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We predict an observable Wigner time delay in outer atomic shell photoionization near inner
shell thresholds. The near-threshold increase of time delay is caused by inter-shell correlation and
serves as a sensitive probe of this effect. The time delay increase is present even when the inner
and outer shell thresholds are hundreds of electron volts apart. We illustrate this observation by
several prototypical examples in noble gas atoms from Ne to Kr. In our study, We employ the
random phase approximation with exchange (RPAE) and its relativistic generalization RRPA. We
also support our findings by a simplified, yet quite insightful, treatment within the lowest order
perturbation theory.

PACS numbers: 32.80.Aa 32.80.Fb 32.80.RM 32.80.Zb 42.50.Hz

I. INTRODUCTION

The effect of inter-shell correlation is an established
phenomenon in atomic photoionization. This effect man-
ifests itself particularly clearly in valence subshells of no-
ble gas atoms which leads to a significant modification of
the photoionization cross section and angular anisotropy
parameters. This modification can be accounted for ac-
curately within the random phase approximation with
exchange (RPAE) [1] and its relativistic analogue, the
relativistic random-phase approximationn (RRPA) [2, 3].
Correlation of the outer atomic shell with its inner coun-
terparts is known to be weaker as the corresponding
thresholds can be separated by hundreds of electron volts
[4]. The discrete spectrum below the inner shell thresh-
old manifests itself by series of auto-ionization resonances
in the outer shell photoionization cross section [5]. How-
ever, the outer shell photoionization cross section can
remain relatively flat and unaffected immediately above
the inner shell threshold. This is so because the inter-
electron Coulomb interaction that drives the inter-shell
correlation is weak in atomic shells that are so far apart.

At the same time, the opening of the inner shell
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at a sufficiently large photon energy can add a sizable
phase shift to the photoionization amplitude of the outer
shell even though the modulus of the amplitude is only
changed slightly. A rapid change of the phase occurs
in an interval of several electron volts and the energy
derivative of the phase is large. When this derivative is
converted to the time delay by the Wigner formula [6]

τW =
∂ arg f(ǫ)

∂ǫ
= Im

f ′(ǫ)

f(ǫ)
(1)

it is translated into a measurable quantity of the order of
10 as (1 as = 10−18 s). This time delay becomes a sensi-
tive probe of inter-shell correlation in a situation where
measurement of the total photoionization cross section of
the outer shell brings little evidence of this correlation.
We note that modern experiments can detect photoemis-
sion time delay with a sub-attosecond precision [7] and
attosecond streaking measurements can now be expanded
to the soft-x-ray range up to 350 eV [8].
We illustrate this effect by considering several proto-

typical examples in inner and outer shells of noble gas
atoms. We employ the RPAE methodology as described
in [9] and its relativistic counterpart RRPA [2, 3]. We
intentionally leave out the question of the probe field
and associated effect of the laser-Coulomb coupling which
modifies the atomic time delay as

τa = τW + τCLC (2)



2

The CLC, known also as continuum-continuum (CC) cor-
rection, is commonly represented by a hydrogenic ap-
proximation [10, 11]. Irrespective of the accuracy of this
representation, at such large photoelectron energies, this
correction should be vanishingly small. So in the follow-
ing we concentrate solely on the Wigner component of
the time-delay τW . Atomic units are used throughout
the paper unless otherwise is specified. One atomic unit
of time is equal to 24.2 as and 1 atomic unit of energy is
equal to 2 Ry or 27.2 eV .

II. THEORY

A. Random phase approximation

The random phase approximation was applied to
to calculate photoionization cross sections and angular
anisotropy parameters in valence shell of noble gas atoms
some forty years ago [12]. Since then, it became a stan-
dard technique to account for inter-shell correlation in
valence shell photoionization in these atoms (see [1] and
references therein). It had been generalized for inner
shell photoionization by adopting experimental ioniza-
tion thresholds and including the lifetime of the inner
vacancy due to its Auger decay. These generalizations
are collectively termed GRPAE [13]. The RPAE [14]
and RRPA [15] had been previously employed to eval-
uate the Wigner time delay in valence and inner shells
of noble gas atoms. Therefore we describe the theory of
these methods only briefly.
We adopt the notation of [14] and write the (nonrela-

tivistic) amplitude of photoionization from a bound state
i to an ingoing scattering state defined by the photoelec-
tron momentum k as

fniℓi(k) ≡ 〈ψ(−)
k

|ẑ|φi〉 ∝
∑

l=li±1

m=mi

eiδℓ(E)i−lYℓm(k̂) (3)

×
(

ℓ 1 ℓi
−m 0 mi

)

dik , dik ≡ 〈kℓ‖ r ‖niℓi〉

These bound and continuous states are orthogonal and
are eigenstates of the frozen core atomic Hamiltonian.
We consider the case of linearly polarized incident pho-
tons whose polarization direction is taken as the quanti-
zation ẑ axis. The proportionality constant depends on
the normalization of the final-state scattering wave func-
tion. The reduced dipole matrix element, stripped of all
the angular momentum projections, is defined as

〈kℓ‖ r ‖niℓi〉 = ℓ̂ℓ̂i

(

ℓ 1 ℓi
0 0 0

)
∫

r2dr Rkℓ(r) r Rniℓi(r) ,

(4)

where we use a shortcut, ℓ̂ =
√
2ℓ+ 1. Eqs. (3) and (4)

employ the length gauge of the electromagnetic interac-
tion. The analogous expressions in the velocity gauge
contain the ∇z and ∂/∂r operators, respectively. The

gauge invariance of the present results serves as an addi-
tion test on the accuracy of the present calculations. We
note that for two competing ionization channels l = li±1,
the phase of the amplitude (3) depends on the direction

of the photoelectron k̂. In what follows, we restrict our

calculations to the polarization direction k̂‖ẑ as is usually
the case experimentally

We consider the inter-shell correlation which connects
the transition in the outer shell i→ k with the inner shell
transition j → p. The correlation-affected outer shell
amplitude is expressed by the same Eq. (3) in which the
reduced dipole matrix element dik is substituted with the
solution of the integral equation:

Dik(ω) = dik +
1

3

∑

∫

p

DjpVik,jp
ω + ǫj − ǫp + iδ

, (5)

where a positive infinitesimal +iδ denotes the bypass of
the real pole of the denominator in the complex energy
half-plane. Furthermore, dik is a dipole matrix element in
the absence of correlation given by Eq. (4) and Vik,jp =
2Uik,jp − Uij,kp is the Coulomb matrix containing the
direct and exchange parts. The direct Coulomb matrix
is expressed as

Uik,jp = ℓ̂ℓ̂′ ℓ̂i ℓ̂j

(

ℓ 1 ℓi
0 0 0

)(

ℓ′ 1 ℓj
0 0 0

)

× R
(1)
ℓ,ℓ′,ℓi,ℓj

(k, p, ni, nj) , (6)

where R(1) is a Slater integral [1]. In the exchange ma-
trix, the electron kℓ and the hole njℓj states are swapped.
By definition, both the dipole and Coulomb matrices are
real quantities. The fraction 1/3 in Eq. (5) is the re-
sult of the angular momentum projection summation.

The symbol
∑

∫

denotes the integration over the con-

tinuum spectrum
∫

dǫp and the sum over the discrete
spectrum

∑

p of the inner shell excitations. Since i and
j refer to to the outer and inner shell, respectively, the
corresponding ionization potentials satisfy the relation
Ii = |ǫi| ≪ Ij = |ǫj |. In the case of a deep inner shell, its
energy should be augmented by an Auger decay width
and an infinitesimal δ should be replaced with a finite
half width γj/2.

The partial photoionization cross section in RPAE is
prportional to the absolute square of the dipole matrix
element (5)

σik(ω) =
4

3
π2αa20ω|Dik|2 (7)

Here α is the fine structure constant and a0 is the Bohr
radius. The analogous expression with a non-correlated
matrix element dik gives the value which we refer to as
the Hartree-Fock approximation.
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B. Lowest order perturbation theory

Even though Eq. (5) can be solved numerically to a suf-
ficient accuracy, we provide a simplified treatment which
is less accurate but much more physically transparent.
In the case of a weak inter-shell correlation, which is typ-
ically the case between the inner and outer shells, the
correlated matrix element of the inner shell photoioniza-
tion in the rhs of Eq. (5) can be approximated by its un-
correlated value, and the exchange part of the Coulomb
interaction can be dropped, hence

Dik(ω) = dik +
2

3

∑

∫

p

djpUik,jp

ω + ǫj − ǫp + iδ
≡ dik +∆dik (8)

We further rewrite the correlation induced part of the
dipole matrix of the outer shell as

∆dik = 4
∞
∑

p=1

ap
ω + ǫj − ǫp

+

∞
∫

0

dǫ
a(ǫ)

ω + ǫj − ǫ+ iδ
, (9)

where we introduce ap ≡ (2/3)djpUik,jp and its contin-
uous spectrum counterpart a(ǫ) for brevity of notation.
We split the principal value and the singular part of the
integral

∞
∫

0

a(ǫ) dǫ

ω + ǫj − ǫ+ iδ
=P

∞
∫

0

a(ǫ) dǫ

ω + ǫj − ǫ
−iπa(ωik+ǫj) (10)

where ωik = ǫk − ǫi is the energy of the outer shell tran-
sition. Near the inner shell threshold, ω + ǫj = 0, the
principal value integral is logarithmically divergent at the
lower limit. However, this divergence is compensated for
by the infinite part of the discrete sum. Indeed, because
of the continuity of the oscillator strength across the ion-
ization threshold,

lim
ap

ǫp+1 − ǫp

∣

∣

∣

p→∞

= a(ǫ = 0)

and then absorb an infinite part of the sum into the in-
tegral:

∆dik =

N≫1
∑

p=1

ap
ω + ǫj − ǫp

+

∞
∫

∆<0

dǫ
a(ǫ)

ω + ǫj − ǫ+ iδ

−iπa(ωik + ǫj) , (11)

where we introduced a shift of the threshold by a small
quantity ∆. The remaining finite sum in the right-hand
side of Eq. (11) describes the series of the auto-ionizing
states below the threshold. We omit this region from
our consideration and concentrate on the above-threshold
ionization. After the divergence in the principal value
of the integral term is isolated and removed, the small
regular part can be ignored in comparison with the direct
photoionization matrix element because of the weakness

of the correlation. With this in mind, we write the dipole
matrix element of the outer shell photoionization near the
inner shell threshold as

Dik = dik − i(2/3)πdjpUik,jp (12)

argDik = − arctan
2

3

πdjpUik,jp

dik
,

where the continuous states in both transitions are bound
by the energy conservation ǫk − ǫi = ǫp − ǫj. Eq. (12)
gives the lowest order perturbation theory (LOPT) esti-
mate for the correlation induced phase of the ionization
amplitude.

C. Relativistic extensiton

The relativistic photoionization theory should take
into account the spin-orbit splitting of atomic shells.
The relativistic counterpart of the RPAE, the relativistic
random phase approximation (RRPA) considers a one-
electron transition from an initial state characterized by
the quantum numbers n ljm to a final continuum state

k̂ l̄ j̄ m̄. The relativistic counterpart of Eq. (3) is the elec-
tric dipole amplitude which, for a linearly polarized light,
is given by Eqs. (7-8) of [16]:

T 1ν
nljm =

∑

κ̄m̄

Cjm̄

l,m̄−ν, 1
2
ν
Ylm̄−ν(k̂)

× (−1)2j̄+j+1−m̄

(

j̄ 1 j
−m̄ 0 m

)

i1−l̄eiδκ̄
〈

ā‖Q(1)
1 ‖a

〉

(13)

Here and below we use the notation κ = ∓(j+ 1
2 ) for j =

l± 1
2 , ν = ±1/2 is the photoelectron spin polarization, the

C’s are the Clebsch-Gordon coefficients and the Y ’s are
the spherical harmonics. We will also use an asterisk for
the lower j component of a spin-orbit doublet, j = l− 1

2 ,
e.g., np1/2 ≡ np∗. The reduced matrix element of the
spherical tensor between the initial state a = (nκ) and a
final state ā = (ǫ, κ̄) is obtained from a solution of the
set of the integral RRPA equations similar to the RPAE
Eq. (5). For the brevity of notation, we absorb the phase
factor into the reduced matrix element

Dlj→l̄j̄ = i1−l̄eiδκ̄
〈

ā‖Q(λ)
J ‖a

〉

(14)

In the polarization axis direction k̂‖ẑ, only the axial,
Yl0,components of the spherical harmonics in Eq. (13)
are non-zero, so only terms with m = ν = ±1/2 survive.
Due to the axial symmetry, then, the final result does not
depend on the sign of the spin and the angular momen-
tum projections. The expressions below show the axial
components of the relativistic ionization amplitudes for
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the ns, np and nd initial states,

T (1)
ns1/2

= − 1

3
√
2
Y10Dns1/2→ǫp1/2

− 1

3
Y10Dns1/2→ǫp3/2

T (1)
np1/2

=
1√
15
Y20Dnp1/2→ǫd3/2

+
1√
6
Y00Dnp1/2→ǫs1/2

T (1)
np3/2

=
1√
6
Y00Dnp3/2→ǫs1/2 −

1

5
√
6
Y20Dnp3/2→ǫd3/2

−1

5

√

3

2
Y20Dnp3/2→ǫd5/2

(15)

T
(1)
nd3/2

= − 1

3
√
2
Y10Dnd3/2→ǫp1/2

+
1

3

√

1

10
Y10Dnd3/2→ǫp3/2

+

√

3

70
Y30Dnd3/2→ǫf5/2

T
(1)
nd5/2

=
1√
15
Y10Dnd5/2→ǫp3/2

− 1

7
√
10
Y30Dnd5/2→ǫf5/2

−
√
2

7
Y30Dnd5/2→ǫf7/2

with the spherical harmonics in Eq. (15) are taken in the
ẑ direction i.e., θ = 0. The complete set of amplitudes
for an arbitrary direction, including the off-axial terms is
given in [16, 17].

D. Time delay

Each amplitude in Eq. (15) is associated with its own
Wigner time delay defined as

τnlj =
dηnlj
dǫ

, ηnlj = tan−1

[

ImT
(1)
nlj (k̂‖ẑ)

ReT
(1)
nlj (k̂‖ẑ)

]

, ǫ = k2/2 .

(16)
In the case when spin-orbit components are not resolved
as in light atoms, the average time delay should be eval-
uated as a weighted average [18]

τ̄nl =

∑

j τnljσnlj
∑

j σnlj
. (17)

In a weakly relativistic limit, it tends to its non-
relativistic counterpart

τnl =
∂ arg fnl(k̂‖ẑ)

∂ǫ
, (18)

where the amplitude fnl(k̂) is given by Eq. (3). We also
note that the photoelectron in each partial wave has its
own group delay which can be calculated as

τnlj→ǫl̄ j̄ =
∂ argDnlj→ǫl̄ j̄

∂ǫ
. (19)

Because individual partial waves are not presently re-
solved experimentally, it is the time delay (16) that is
of our prime interest. It is instructive, nevertheless, to

analyze the group delays in various individual photoelec-
tron channels and to see how they combine to form the
group delay for a particular relativistic subshell nlj or,
equivalently, nl and nl∗.

III. RESULTS AND DISCUSSION

In the following we consider several typical examples
of outer shell photoionization near inner shell thresholds:
Ne 2p photoionization near the 1s threshold, Ar 3s and
2p photoionization near the 2p∗ threshold and Kr 3d pho-
toionization near the 2p and 2p∗ thresholds.

A. Neon 2p photoionization near the 1s threshold

To elucidate the role of the inter-shell correlation in
the valence shell photoionization of neon, we carry out
two sets of RRPA calculations. In one calculation, we
use the complete set of 9 relativistic coupled channels:

1s1/2 → ǫp1/2, ǫp3/2

2s1/2 → ǫp1/2, ǫp3/2

2p∗ ≡ 2p1/2 → ǫs1/2, ǫd3/2

2p ≡ 2p3/2 → ǫs1/2, ǫd3/2, ǫd5/2

In a second truncated 7-channel calculation, the transi-
tions from the K-shell 1s1/2 → ǫp1/2, ǫp3/2 are omit-
ted. In the complete RPAE calculation, we include all
four non-relativistic channels: 1s → ǫp, 2s → ǫp and
2p→ ǫs, d. By making a comparison between the results
of the complete and truncated calculations, we clearly
identify the effect of the inner channel openings on the
cross section and time delay of the outer shells.
Results of these calculations are displayed in Fig. 1

where we show the partial 2p photoionization cross sec-
tion as a function of the excess energy near the 1s thresh-
old. We observe that the truncated RRPA calculation is
smooth across the threshold whereas the full calculation
is broken by a series of auto-ionizing resonances below
the threshold, while above the threshold, the cross sec-
tion is a smooth function again, deviating insignificantly
from the truncated result by about 10%.
Simultaneously, however, the inter-shell correlation af-

fects the phase of the 2p photoionization amplitude in a
very significant way. This phase above the 1s threshold
is shown in the top panel of Fig. 2, as a function of the
excess energy, with logarithmic energy scale for clarity.
Here the complete 9-channel RRPA result varies quite
considerably whereas the corresponding 7-channel RRPA
phase is essentially flat. The 9-channel RRPA phase vari-
ation is also very close to the LOPT prediction. In other
words, without coupling with the 1s channels, the phase
of the 2p photoionization amplitude is nearly zero and
hardly varies with energy; with the coupling, the phase
is significant, and varies considerably with energy.
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FIG. 1: Photoionization cross section of the 2p shell of Ne
near the 1s threshold as a function of the excess energy, the
energy with respect to the 1s threshold. The complete 9-
channel and the truncated 7-channel RRPA calculations are
shown with the (red) dots and solid line, respectively. The
4-channel RPAE calculation from [15] is shown with filled
triangles.

In the middle panel of Fig. 2, the phase is converted
to the Wigner time delay using Eq. (16). The 2p1/2 and
2p3/2 components of the time delay are indistinguishable
on the scale of the figure. For a better differentiation
accuracy in the vicinity of the threshold, the 9-channel
RRPA phase is fitted with the exponential-polynomial
ansatz

φ(E[eV]) = exp[−bE](a0 + a1E + a2E
2) (20)

and the time delay at the threshold is expressed as

τ(E = 0)[as] = (−ba0 + a1)× 2Ry× 24.2(as) (21)

For the 2p shell of Ne this expression returns τ2p1/2
(E =

0) = 8.37 as and τ2p3/2
(E = 0) = 8.34 as. Note that, ow-

ing to the approximate nature of the extrapolation pro-
cess, sub-attosecond differences are not considered to be
physically meaningful. The time delay in the truncated
7-channel RRPA calculation is virtually zero on the scale
of the figure. Hence, all the observed time delay in the
complete RRPA calculation is due to the 1s/2p inter-
channel correlation. In the bottom panel of Fig. 1, the
time delay is shown on the linear photon energy scale.
We see that the rise of the time delay near the threshold
is rather steep and the precise value at the threshold is
difficult to determine.
The threshold group delays in various photoelectron

partial waves are tabulated in Table I. The log scale re-
sults refer to Eq. (21) while the linear scale results are
obtained by estimating threshold intercept. Both sets of
results are quite close. We note that the s-wave has neg-
ative group delay whereas the d-waves have positive time
delay. This sign inversion follows from the (−1)ℓmax rule
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FIG. 2: Top: Phase of the 2p photoionization amplitude of
Ne near the 1s threshold from the complete 9-channel RRPA
calculation is shown with (red) filled circles while its analytic
fit with Eq. (20), φ(E), is shown with (red) solid line. The
same phase from a truncated 7-channel RRPA calculation is
shown with triangles. The LOPT calculation is displayed with
open (blue) circles joined by the solid line to guide the eye.
Middle: Phase of the photoionization amplitude, converted
to the Wigner time delay using Eq. (16) and displayed with
the same symbols. Bottom: Same as Middle but on a linear
photon energy scale.

since ℓmax = 1 for p → s transition and ℓmax = 2 for
p→ d. As the d-waves are strongly dominant due to the
Fano propensity rule [19], the net Wigner time delay for
the 2p1/2 and 2p3/2 subshells is close to that of the pho-
toelectron group delay in the d partial waves because the
corresponding terms are dominant in the subshell pho-
toionization amplitudes (15).

The negative phase, decreasing in magnitude with ex-
cess energy, which is converted to a positive time delay
as shown in Fig. 2 can be understood from the LOPT
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TABLE I: Photoelectron group delays (19) and Wigner time
delays (16) of the 2p1/2 and 2p3/2 shells of Ne at the 1s thresh-
old, in attoseconds, from the full 9-channel RRPA calculation.
The Dirac-Fock EDF and experimental Eexp [20] threshold en-
ergies are displayed.

Channel Delay (as)
Energy scale Log Linear

Ne 1s threshold

EDF = 893 eV

Eexp = 870 eV

2p∗ ≡ 2p1/2 → ǫd3/2 9.28 9.00

2p1/2 → ǫs1/2 -5.77 -5.87

2p1/2 total 8.37

2p3/2 → ǫd3/2 9.20 8.88

2p3/2 → ǫd5/2 9.31 9.06

2p3/2 → ǫs1/2 -5.85 -5.97

2p3/2 total 8.34

equation (12). We see that the sign of the correlation-
induced phase depends on the sign of the three matrix
elements: the two dipole matrices in the outer dik and in-
ner djp channels and the Coulomb interaction Uik,jp. In
the present case we consider the strongest outer channel
2p→ ǫd and correlate it with the inner channel 1s→ ǫp.
The corresponding dipole matrix elements near the 1s
threshold are exhibited in Fig. 3. From this figure we
observe that d2p→ǫd > 0 while d1s→ǫp < 0. The sign
of these matrix elements is determined by the angular
factor in Eq. (4):

l̂l̂i

(

l 1 li
0 0 0

)

≡ l̂max(−1)lmax , lmax = max(l, li) (22)

Indeed, the radial integral in Eq. (4), which contains the
nodeless orbitals 1s and 2p, is always positive near the
threshold. The angular part of the Coulomb matrix is
given by the product of the angular parts of the dipole
matrices of the interacting channels (see Eq. (8) in [14]).
Hence the Coulomb interaction matrix U1sǫp,2pǫd is also
negative near the threshold. Therefore both the numera-
tor and the denominator in the LOPT expression for the
phase (12) are positive and given the minus sign before
the ratio the phase itself is negative. While the matrices
d2p→ǫd and U1sǫp,2pǫd are rather flat, the dipole matrix
d1s→ǫp is noticeably decreasing away from the threshold.
Hence the LOPT phase is decreasing in magnitude also.
The corresponding time delay is positive and diminishes
rapidly as the excess energy grows.
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FIG. 3: Dipole matrix elements d1sǫp and d2pǫd for the inner
and outer ionization channels in Ne, shown as (red) filled
circles and (purple) open squares, respectively. The Coulomb
interaction matrix U1sǫp,2pǫd (multiplied by 10) is shown as
(blue) asterisks.

B. Argon near the 2p∗ threshold

The complete RRPA calculation on argon contains 16
relativistic channels:

1s1/2 → ǫp1/2, ǫp3/2

2s1/2 → ǫp1/2, ǫp3/2

2p∗ ≡ 2p1/2 → ǫs1/2, ǫd3/2

2p ≡ 2p3/2 → ǫs1/2, ǫd3/2, ǫd5/2

3s1/2 → ǫp1/2, ǫp3/2

3p∗ ≡ 3p1/2 → ǫs1/2, ǫd3/2

3p ≡ 3p3/2 → ǫs1/2, ǫd3/2, ǫd5/2

In a truncated 14-channel calculation, the 2p∗ ionization
channels are removed to demonstrate clearly the inner
threshold effect. In the further trimmed 11-channel cal-
culation, the 2p ionization channels are dropped. In the
RPAE calculation, we include 6 non-relativistic channels:
2s→ ǫp, 2p→ ǫs, d, 3s→ ǫp, 3p→ ǫs, d.

1. 3s photoionization

Results of these calculations for the 3s cross section
near the 2p∗ threshold are shown in Fig. 4. In the com-
plete RRPA calculation, a smooth cross section is inter-
ruputed by a series of auto-ionizing resonances below the
threshold (not fully resolved in the figure). In a truncated
14-channel calculation, the resonant region is located be-
low the 2p threshold. In a further truncated 11-channel
RRPA calcualtion, all the resonances are removed and
the cross section is smooth across the threshold region.
In the top panel of Fig. 5 we show the phase of the

3s photoionization amplitude from the 16-, 14- and 11-
channel RRPA calculations and the LOPT value from
Eq. (12). The RRPA phases are fitted with the ansatz
(20) and differentiated analytically to produce the time



7

 40

 60

 80

-20  0  20  40  60  80

 240  260  280  300  320  340

3s
 c

ro
ss

 s
ec

tio
n 

(k
b)

Excess energy (eV)

Photon energy (eV)

2p* threshold               
RRPA 16ch

14ch
11ch

FIG. 4: Photoionization cross section of the 3s shell of Ar near
the 2p∗ threshold as a function of the excess energy. The
complete 16-channel and the truncated 14- and 11-channel
RRPA calculations are shown as (red) dots, (blue) asterisks
and open squares, respectively.

delays shown in the middle panel of the figure. The 3s
time delay near the 2p threshold is negative. The thresh-
old values are -19.7 as, -9.4 as and -1.9 as in the complete
and the two truncated RRPA calculations, respectively.
Thus by removing the inter-shell correlation of the sub-
valence 3s shell with the inner 2p and 2p∗ shells, the time
delay is significantly reduced. To highlight the utility of
the analytical interpolation and differentiation, we show
the raw numerical data of the 3s time delay in the bot-
tom panel on the linear photon energy scale from which
estimating the value at the threshold results in a greater
numerical noise.
The energy variation of the LOPT phase, Eq. (12),

near the threshold is very similar to the complete RRPA
calculation. To elucidate the sign of the LOPT phase
and its energy dependence, we examine the inner and
outer transitions along with their Coulomb interaction.
The corresponding dipole matrix elements are exhibited
in Fig. 6. We see that the signs of the inner and outer
dipole matrix elements are now inverted as compared
with the case of Ne shown in Fig. 3. The outer dipole ma-
trix element d3s→ǫp < 0 while the inner matrix element
d2p→ǫd > 0, as prescribed by the signs of their respective
angular factors, Eq. (22). As the Coulomb matrix ele-
ment is positive in this case, the LOPT phase is positive
also and is rapidly decreasing away from the threshold.
This behavior produces a large negative time delay at the
inner-shell threshold.

2. 3p photoionization

The photoionization cross section of the valence 3p
shell near the 2p∗ threshold is shown in Fig. 7. Un-
like the threshold behavior of the 2p cross section near

the 1s threshold in Ne (Fig. 1) and the 3s cross section
near the 2p∗ threshold in Ar (Fig. 4), the variation of the
3p cross section above the 2p∗ threshold is rather small
when the number of coupled channels the RRPA calcu-
lation changes. This insensitivity of the cross section to
the inter-shell correlation is reflected in the threshold be-
havior of the time delay which is exhibited in Fig. 8.

The phases in the individual photoelectron partial
waves and the net phase of the photoionization ampli-
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FIG. 5: Top: Phase of the 3s photoionization amplitude of
Ar near the 2p∗ threshold from the 16-, 14- and 11-channel
RRPA calculations, shown as (red) filled circles, (blue) as-
terisks and open squares. The analytic fit using Eq. (20) is
shown with similarly colored solid lines. The LOPT calcula-
tion is displayed as (blue) open circles. Middle: Analytic fit
to the phase of the photoionization amplitude, converted to
Wigner time delay using Eq. (1). Bottom: Time delay from
the 16-channel RRPA calculation shown on a linear photon
energy scale.
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near the 2p∗ threshold as a function of excess energy. The
complete 16-channel and the truncated 14- and 11-channel
RRPA calculations are shown as (red) dots, (blue) asterisks
and open circles, respectively.

tude for the 3p1/2 subshell of Ar are depicted in the top
panel of Fig. 8 as functions of the photoelectron energy.
These phases, when converted to the photoelectron group
delays (19) and the net Wigner time delay (16) are dis-
played in the bottom panel of this figure. As in the case
of the Ne 2p shell, the group delay is negative for the
s-continuum and positive for the d-continuum.

Unlike in the Ne 2p shell, where the d-waves dominate
the Wigner time delay, various continua compensate for
each other in the case of Ar 3p1/2. While the threshold
group delay is large and negative for the ǫs continuum,
it is small and positive for the ǫd continuum and small
and negative for the net Wigner time delay. The corre-
sponding values of the group and Wigner time delays at
the threshold are given in Table II. Reading these values
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FIG. 8: Top: Phase of the various 3p1/2 photoionization am-
plitudes of Ar near the 2p∗ threshold: 3p1/2 → ǫd3/2 - (red)
filled circles, 3p1/2 → ǫs1/2 - (blue) asterisks, sum over all
final channels - open squares. The analytic fit using Eq. (20)
is shown with similarly colored solid lines. Bottom: Analytic
fit to the phase of the photoionization amplitudes, converted
to the group delay (19) and Wigner time delay (1)

we observe that a small effect of inter-shell correlation on
the photoionization cross section is commensurate with
a similarly insignificant effect of the correlation on the
Wigner time delay.
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TABLE II: Photoelectron group delays (19) and Wigner time
delays (16) of the 3s and 3p shells of Ar at the 2p∗ threshold
from the full 16-channel RRPA calculation. The Dirac-Fock
EDF and experimental Eexp [20] threshold energies are dis-
played.

Channel Delay (as)

Energy scale Log Linear

Ar 2p∗ threshold

EDF = 262 eV

Eexp = 250 eV

3p1/2 → ǫd3/2 2.8 2.8

3p1/2 → ǫs1/2 -20.2 -24.1

3p1/2 total -3.5

3p3/2 → ǫd3/2 10.0 12.7

3p3/2 → ǫd5/2 10.0 12.7

3p3/2 → ǫs1/2 -17.8 -21

3p3/2 total 1.7

3s1/2 → ǫp1/2 -18.3 -16.6

3s1/2 → ǫp3/2 -20.3 -14.9

3s1/2 total -19.7

TABLE III: Photoelectron group delays and Wigner time de-
lays of the 3d and 3d∗ shells of Kr at the 2p and 2p∗ thresholds.
The Dirac-Fock EDF and experimental Eexp [20] threshold en-
ergies are shown.

Channel Delay (as)

Energy scale Log Lin

2p* threshold

EDF = 1, 765 eV

Eexp = 1, 730 eV

3d3/2 → ǫp1/2 -14.80 -13.95

3d3/2 → ǫp3/2 -36.15 -34.28

3d3/2 → ǫf5/2 3.93 3.75

3d3/2 total 0.29

3d5/2 → ǫp3/2 -14.5 -13.58

3d5/2 → ǫf5/2 9.10 8.92

3d5/2 → ǫf7/2 16.18 16.45

3d5/2 total 10.84

Channel Delay (as)

Energy scale Log Lin

2p threshold

EDF = 1, 711 eV

Eexp = 1, 678 eV

3d3/2 → ǫp1/2 -31.63 -28.19

3d3/2 → ǫp3/2 -13.80 -11.80

3d3/2 → ǫf5/2 27.56 25.87

3d3/2 total 17.86

3d5/2 → ǫp3/2 -33.14 -29.64

3d5/2 → ǫf5/2 19.49 17.69

3d5/2 → ǫf7/2 17.77 16.72

3d5/2 total 9.35

TABLE IV: Wigner time delays of various shells of Kr at
several inner-shell thresholds

Time delay (as)

Threshold 1s1/2 2p1/2 2p3/2

EDF, eV 14,413 1,765 1,711

Eexp, eV 14,326 1,730 1,678

Shell

4p3/2 2.02 3.28 1.65

4p1/2 2.26 -1.58 5.36

3d5/2 6.87 10.84 9.35

3d3/2 7.04 0.29 17.86

3p3/2 2.90 3.18 0.99

3p1/2 3.07 -2.40 5.35

2p3/2 3.07 8.35

2p1/2 2.95

C. Krypton

1. 3d shell near the 2p and 2p* thresholds

Photoionization of the 3d shell of Kr near the 2p and
2p∗ thresholds is remarkable as it displays the largest
photoelectron group delays and the net Wigner time de-
lays among all the noble gas atoms from Ne to Xe in the
present study. Examples of the photoionization phase
and its energy derivatives for the 3d3/2 and 3d5/2 sub-
shells of Kr near the 2p∗ threshold are shown in Fig. 9.
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The corresponding threshold time delays and their coun-
terparts near the 2p threshold are collected in Table III.
We see that some group delays are as large as 30 as and
the Wigner time delay of the 3d∗ shell near the 2p thresh-
old is close to 20 as. This result is quite remarkable as a
large atomic time delay is predicted at photon energies
in the hard x-ray regime. This delay results entirely from
inter-shell correlation and is not caused by the Coulomb

drag that affects slow photoelectrons near their ioniza-
tion threshold [15].
The compilation of the threshold time delays in Kr is

shown in Table IV where it is seen that shells other than
3d display modest time delays, not exceeding 10 as. The
respective threshold time delays in Xe (not shown) are
significantly smaller. Even the 3d delays in Xe are only
of the order of few attoseconds.
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FIG. 9: Upper left: Phase of the various 3d3/2 photoionization amplitudes of Kr near the 2p1/2 threshold: 3d3/2 → ǫp1/2 -
(red) filled circles, 3d3/2 → ǫp3/2 - (blue) asterisks, 3d3/2 → ǫf5/2 - triangles and the 3d3/2 amplitude summed over all final
channels - open squares. Upper right: Analytic fit using Eq. (20) shown with similarly colored solid lines and open squares
for the 3d3/2 Wigner time delay. Bottom left: The same as above, but for 3d5/2 → ǫp3/2 - (red) filled circles, 3d3/2 → ǫf5/2 -
(blue) asterisks, 3d5/2 → ǫf7/2 - triangles and the summed 3d5/2 amplitude - open squares. Bottom right: Analytic fit using
Eq. (20) shown with the similarly colored solid lines and open squares for the 3d5/2 Wigner time delay.

IV. SUMMARY AND CONCLUSIONS

In this work, we have demonstrated that Wigner time
delay of outer atomic shells is affected, sometimes quite
strongly, by correlation in the form of interchannel cou-
pling with inner-shell photoionization channels in the
vicinity of inner-shell thresholds. The phenomenology

of this effect is quite rich. The jumps of the time delay
near threshold can be quite small or quite large (as large
as 36 as). In addition, the jumps due to interchannel cou-
pling can be positive or negative. In other words, time
delays that are so far above thresholds that they would
have ordinarily gone to essentially zero, can be reacti-
vated to significant values near the inner-shell thresholds
owing to many-body interactions. Threshold time delay
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chronoscopy [21], thus, can be a significant tool in study-
ing these correlation phenomena.
The results presented here provide a road map for

experimental investigation of this phenomenology which
can be implemented using recently developed technology.
Attosecond streaking measurements can be expanded at
present to the soft-x-ray water window [8]. We hope that
with a rapid development of this technique, the most sig-
nificant effects predicted here will be within the experi-
mental reach in the near future. In addition, we have a
good mathematical model for the signs and magnitudes
of the various induced time delays, but not a good quan-
titative physical understanding of the phenomenon; but
we hope these results will stimulate others to provide a
physical model.
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