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We focus on the post-collision interaction in Auger processes where the photoelectron energy is
near or below the ionization threshold. Time-dependent quantum and classical calculations are
performed. When the photoelectron is more deeply bound, interference patterns can be seen in the
angular and photoelectron energy distributions. These interference patterns are visible in quantum
calculations, but not in purely classical calculations. A semiclassical analysis using actions from
two-path trajectories gives the relative locations of the interference maxima very close to those from
the full quantum calculations.

PACS numbers: 32.80.Ee, 32.80.Hd

I. INTRODUCTION

In Auger processes, the Coulomb interaction between
the outgoing photoelectron and the Auger electron emit-
ted later is known as post-collision interaction (PCI) [1–
7]. Typically, the energy of the Auger electron is much
higher than the energy of the photoelectron, thus the fast
Auger electron will pass the slow photoelectron a short
time after the core decays. The effective charge of the
ionic core that the photoelectron experiences suddenly
changes from +1 to +2. Energy and angular momentum
exchange between the two electrons can happen in the
PCI due to the repulsive Coulomb interaction between
them, and, in some cases, the ionized photoelectron can
be recaptured to bound states with different energies or
angular momenta [8–13].

The PCI has been extensively studied both theoreti-
cally and experimentally in the past few decades. Sev-
eral early semiclassical theories considered extreme cases,
where the energy of one electron is much greater than the
other, like the Barker-Berry model [14], the Niehaus for-
mula [15], and other derivations [6, 16, 17]. Later, many
stationary quantal theories were developed, including [3–
5, 18, 19], which gave similar PCI energy shifts but in a
wider range of two electron energies. Detailed analysis
of the angular momentum exchange in PCI can be found
in Refs. [20–23]. Several time-dependent studies of PCI
were developed in recent years [22, 24–28]. Experimen-
tally, the effect of PCI in a near-threshold photoioniza-
tion has also been widely studied [7–13, 29–32], while
several studies mainly focused on angular correlation in
the double continuum [33, 34]

When the incident photon energy is much below
the ionization threshold for an inner-shell electron, re-
searchers study the resonant Auger process where the
photon can excite an inner-shell electron to an excited
bound state above the valence shell. There are also
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many studies of the resonant Auger process which has
been thoroughly reviewed [2]. Intuitively thinking, with
a high density of states, the PCI with slightly below-
threshold photoexcitation and slightly above-threshold
photoionization should behave similarly. However, our
calculations show differences in the angular and photo-
electron energy distributions (PED). This is partly due
to the fact that a highly excited bound electron will re-
turn after it reaches its outer turning point, but a positive
energy electron will not. Thus, the outgoing fast Auger
electron could meet the photoelectron in a shorter dis-
tance and an earlier time, and the interaction between
the two electrons would be stronger.

For the PED in an above-threshold photoionization,
angular correlations have been investigated in exper-
iments [35–37], and in theories [22, 28, 33, 34, 38].
There has not been studies focused on the PED in
below-threshold photoexcitations, where the photoelec-
tron gains enough energy to be ionized due to the PCI.
In this paper, we focus on the PED in below-threshold
photoexcitation Auger process at different initial condi-
tions, including photoelectron energy and Auger width.
Interference patterns can be found in the PED. Proper-
ties of the interference patterns in PED at different initial
conditions are studied, and also analyzed from a semi-
classical approach. Both a quantum method, by solving
two-electron time-dependent Schrödinger equations, and
a classical method, by solving Hamilton’s equations, are
used in this paper to study the PCI effect across the ion-
ization thresholds. Our method is based on [22, 38–40],
with extensions to negative photoelectron energies.

This paper is structured as follows: in Sec. II, a model
of the Auger process and the quantum and classical nu-
merical methods used in this paper are briefly introduced.
In Sec. III, the results from both quantum and classi-
cal calculations are presented and compared. Also in
Sec. III, the PED is studied for different photoelectron
energies across the threshold, and for different Auger
widths. Atomic units are used unless specified otherwise.
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II. NUMERICAL METHODS

Instead of a full model considering all electrons in an
atom, we consider only the photoelectron and the Auger
electron in our calculations. This approximation can be
made because significant interactions between the two
electrons mostly happen outside the ionic core. There-
fore, the detailed shell structure is less important and can
be interpreted as a simple model potential.

Additionally, we limit our calculations with total an-
gular momentum L being 0, as well as the initial angular
momentum for each electron. This approximation can
greatly reduce the number of coupled angular channels
in the calculation. From Ref. [21] and our analyses in
Sec. III, the angular momentum exchange between the
two electrons are fairly weak. Also, since the electron-
electron interactions mostly occur far from the ionic core,
we assume that the results from the L = 0 approximation
will not significantly misinterpret the essence of energy
and angular momentum exchange in the PCI. For the
cases with non-zero angular momentum, brief discussions
are given at the end of Sec. III C.

A. Quantum methods

The dynamics of the emitted photoelectron before the
Auger core decays can be described by the following
time-independent inhomogeneous Schrödinger equation
[22, 38]: (

E1 + i
Γc
2
−Ha

)
F1(r1) = Dφg(r1), (1)

where E1 = E − Ec is the incident photon energy mi-
nus binding energy of the Auger core, and E1 is also the
photoelectron energy above the ionization threshold. Γc
is the Auger core width, and Ha = p1

2/2 + V (r1) is
the Hamiltonian for the photoelectron. The imaginary
iΓc/2 is applied to the Auger core energy Ec to calculate
the wave function of the photoelectron before the Auger
core decays. While Ref. [38] gives the mathematical rea-
son for this positive imaginary term, the qualitative rea-
son is that it leads to a finite spatial extent for F1(r1)
even when E1 is positive, which reflects that the part of
the wave function representing a photoelectron with no
Auger electron should have a finite extent in r1. The
Dφg is the dipole operator acting on the ground state
wave function of the inner-shell photoelectron. With the
approximations we proposed at the beginning of this sec-
tion, the Dφg can be chosen as any short range function
as long as: (1) it is not orthogonal to the continuum
wave function of the photoelectron F1 and, (2) it has
the correct angular momentum. For the potentials in
our problem, we may use a model potential that has an
asymptotic form of −Z/r as r →∞:

V (r) = −Z + (Zt − Z) e−r/ra

r
, (2)

where Zt, ra are adjustable parameters that represent
the properties of the model potential or, different atomic
structures. We may also use a Coulomb potential with
V (r) = −Z/r as a simplified model. Here in Ha, we have
Z = 1 in the potential for the photoelectron.

After the Auger core decays, the dynamics of the two
electron system can be described by the following time-
dependent Schrödinger equation [22, 38]:

(
i
∂

∂t
+ E1 + E2 −H

)
Λ(r1, r2, t) = S(t)F1(r1)F2(r2),

(3)

H =
p1

2

2
+

p2
2

2
+ V (r1) + V (r2)− 1

|r1 − r2|
, (4)

where H is the full two-electron Hamiltonian with Z = 2
in the potentials for both electrons. E2 is the energy of
the Auger electron above the ionization threshold. F2 is
a short range function that represents the source term
for the Auger electron, and it is not orthogonal to the
Coulomb eigenstate at E2. S(t) is a step-like function
that acts as the source term for the Auger decays, and
we choose S(t) = 1/(1+exp[10{1−5t/tf}]) in our calcu-
lations [38], where tf is the final time of the calculation
that all physical quantities are stable.

The whole two-electron wave function Λ(r1, r2, t) is
represented on a three-dimensional mesh:

Λ(r1, r2, t) =

Lmax∑
l=0

(−1)lRl(r1, r2, t)Yl0(cos θ12), (5)

where the Yl0(cos θ12) are the spherical harmonics on the
relative angle between r1, r2, and the phase factor fol-
lows the convention in [28, 41]. Lmax is the maximum
number of coupled angular channels in the calculations,
chosen to give converged results. In the radial dimen-
sion, a square root mesh is used which provides more
grid points near the origin. For the time propagation
of the wave function, the split operator method and the
implicit Crank-Nicolson method are used. When dealing
with the 1/r12 operator, the discrete variable represen-
tation is used for the coupling between different angular
momenta. Further details of the numerical calculations
can be found in Ref. [39].

It can be seen from Eq. (3) that the two-electron wave
function Λ has an increasing probability from the source
term for Auger decay. At the final time of the calcu-
lation, physical quantities should be extracted as their
time derivatives normalized by the probability increasing
rate of Λ [42]. This can be understood that the proba-
bility to find the system in a given channel is equal to
the rate that electrons go into the channel divided by
the norm increasing rate of the whole two-electron wave
function. For example, the probability that the two elec-
trons having energy ε1, ε2 and angular momentum l1, l2,
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respectively, can be calculated as:

P (ε1, ε2, l1, l2) =

d

dt

∣∣∣〈fε1l1fε2l2 |Λ(t)〉
∣∣∣2

d

dt

∣∣∣〈Λ(t)|Λ(t)〉
∣∣∣2 , (6)

where the Coulomb wave function fεl should be energy
normalized for a continuum eigenstate, and unity nor-
malized for a bound eigenstate.

B. Classical methods

It has been shown in many previous studies, e.g.
Ref. [43], that a highly excited Rydberg electron or a con-
tinuum electron often can be approximated as a classical
particle. We can use the much faster and more efficient
classical-trajectory Monte Carlo method to understand
the system in a totally different approach. The classical
method can also give intuitive interpretations to the PCI.

In every Monte Carlo trajectory, a photoelectron is
emitted near the origin at t1 = 0 [22]. The energy of the
photoelectron satisfies a normal distribution centered at
E1 with standard deviation σ = Γc/2

√
2 ln 2. The ini-

tial angular momentum and angular distribution should
satisfy those given in Dφg(r1). After a delay time of t2,
which satisfies an exponential distribution Γc exp(−Γct),
the Auger electron is emitted near the origin. The en-
ergy of the Auger electron is the difference of the pho-
toelectron energy from the total incident photon energy.
The initial angular momentum and angular distribution
of the Auger electron are the same as those from F2(r2).
With these initial conditions, we can propagate the clas-
sical system using Hamilton’s equations, and extract the
physical quantities as a statistical distribution at the fi-
nal time of the calculation. Further details can be found
in [22, 39, 40]

III. RESULTS AND DISCUSSIONS

In Sec. III A, we report results from calculations us-
ing quantum and classical methods to show the validity
of these methods with model potentials and negative en-
ergy photoelectrons. In Sec. III B and Sec. III C, calcu-
lations are performed in pure Coulomb potentials, and
we mainly focus on the quantum results of PED and the
semiclassical interpretations. All calculations performed
in this section have zero total angular momentum, and
zero initial angular momentum for both electron.

A. Comparisons between quantum and classical
methods

We first perform calculations using a model potential
as given in Eq. (2) with ra = 1.0, Zt = 6.0. In this model
potential with nuclear charge Z = 1, the quantum defects
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FIG. 1. Photoelectron energy distributions after PCI from
both quantum and classical calculations. The initial photo-
electron energy is E1 = −6.0×10−3 a.u., below the threshold.
Auger electron energy is E2 = 2.0 a.u. above the threshold,
and the Auger width is Γc = 3.0 × 10−3 a.u. The inset fig-
ure is a magnification of quantum results at high density of
Rydberg state.

for Rydberg states with different angular momentum are
approximately δs = 1.27, δp = 0.97, δd = 0.19, δf =
0.008. For Z = 2, the quantum defects are δs = 0.88,
δp = 0.70, δd = 0.35, δf = 0.06. In the calculation, we
have the Auger core width Γc = 0.003 a.u. ≈ 82 meV
and Auger electron energy E2 = 2.0 a.u. ≈ 54 eV. The
photoelectron energy is set to be E1 = −6.0× 10−3 a.u.,
below the threshold, where the Rydberg spacing is much
smaller than the Auger width. Also, for simplicity of
the calculation, the initial angular momentum for both
electrons is set to be zero.

The energy and state distributions for the photoelec-
tron after PCI are plotted in Fig. 1, from both quantum
and classical calculations. Since there is no quantization
for a classical system, the classical energy distribution
is a continuous function, and it has a similar distorted
shape to those calculations for an above-threshold Auger
process [21, 22, 28]. On the other hand, the quantum
system is quantized and the photoelectron can only be in
discrete eigenstates. The probabilities to find the photo-
electron in different states are given in the figure. The
overall envelope of the quantum state distribution quali-
tatively agrees with the classical energy distribution. Us-
ing the Niehaus formula [15], the maximum of the photo-
electron energy distribution is located at −0.0157, while
our classical calculation gives −0.0167. The initial en-
ergy E1 = −6.0× 10−3 a.u. is close to the resonant state
of 10s of Z = 1. After the PCI, the photoelectron is
shaken-up to those 11s, 12s, 13s states of Z = 2, al-
though the photoelectron loses energy in the PCI. The
ionization probabilities from both quantum and classical
calculations are about 0.5%.

Refs. [20–23] discussed the angular momentum ex-
change and angular distribution between the two elec-
trons due to the PCI. For our calculations of the an-
gular momentum distributions, the ns peaks have much
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higher probabilities than other non-zero angular momen-
tum peaks. Our quantum calculations show that about
82% of the photoelectron wave function after PCI is in s
orbitals. We also count the probability that the classical
angular momentum is within 0 6 l < 1, and the result is
78%. These calculations show that the angular momen-
tum exchange during the PCI with these initial parame-
ters is fairly weak but non-trivial, and most of the wave
function tends to keep its initial angular momentum.

B. The photoelectron angular and energy
distributions

To further study the energy and angular momentum
exchange during the PCI for near-threshold photoioniza-
tions (or photoexcitations), we perform multiple quan-
tum calculations at different photoelectron launch ener-
gies across the threshold. The following calculations are
performed with Auger electron energy E2 = 2.0 a.u. and
Auger width Γc = 0.003 a.u. The photoelectron ener-
gies are varied. The initial angular momentum for both
electrons are set to be zero to simplify the calculations.
All of the following calculations are performed in a pure
Coulomb potential. Although we don’t show model po-
tential calculations, they give very similar results.

In PCI with the photoelectron energy near the thresh-
old, the vast majority of the photoelectron wave function
loses energy due to the change of nuclear charge from +1
to +2 when the Auger electron leaves the atom. How-
ever, when the outgoing angles of the two electrons are
nearly the same, the early ejected photoelectron may be
strongly repelled by the Auger electron. As a result, the
photoelectron gains energy, and its momentum direction
is also changed from its initial outgoing direction. There-
fore, we study the correlation of the photoelectron energy
(E1f ) versus the relative angle between momentum of the
two outgoing electrons (θ12). Both values are achieved at
a long final time when they are already stable. We focus
on the angular and photoelectron energy distributions
(PED) of the wave functions in the double continuum.

In Fig. 2, the PED from quantum calculations are plot-
ted for different initial photoelectron energies E1. When
E1 is well above the threshold at 0.07 a.u., most of the
photoelectron wave functions have a lower energy but still
remains ionized, and the angular distribution is nearly
spherically symmetric other than for those cos θ12 near
1 [35, 38]. When E1 is slightly above the threshold at
0.003 a.u., two local maxima can be found in the fig-
ure. The right peak originates from those positive en-
ergy, outgoing photoelectrons being closely passed by a
late emitted fast Auger electron at a large distance away
from the nucleus. The photoelectron is then pushed aside
to a slightly larger angle, and still remains in the contin-
uum. Photoelectrons in the left peak near cos θ12 = 0 are
due to the repulsion from an early emitted Auger elec-
tron just after the photoionization. The strong repulsion
may directly push the photoelectron to a much larger an-

gle than the previous scenario. Detailed analyses can be
found in [22].

As the photoelectron energy E1 decreases and goes be-
low the threshold, the absolute value of the PED also
decreases. This is partly due to the fact that, as E1

gets lower, the Rydberg spacings become greater than
the Auger width, and the initial photoabsorptions at
non-resonant energies are much weaker. The abnormal
increase in the PED for E1 = −0.02 a.u. is because
−0.02 a.u. is an eigenenergy of a pure Coulomb poten-
tial with n = 5 and Z = 1. With the same intensity
in the initial source terms, the resonant photoabsorption
at −0.02 a.u. causes higher counts in the double con-
tinuum. The ionization probabilities barely decrease to
0.4% for E1 = −0.02 a.u., comparing to the 0.5% for
E1 = −0.006 a.u.

Comparing the subfigures for E1 = 0.003 a.u. and
E1 = 0 a.u., the “right” peak disappears, and the “left”
peak grows. This indicates a nearly zero probability for
an outgoing photoelectron being closely scattered by an
Auger electron at a large distance and still remain pos-
itive energy, as those scenarios described earlier for the
E1 = 0.003 a.u. Another interesting feature in Fig. 2
is that, as the E1 decreases, interference patterns start
to appear in the distributions. However, those interfer-
ence patterns do not exist in classical calculations with
the same parameters, which indicates that those patterns
are quantum effects. The subfigure for E1 = −0.02 a.u.
also illustrates that resonance in the initial photoelectron
excitation has no significant effect in those final interfer-
ence patterns.

To study the interference patterns at different initial
conditions, we perform several quantum calculations with
the same E1 at −0.006 a.u. but different Γc. The result-
ing PED can be seen in Fig. 3. The interference pattern
is barely visible at Γc = 0.003 a.u., but is very clear at
Γc = 3.3 × 10−4 a.u. A smaller Γc gives well-resolved
energy spectrum in the photoabsorption, and that leads
to better-resolved interference patterns in the PED. An-
other feature is that the oscillations in the interference
pattern are much faster than that of E1 = −0.015 a.u. or
−0.02 a.u. This can be interpreted using our semiclassi-
cal approach introduced in the next subsection. Further
estimations and numerical calculations show that, when

the photoelectron energy satisfies E1 < −0.5 Γ
2/3
c , the

interference pattern starts to be visible. This is also the
energy, E1, that the Rydberg spacings ∼ n−3 equals the
Auger width, and states with different principal quantum
number n are resolved by the photoexcitation photon and
the Auger decay rate.

C. Semiclassical interpretations of the interference
patterns in PED

Interference in quantum systems often results from two
paths leading to the same final state. Since the quan-
tum and classical calculations give similar results for a



5

FIG. 2. Quantum results of the angular (cos θ12) and photoelectron energy (E1f ) distributions (PED) at different initial
photoelectron energy E1. The initial Auger electron energy is E2 = 2.0 a.u., and Auger width is Γc = 0.003 a.u. The
photoelectron energy E1 is given at the top left of each subfigure. Note that, the E1f and PED scales are different in different
subfigures. All calculations are performed at the same initial intensity in the source terms. Among different subfigures, the PED
number is proportional to their absolute count of detections due to the same initial photon intensities. The dashed horizontal
lines in the subfigures of E1 = −0.015 and −0.02 a.u. are plotted at E1f = 0.01, 0.02, and 0.04 a.u. The small circles are the
corresponding classical maxima presented later in the text.

below-threshold photoexcitation Auger process as pre-
sented in Sec. III A, multiple classical calculations are
performed to qualitatively study the quantum interfer-
ence patterns. We trace back those classical trajectories
that give specific E1f and cos θ12 at the final time, and
study their spatial trajectories and initial launch vari-
ables. With fixed initial energies for the photoelectron
and Auger electron, only two variables may affect the fi-
nal values of E1f and cos θ12: the Auger decay time t2
after the photoelectron excitation, and the initial launch
angle difference ω between the two electrons.

In classical trajectories, there exists a mapping from

the initial pair (cosω, t2) to the final pair (cos θ12, E1f ).
For example, when E1 = −0.015 a.u., E1f = 0.02 a.u.,
the function of cos θ12 ∼ (cosω, t2) is given in Fig. 4.
Note that, for initial angle cosω < 0.7, it is nearly im-
possible for the photoelectron to gain enough energy and
become ionized. On this curve, to achieve cos θ12 = −0.4,
which is close to a quantum constructive interference re-
gion in Fig. 2, there are two classical trajectories with
totally different initial values. Illustrations for the two
trajectories are given in Fig. 5. The first trajectory has
cosω = 0.83, t2 = 0.45 a.u., and the second trajectory
has cosω = 0.9989, t2 = 630 a.u. In the first trajec-
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FIG. 3. Quantum results of the PED at E1 = −0.006 a.u., and different Γc. The Γc is given at the top left of each subfigure.
The initial Auger electron energy is E2 = 2.0 a.u. Other properties are the same as those given in the caption of Fig. 2.
The dashed horizontal line in the subfigure of Γc = 3.3 × 10−4 a.u. is plotted at E1f = 0.01 a.u. The small circles are the
corresponding classical maxima presented later in the text.
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FIG. 4. The relation of t2 versus cosω with a fixed E1f =
0.02 a.u. The cos θ12 value, which is the angle difference in
the asymptotic momentum of the two continuum electrons,
is marked with different colors. The ω is the angle differ-
ence between the launch directions of the two electrons, and
t2 is the time of Auger decay after launch of the photoelec-
tron. Two X’s are plotted at (0.83, 0.45) and (0.9989, 630),
which both give cos θ12 = −0.4. The triangle is plotted at
(0.987, 32.8), which is the transition point that distinguishes
the two paths, and is also the initial condition to achieve the
classically maximum allowed cos θ12 = 0.108.

tory, the photoelectron is directly pushed out by the early
emitted Auger electron. For the second trajectory, we
have t2 > 0.5TRyd1 ≈ 604 a.u. The Auger decay hap-
pens when the photoelectron is just starting to return to
the nucleus, and the emitted angle of the Auger electron
is very close to that of photoelectron. The returning pho-
toelectron is then scattered by the outgoing Auger elec-
tron, gains energy, and gets ionized from the atom in a
different direction from its initial launch direction. Since
there are two totally different paths that can reach the
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FIG. 5. Illustrations for the two classical trajectories with
final angle cos θ12 = −0.4 and photoelectron energy E1f =
0.02 a.u. The nucleus is located at the origin. The red and
blue lines are trajectories for photoelectron and Auger elec-
tron, respectively. The dashed red lines are photoelectron
trajectories before the Auger decay. The figure (a) refers to
an early Auger decay, and the figure (b) refers to a late Auger
decay.

same final region in the double continuum, quantum in-
terferences exist, and interference patterns can be found
in the PED figure.

We also use a semiclassical idea to analyze the quan-
tum interference pattern as presented in Fig. 2. We con-
sider the two classical paths that go to the same final
region in cos θ12 and E1f , and accumulate their classi-
cal actions as the time integral of their respective La-
grangians from the launch of photoelectrons to a large
fixed final time. For example, in the problem with E1 =
−0.015 a.u., E2 = 2.0 a.u. and Γc = 0.003 a.u., we con-
sider the thick horizontal dashed line of E1f = 0.02 a.u.
in the PED plot given in Fig. 2. The relation of cos θ12
versus initial value (cosω, t2) pairs are given in Fig. 4.
Since the photoelectron is in a periodic Rydberg motion
before Auger decay, we may only consider cases that the
t2 is less than one Rydberg period. For the first path with
small t2 and small cosω, the cos θ12 increases as cosω
and t2 increase until reaching the classically maximum al-
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imum around cos θ12 = 0, and δS = 1.05, which is plotted
in black dotted line. The (cos θ12, E1f ) = (0, 0.02) is a con-
structive interference point as presented in Fig. 2. All other
three black dotted lines represent the same phase differences
δϕ = 1.05, and are plotted at cos θ12 = −0.45, −0.67, −0.85,
respectively.

lowed cos θ12 = 0.108 at this energy, where cosω = 0.987
and t2 = 32.8. Beyond this point, the cos θ12 decreases
as the t2 increases, which gives the mapping of the sec-
ond path. We then calculate the semiclassical actions S
accumulated from the two paths, and δS as the action
difference. The phases ϕ, which are the actions modulo
2π, versus cos θ12 are given in Fig. 6. Comparing to the
quantum results in Fig. 2, where the global maximum
for E1f = 0.02 a.u. is achieved at around cos θ12 = 0,
the classical action difference δS = 1.05 can be found at
this angle. We then find those classical paths having ac-
tion differences δS = 1.05± k · 2π, where k is an integer.
The classical paths with final angles of cos θ12 = −0.45,
−0.67, and −0.85 have phase differences δϕ = 1.05 mod-
ulo 2π, and these cos θ12 values are approximately the
same constructive interference angles as those presented
in Fig. 2. Similarly, classical maxima are also calculated
at several other E1f values and different initial condi-
tions, and their locations can be found in Fig. 2 and
Fig. 3.

In Fig. 3, the locations of interference maxima do not
change with Auger width Γc, and the interference pat-
terns are better resolved when the Γc gets smaller. This
can be understood that the Γc only controls the distri-
butions of the Auger decay time t2, but not the actual
electronic dynamics. With a smaller Γc, the t2 has a
higher probability to be a large value, which could result
in more trajectories of those extreme conditions in cos θ12
or E1f . On the other hand, the interference intensities os-
cillate much faster in Fig. 3 with E1 = −0.006 a.u. than
that in Fig. 2 with E1 = −0.015 a.u. The fast change
in the relative interference phase comes from the rapid

increase in the semiclassical action in the second path,
where the returning photoelectron is scattered by the fast
outgoing Auger electron. In the second path, the Auger
electron is emitted a long time after excitation of the
photoelectron. Considering the Bohr-Sommerfeld quan-
tization condition, the photoelectron accumulates more
actions with a higher initial energy. Thus, the semiclas-
sical phases would be more sensitive to the launch time
t2 and final angle cos θ12.

Further studies of this model can be extended to non-
zero initial angular momentum. We know that the inter-
ference patterns are constructed from two paths, and one
crucial path is at small ω and large t2. For non-zero an-
gular momentum, the initial angular distributions of the
photoelectron and Auger electron are polarized. If they
have the same polarization angle, there will be a higher
chance that the initial angle difference ω is a small value,
and the interference patterns would be brighter and eas-
ier to observe in experiment. Furthermore, since our cal-
culations are performed with zero angular momentum
using pure Coulomb potential or simple model potential,
study of non-zero angular momentum in a sophisticated
model potential could be an interesting topic. A non-
negligible ionic core could twist the motion of electrons
at small distance near the nucleus, thus the dynamics of
the first path would be affected. The exact interference
patterns might be different in different atoms.

IV. CONCLUSIONS

In this paper, we performed quantum calculations and
classical calculations to numerically study the Auger pro-
cess and the post-collision interaction. Both methods
are time-dependent calculations, which can help us bet-
ter understand the time-resolved dynamics of the Auger
process. We mainly focused on those photoexcitation and
photoionization scenarios in which the excited (or ion-
ized) photoelectron energy is near the ionization thresh-
old. An initial calculation demonstrated the effective-
ness of our classical method when describing a quantum
model with negative photoelectron energy and model po-
tential. The numerical results showed that the angular
momentum exchange during the post-collision interac-
tion is fairly weak [20–23]. To further study the interac-
tion between the two electrons during the post-collision
interaction, we focused on the correlation of angular and
photoelectron energy distribution. We decreased the ini-
tial energy of the photoelectron, and checked the PED
at different initial photoelectron energies and Auger core
widths. Interestingly, when the initial energy of the pho-
toelectron is low enough, interference patterns can be
found in the PED. We studied the mappings between
initial values of launch time and angles and final val-
ues of energies and angles in the interference region. We
found that there are two paths with different initial con-
ditions that can contribute to the same final region in the
double continuum. We used a semiclassical treatment to
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calculate the classical actions as the time integral of the
Lagrangian of the system, and calculated the phase dif-
ference of the two paths. Along a given line in the PED
correlation figure, our semiclassical treatment gave the
relative locations of the interference maxima, which are
nearly the same as those from quantum calculations. Fi-
nally, we briefly discussed our model with non-zero ini-
tial angular momentum, and proposed further studies on
those interference patterns in different atomic systems.
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Phys. Rev. Lett. 79, 4970 (1997).

[30] P. Lablanquie, S. Sheinerman, F. Penent, T. Aoto,
Y. Hikosaka, and K. Ito, Journal of Physics B: Atomic,
Molecular and Optical Physics 38, L9 (2005).

[31] F. Penent, S. Sheinerman, L. Andric, P. Lablanquie,
J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, and
J. H. D. Eland, Journal of Physics B: Atomic, Molecular
and Optical Physics 41, 045002 (2008).

[32] R. Guillemin, S. Sheinerman, R. Püttner, T. Marchenko,
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