation of both very small
values of gravitational acceleration in the environment of
the condensate shell and also its full spherical symmetry.
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IX. SUMMARY AND CONCLUSION

Our comprehensive study of the collective excitations
of hollow BECs offers an understanding of quantum liq-
uids having this unique spatial topology and provides
timely predictions for its experimental investigation. A
variety of cold atomic trapping potentials are equipped
to realize the hollowing transition as a function of a tun-
ing parameter, corresponding to the vanishing of density
within the BEC’s interior, the rf-dressed bubble-trap po-
tential being a prime candidate. We have studied density
profiles of such BECs by employing appropriate trapping
potentials, including a generalized radially shifted poten-
tial capable of realizing multiple models of interior den-
sity depletion. A realistic description of the central den-
sity reduction is especially important for the analysis of
the hollowing-out change of the condensate’s real space
topology.

We have focused on the collective modes of spherically
symmetric BECs and the nonmonotonic features in their
frequency spectra that serve as signatures of this topolog-
ical transition. We have employed a combination of ex-
act analytic and numerical hydrodynamics and real-time
GP equation simulations of sudden-quench experiments
in a complementary manner. The latter serves as an
in-situ simulation of experimental probe of BEC collec-
tive modes thus closely connecting our work to realistic
and feasibile experimental procedures. We have found
that thin shell BECs exhibit quantized collective modes
that show a significant frequency splitting due to radial
degrees of freedom but are degenerate with respect to
angular degrees of freedom. Upon transitioning between
filled and hollow topology, the breathing mode frequen-
cies drop to a minimum, and the corresponding density
deviations concentrate around the interior point of van-
ishing density. Additionally, as the hollowing-out occurs,
the redistribution of radial nodes in the high angular-
momentum surface modes from the outer to the newly
emerging inner surface leads to a dramatic drop in their
frequency spectrum, constituting strong evidence of the
hollowing-out topological transition. We have addition-
ally shown that these nonmonotonic frequency features
are robust across a range of trapping potentials. Further,
our analysis of the hollowing transition of a 2D disk to a
ring indicates that these breathing and surface collective
mode spectral signatures are universal for hollowing-out
topological transitions.

Finally, we have investigated the effects of gravity on
a BEC shell’s ground-state stability and collective-mode
frequencies. We have determined critical experimental
parameters for achieving condensate shells that are not
severely deformed by gravitational sag. For terrestrial ex-
perimental conditions, gravity produces a complete den-
sity depletion at the top of the shell potential and a pool-
ing of atoms at the bottom of the shell, which leads to a
flattening of the 3D shell into a quasi 2D disk. We argue
that this sagging effect can be mitigated in microgravity
environments, and have made corresponding predictions

for the perturbative effects of gravity on the collective
mode spectra.

While BECs have already been created in micrograv-
ity [64], a series of experiments employing tunable trap-
ping potentials capable of executing a hollowing transi-
tion in NASA’s Cold Atom Laboratory (CAL) aboard the
International Space Station are expected to be the first
experimental realization and investigation of fully closed
BEC shells [23]. Our predictions for the collective-mode
behavior of such shells will be particularly advantageous
for probing the hollowing-out phenomena, as direct imag-
ing cannot clearly identify the emergence of an inner sur-
face within a BEC’s interior.

Having exhaustively characterized the behavior of
spherically symmetric hollow BECs, many questions con-
cerning similar hollow systems remain to be addressed in
the future. For instance, in NASA’s CAL experiments,
the effects of asymmetric trapping potentials on the col-
lective modes and the hollowing signatures in, e.g., time-
of-flight expansion will be of significant interest. An-
other major direction concerning hollow shells would en-
tail rotation; resultant vortex formation and distribution
in these geometries would exhibit behavior dramatically
different from those observed in thin spheres and disc ge-
ometries. Our results are also applicable to broader set-
tings of condensate shells in neutron stars, Bose-Fermi
mixtures, and Mott-insulator-superfluid coexisting sys-
tems; future work would require making concrete con-
nections between these settings and our analyses.
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Appendix A: Finite-difference method

In this section we present the details for the finite-
difference method we use to solve the differential equation
for the collective modes. The Sturm–Liouville equation
has a general form of

[p(x)y′]′ + q(x)y = −λw(x)y, (A1)

where the eigenvalues λ and corresponding eigenfunc-
tions y(x) are to be determined. With a small interval ε,
we can approximate the differential term as

py′|x = p(x)
y(x+ 0.5ε)− y(x− 0.5ε)

ε
, (A2)



23

and hence

(py′)′|x =
py′|x+0.5ε − py′|x−0.5ε

ε

=
p(x+ 0.5ε)y(x+ε)−y(x)

ε − p(x− 0.5ε)y(x)−y(x−ε)
ε

ε

=
p(x+ 0.5ε)y(x+ ε)

ε2
− [p(x+ 0.5ε) + p(x− 0.5ε)]y(x)

ε2

+
p(x− 0.5ε)y(x− ε)

ε2
. (A3)

If the domain is sectioned into many lattice sites with
lattice spacing ε, a function f can be represented by a
vector f = {fi} such as fi = f(x) and fi±1 = f(x ± ε).
We then turn Eq. (A3) to

(py′)′i =
pi+0.5yi+1 − (pi+0.5 + pi−0.5)yi + pi−0.5yi−1

ε2
.

(A4)

Using the rule of Eq. (A4) and treating q(x) and w(x) as
diagonal matrices, we can turn Eq. (A1) into a general-
ized eigen problem for a finite-size matrix. The accuracy
can be increased by decreasing ε. By comparing Eq. (A1)
with Eq. (10) multiplied by r2 we obtain

p = r2 [V (R)− V (r)] , (A5)

q = −l(l + 1) [V (R)− V (r)] , (A6)

w = r2, (A7)

λ = mω2. (A8)

Therefore, one can calculate the collective modes by solv-
ing the generalized eigen problem for a finite matrix.

Appendix B: Evaluation of matrix elements in the
perturbative approach to gravitational

hydrodynamic equations

In this section, we present a detailed calculation of the
matrix elements of Eq. (46). More precisely, to leading
order in the thickness of the condensate shell, we set out
to calculate

〈δn(r, θ, φ)lν,m|Vg(r, θ)|δn(r, θ, φ)l
′

ν′,m′〉

≈ g

Sl
〈δn(r)lν,m| −

1

r
sin θ

∂

∂θ
− l′(l′ + 1)

r
cos θ|δn(r)l

′

ν′,m′〉.

(B1)

To that end, we recall

δn(r, θ, φ)lν,m =

√
ν(ν + 1)

2
Pν

(
r − r0

δ

)
Y lm`

(θ, φ)

(B2)
and, further, express the spherical harmonics as

Y lm(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (B3)

so that the matrix elements we are interested in require
evaluating an integral over the polar and azimuthal an-
gles and the radial coordinate. In order to evaluate the
first term in Eq. (B1) we start by evaluating the integral
over φ as ∫ 2π

0

ei(m−m
′)φdφ = 2πδm,m′ . (B4)

We proceed to utilize the differential identity

sin θ
∂

∂θ
Pml (cos θ) =

1

2l + 1
(l(l −m+ 1)Pml+1(cos θ)

−(l + 1)(l +m)Pml−1(cos θ)) (B5)

and the orthogonality relation∫ 1

−1

Pmk (cos θ)Pml (cos θ) sin θdθ =
2(l +m)!

(2l + 1)(l −m)!
δk,l

(B6)
for the integral over θ. Furthermore, to evaluate the ra-
dial integral we carry out a change of variable x = r−r0

δ
and write ∫

Pν

(
r − r0

δ

)
Pν′

(
r − r0

δ

)
rdr

= δ

∫
Pν(x)Pν′(x)(δx+ r0)dx (B7)

where the factor δx+ r0 can be expressed as a sum over
the Legendre polynomials P0(x) and P1(x). More pre-
cisely,

δx+ r0 = δP1(x) + r0P0(x) (B8)

so that the integral in Eq. (B7) can be evaluated by re-
calling that an integral of three Legendre polynomials is
proportional to the square of a Wigner-j symbol∫ 1

−1

Pk(x)Pl(x)Pm(x)dx = 2

(
k l m
0 0 0

)2

. (B9)

The Wigner-j symbol itself is related to a Clesbsh-
Gordan coefficient

C(j1, j2, j3|m1,m2,−m3) = 〈j1m1, j2m2|j3,−m3〉
(B10)

by the definition(
j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

(2j3 + 1)1/2
C(j1, j2, j3|m1,m2,−m3).

(B11)
We can therefore evaluate the integral in Eq. (B7) as∫

Pν(x)(δx+ r0)Pν′(x)dx =

2r0

2ν + 1
δν,ν′ + 2δ

(
ν 1 ν′

0 0 0

)2

(B12)
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Combining Eqs. (B5), (B7), (B8) and (B12) we then ob-
tain, to leading order in c−1,

〈δn(r)lν,m|
g

rSl
sin θ

∂

∂θ
|δn(r)l

′

ν′,m′〉 ≈

gδr0

Sl

ν(ν + 1)

2ν + 1

√
(l′ −m)!(l +m)!

(2l + 1)(2l′ + 1)(l′ +m)!(l −m)!
×

[(l′ + 1)(l′ +m)δl,l−1 − l′(l −m+ 1)δl,l′+1] . (B13)

We move on to calculate the second term in Eq. (B1).
First, we note that the integral over the azimuthal angle
is equal to 2πδm,m′ as above. We then use the recursive
identity

xP lm(x) =
l −m+ 1

2l + 1
Pml+1(x) +

l +m

2l + 1
Pml−1(x) (B14)

in order to evaluate the integral over the polar angle∫
Pml (cos θ)P l

′

m(cos θ) cos θ sin θdθ (B15)

by again using the orthogonality relation of Eq. (B6). We
conclude that the total angular contribution to this term
reads∫
Y l

′∗
m (θ, φ)Y lm(θ, φ) cos θ sin θdθdφ

= −

√
(l +m)!(l′ −m)!

(2l + 1)(2l′ + 1)(l −m)!(l′ +m)!
[(l′ −m+ 1)δl,l′+1

+(l′ +m)δl,l′−1] (B16)

while the radial contribution is given by Eq. (B12). The
total contribution of this term is then equal to

〈δn(r)lν,m|
gl′(l′ + 1)

rSl
cos θ

∂

∂θ
|δn(r)l

′

ν′,m′〉 ≈

−gδr0

Sl

ν(ν + 1)

2ν + 1

√
(l′ −m)!(l +m)!

(2l + 1)(2l′ + 1)(l −m)!(l′ +m)!
×

[l′(l′ + 1)(l′ −m+ 1)δl,l′+1 + l′(l′ + 1)(l′ + 1)δl,l′−1]

(B17)

We conclude that to leading order in c−1, or equiv-
alently the shell thickness δ, the matrix element of
Eq. (B1) reads

〈δn(r)lν,m|Vg(r, θ)|δn(r)l
′

ν′,m′〉 ≈

gδr0

Sl

ν(ν + 1)

2ν + 1

√
(l′ −m)!(l +m)!

(2l + 1)(2l′ + 1)(l −m)!(l′ +m)!
×[

l′(l′ −m+ 1)(l′ + 2)δl,l′+1 + (l′ +m)(l′2 − 1)δl,l′−1

]
.

(B18)
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