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New extensive calculations are reported for electron collision strengths, rate coefficients, and transitions prob-
abilities for a wide range of transitions in Fe II. The collision strengths were calculated in the close-coupling
approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in
connection with adjustable configuration expansions and semi-empirical fine-tuning procedure is employed for
an accurate representation of the target wave functions. The energy correction was also used in the scattering
calculations by adding to Hamiltonian matrices prior to transformation to intermediate coupling. The spin-orbit
interaction term was added to the final Hamiltonian matrices in scattering calculations. The close-coupling ex-
pansion contains 340 fine-structure levels of Fe II and includes all levels of the 3d64s, 3d54s2, 3d7, and 3d64p
configurations, plus a few lowest levels of the 3d54s4p configuration. The effective collision strengths are
obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities at electron
temperatures in the range from 102 to 105 K and are reported for all possible inelastic transitions between the
340 fine-structure levels. The present results are more extensive than the previous calculations and considerably
expand the existing data sets for Fe II, allowing a more detailed treatment of the available measured spectra from
different space observatories. Comparison with other calculations for collision rates and available experimental
radiative rates is used to place uncertainty bounds on our collision strengths and to assess the likely uncertainties
in the existing data sets.

PACS numbers: 34.80.Kw

I. INTRODUCTION

Accurate radiative and collision atomic data for iron-peak
elements are of great importance in the analysis and diagnos-
tics of a broad range of stellar and nebular spectra [1–5]. The
singly-ionized iron-peak elements are the dominant ionization
stage and there is a need of accurate data for many lines to
cover the broad metallicity ranges. The experimental atomic
data are scarce and usually limited to a small number of tran-
sitions. The computational laboratory astrophysics represents
a major source of such extensive high quality atomic data.

The Fe II ion is the most abundant of iron-peak elements
with a large number of lines in a broad wavelength region
from the infrared to ultraviolet and received extra special at-
tention for the theoretical and experimental studies of the tran-
sition and collision rates. The Fe II forbidden lines in the near
IR and mid IR band are prominent in the interstellar shocked
gas and nebulae [3, 4]. The Fe II lowest 16 levels can be
easily excited because of small excitation energies. The tran-
sitions between these levels give rise to lines in the IR wave-
length region in the 1 to 2.5 µm ground based observations.
The ratios of these lines provide excellent density diagnostics
to the ne = 103 − 105cm−3 emitting region. The uncertainty
in atomic data for the Fe II ion is the challenging limitation in
the interpretation of line intensities. Despite the increased ac-
tivities to produce atomic data of progressively larger size and
better accuracy, the current Fe II spectral models still remain
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of limited accuracy and predictions and observations disagree
by up to several factors in some cases.

The earlier theoretical works of increasing size and sophis-
tication include Baluja et al. [6], Berrington et al. [7], Pradhan
and Berrington [8], and Zhang and Pradhan [9]. Pradhan and
Berrington included 38 selected quartet and sextet terms of the
3d64s, 3d7, and 3d64p configurations in the non-relativistic
calculation to obtain collision strengths between these 38 LS
terms. They noted strong coupling between the terms of the
3d64s and 3d64p configurations. Later, based on the assump-
tion that the relativistic effects in Fe II are not very important
compared to electron-electron correlation effects Zhang and
Pradhan [9] used a pair coupling transformation to determine
collision strengths for the selected fine-structure transitions
from the 38 LS -state results of Pradhan and Berrington [8].
These data for a long time have been used for diagnostic of
astrophysical plasmas and they still can be found as recom-
mended atomic data for Fe II in the CHIANTI database [10].

Two additional separate R-matrix calculations have been
performed later by Bautista and Pradhan [11, 12] in order to
complement the Zhang and Pradhan [9] work by including
the low-lying doublet and sextet even parity states that were
excluded from previous computations. Their first calculation
includes the lowest 18 LS levels of Fe II, and the second cal-
culation includes additional five terms, resulting in a 23-state
LS -coupled approximation. Comparing the rate coefficients,
they estimated uncertainties to be about 30% for most of the
transitions considered. However, due to the omission of the
higher lying 3d64p levels these calculations can not be con-
sidered as consistent. The quite different rate coefficients ob-
tained from these three 38-state, 18-state, and 23-state models
indicate that convergence has not yet been achieved.
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A new set of sophisticated calculations for the electron scat-
tering on Fe II have been proposed by Burke et al. [13] to be
carried out at The Queen’s University of Belfast based on their
newly developed parallel R-matrix program PRMAT. They
expressed the confidence that the rapidly increasing power and
availability of parallel computers should enable converged ef-
fective collision strengths to be calculated for electron colli-
sion with open d-shell iron peak elements over the next several
years. As a part of this program, Ramsbottom et al. [14–16]
performed extensive LS -coupling R-matrix calculations using
the PRMAT codes to study the convergence of configuration-
interaction (CI) and close-coupling (CC) expansions in Fe II.

Their first model [14] included all 38 quartet and sextet
LS coupled states which can be formed from the three tar-
get configurations 3d64s, 3d7, and 3d64p and they analyzed
effective collision strengths for 112 quartet-to-sextet transi-
tions. A limited comparison is made with earlier theoretical
work and large differences have been found to occur at the
temperatures considered. In particular, it is found that the in-
clusion or omission of some (N + 1)-bound configurations in
the Hamiltonian matrices describing the collision process can
have a huge effect on the resulting effective collision strengths,
by up to a factor of four in some cases. This model was ex-
tended by Ramsbottom et al. [15] to include the additional
levels which arise from the 3d54s2 and 3d54s4p configura-
tions, giving 113 LS -coupled quartet and sextet target states.
They concluded that in order to obtain close to converged low-
energy partial wave collision strengths further 21 configura-
tion functions should be included in the CI expansion of the
target, incorporating two-electron excitations from the 3s and
3p shells to the 3d shell. This model was used by Ramsbot-
tom et al. [16] to generate total effective collision strengths for
1785 transitions in Fe II between the considered quartet and
sextet LS states, but they ignored all doublet states.

Later, Ramsbottom et al. [17, 18] performed a Breit-Pauli
R-matrix (BPRM) calculation by including 262 fine-structure
levels of the 100 LS terms belonging to the 3d64s, 3d7,
and 3d64p configurations in the CC expansion. The results
from the first calculation [17] are restricted to the transitions
among the lowest 16 levels of Fe II corresponding to the
3d64s 6D, 3d7 4F, 3d64s 4D, and 3d7 4P multiplets, whereas
the second calculation [18] included only the optically al-
lowed lines for transitions from the 3d64s and 3d7 even-parity
states to the 3d64p odd-parity levels. Their target expan-
sions included limited number of configurations, namely, the
main spectroscopic configurations plus additional correlation
effects incorporated via the single 3d64d configuration. The
big influence of the CI effects learned in the previous LS cal-
culations [14–16] were ignored here, probably due to big com-
putational efforts required to incorporate them in the Breit-
Pauli approach. These BPRM calculations show significant
differences with earlier calculations, however, they can not be
considered as complete or converged due to the limitations in-
dicated above.

Bautista et al. [19] calculated radiative transition and col-
lision rates for the forbidden transitions between the lowest
52 even parity levels of the 3d64s, 3d7, and 3d54s2 configura-
tions and used their data in spectral modeling of Fe II emission

in the infrared and optical regions and absorption in the UV
region. In these calculations, they used several available com-
puter codes to estimate uncertainties from the dispersion in
atomic data obtained in different models. The thermally aver-
aged collision strengths for forbidden transitions in Fe II have
been estimated to have uncertainties of about 50% or less for
stronger transitions, but much greater for the weaker transi-
tions reaching factors of two or more in some cases.

A general conclusion from the above short review is that not
a single available calculation has yet achieved convergence
so as to provide accurate atomic parameters. The problem is
mainly computational; the very large number of energy lev-
els and transitions involved in the spectrum requires big CC
expansions, whereas the accurate representation of the open
3d-shell target states requires extensive CI expansions. Each
calculation for such a complex atomic system as Fe II is a
compromise in the choice of scattering model and the target
representation depending on the available supercomputer allo-
cations and the codes used. Most target representations of Fe
II in previous calculations yield very inaccurate energies for
the excited terms of the system, mainly due to computational
restrictions on the target expansions. That in turn hampers
the accuracy of resonance structures which may provide dom-
inant contribution to the spin-forbidden or weak transitions.
All previous calculations were performed by employing es-
sentially the same method, namely, the widely used R-matrix
close-coupling code of the Belfast group. As pointed out by
Ramsbottom et al. [15], a tremendous challenge for electron
collision calculations of open-shell systems such as Fe II is
the accurate target description which is difficult to achieve
with standard CI procedures. The individual orbitals in the
3d64s, 3d7, 3d54s2, 3d64p, and 3d54s4p target configurations
are very term dependent. Hence, computer codes that require
a set of orthogonal one-electron orbitals, such as RMATRXI
and RMATRXII or their parallel extensions, can only account
for such term dependence by large CI expansions, involving
a number of specially designed pseudo-orbitals. In this case,
even experienced users need to consider careful balance of
the N-electron target structure and the (N+1)-electron colli-
sion problem.

Our B-spline R-matrix (BSR) method with nonorthogonal
orbitals [20] is an alternative approach, which has several ad-
vantages for complex target systems as Fe II. The use of term-
dependent, and therefore nonorthogonal, sets of one-electron
orbitals generally allows for a highly accurate target descrip-
tion with relatively smaller configuration expansions. It was
first illustrated in the non-relativistic benchmark calculations
for electron collisions with Fe II [21] where the flexibility of
the code allowed us to generate a target description of un-
precedented accuracy for collision calculations. The purpose
of the present work is to perform more elaborate and exten-
sive calculations for the electron scattering from Fe II by us-
ing highly accurate target wave functions and by including
fine-structure effects in the close-coupling expansions through
the Breit-Pauli Hamiltonian. The direct use of the Breit-Pauli
approach, however, is computationally not feasible for such
complicated system as Fe II due to very extensive configura-
tion expansions. The calculations, therefore, were carried out
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in two stages. First we consider the non-relativistic LS tran-
sitions between all states of the 3d64s, 3d7, 3d54s2, 3d64p,
and 3d54s4p target configurations giving rise to overall 261
LS terms. These data were then used to generate the Breit-
Pauli Hamiltonian matrix for the transitions between fine-
structure levels using the standard recoupling procedure. At
this stage, for more accurate description of the spin-orbit mix-
ing of different terms, the target LS energies were adjusted
to the experimental values using the fine-tuning procedure,
designed to represent the observed fine-structure splitting as
accurately as possible. This procedure is close to the fine-
tuning method which was successfully used by Hibbert and
co-workers [22, 23] for accurate calculations of the different
radiative rates in Fe II. The available computer allocations al-
lowed us to include 340 fine-structure levels of Fe II in the
final close-coupling expansion. This set includes all levels of
the 3d64s, 3d54s2, 3d7, 3d64p configurations, plus a few low-
est levels of the 3d54s4p configuration. Final set of effective
collision strengths includes the 57630 transitions between the
340 fine-structure levels.

II. COMPUTATIONAL METHODS

A. Target wave function calculations

Figure 1 shows the energy level diagram of lower part of
the Fe II spectrum considered in the present calculations. The
large number of possible terms resulting from the approxi-
mately half-open 3d shell, in combination with the near de-
generacy of the 3d7, 3d64s, 3d54s2 and other configurations,
result in very complex spectra that are strongly influenced by
configuration interaction. The electron correlation among the
outer 3d, 4s, and 4p electrons is also expected to be important.
The inclusion of the correlation effects requires considering at
least single and double promotions of the valence electrons to
the excited orbitals. In the case of the open 3d-shell, inclu-
sion of all important promotions leads to extremely large con-
figuration expansions and makes difficult to obtain accurate
wave functions within standard multi-configuration Hartree-
Fock (MCHF) or configuration-interaction methods.

Another complication arises from the term-dependence of
the valence orbitals, that slows down the convergence of the
multi-configuration expansions. An important aspect of the
present approach, which distinguishes it substantially from
nearly all other methods commonly used to describe electron-
atom collisions, is the possibility of using non-orthogonal
one-electron orbitals in the multi-configuration description of
the N-electron target states. As a result, accurate descrip-
tion of both the energy levels and oscillator strengths can be
achieved with more compact CI expansions. In traditional
methods with orthogonal set of one-electron orbitals, a similar
accuracy can, in principle, be achieved by very large expan-
sions using additional correlated pseudo-orbitals. In the cal-
culations of the Fe II target states, we tried to account for all
main correlation effects, while bearing in mind that the final
multi-configuration expansion still needs to be dealt with in
the subsequent scattering calculation with one more electron
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FIG. 1: Schematic diagram of the lower part of the Fe II spectrum.

to couple.
In the present work, we used the MCHF code of Froese

Fischer et al. [24] in combination with our CI code with
non-orthogonal orbitals to generate the target wave functions.
First, the inner 1s, 2s, 2p, 3s, and 3p orbitals were obtained
from a Hartree-Fock calculation of the ground state. Keeping
these orbitals frozen, we then generated the 3d, 4s, and 4p
valence orbitals specifically for each principal configuration
in the term-average approximation. The term-dependence of
the valence orbitals was found to be noticeable but not ex-
tremely strong, with maximum change of mean radius up to
10%. However, the corresponding corrections in the configu-
ration energies are around 0.2 Ryds, that makes the inclusion
of term dependence to be very important for accurate calcu-
lation of the term energies. The above spectroscopic orbitals
were supplemented with the 4l and 5l (l = 0−3) correlated or-
bitals. The correlation orbitals were also determined for each
principal configuration separately and were generated with the
MCHF program [24] for one specific term. These orbitals are
then used for all terms of a given configuration.

The final configuration expansions contain all most impor-
tant one- and two-electron excitations from the valence 3d, 4s,
and 4p orbitals of the principal configurations. Inclusion of all
possible promotions for the given case of open 3d-shell leads
to very large configuration expansions, with thousands indi-
vidual atomic configuration states differing in the intermedi-
ate terms. As illustrated in the recent calculations of oscillator
strengths [23], convergence of the multi-configuration expan-
sions in Fe II is very slow, resulting in the expansion with
tens of thousands of configurations. Such target expansions
can not be used in the scattering calculations. In the previous
scattering calculations discussed above it is not clear how the
specific target expansions were designed. Most likely these
calculations included only so many configurations as allowed
by the available computational resources. In the present ap-
proach, we attempted to include most important correlation
effects for the Fe II target states, and at the same time kept
the target expansions to the reasonable size. To do that, we
first analysed the extended target expansions which contains
all double promotions to determine the main correlation con-
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TABLE I: Main correlation contributions.

Main configuration Correlation configuration Contribution

3d64s 3d44d2
14s 0.0394

3d54p2
2 0.0288

3d54d14s 0.0284
3d44 f 2

1 4s 0.0254
3d54p24 f2 0.0215
3d65s3 0.0210

3d7 3d54d2
1 0.0467

3d54 f 2
1 0.0245

3d54p2
1 0.0240

3d64d1 0.0239

3d54s2 3d54p2
3 0.1808

3d54s5s3 0.0371
3d44d14s2 0.0336
3d34d2

14s2 0.0304
3d44s4p24 f2 0.0258
3d34 f 2

1 4s2 0.0236
3d44s4p2

2 0.0236
3d55s2

3 0.0234
3d54d2

3 0.0228
3d54s4d3 0.0211

3d64p 3d54p5s2 0.0502
3d44d2

14p 0.0397
3d65p3 0.0370
3d54d14p 0.0345
3d44 f 2

1 4p 0.0298
3d54 f25s2 0.0286
3d55s25p2 0.0240
3d54s25s2 0.0226
3d54d24 f2 0.0203
3d54d25p2 0.0196

3d54s4p 3d54s5p3 0.0497
3d54p34d3 0.0494
3d34d2

14s4p 0.0426
3d34 f 2

1 4s4p 0.0223
3d44p24 f2 0.0216
3d55s35p3 0.0182
3d54s4 f3 0.0180

figurations.

In Table I, we list main correlation configurations together
with their average mixing coefficients. The orbitals with addi-
tional subindex are the correlated orbitals from different non-
orthogonal sets. Note that the correlated orbitals differ con-
siderably from the corresponding spectroscopic orbitals and
have mean radii close to the valence 3d, 4s, and 4p orbitals
in the principal configurations. As seen from the table, the
correlation pattern for different principal configurations is dif-
ferent and cannot be considered on the same footing. It may
be noted that the major correlation corrections come from the
3d2 − 4d2 substitution, along with other double promotions
3d2−4p2 and 3d2−4 f 2. Such configurations were only partly

included in previous calculations. For example, Ramsbottom
et al. [16] and Bautista et al. [19] included 3d54d2 configura-
tions, but none of the 3d44d24s or 3d34d24s2 configurations.
This may bring an imbalance in the relative position of terms.
The above double substitution reflects the 3d inner-shell cor-
relation, which is expected to be different for the 3d64s, 3d7,
and 3d54s2 principal configurations due to different number
of 3d electrons. Ramsbottom et al. [16] also found large con-
tribution from double promotion of the more deep 3p shell.
This promotion reflects the 3p inner-shell correlations which
is expected to be the same for all considered states and thereby
would not effect the relative position of terms. For this reason,
we did not include such configurations in the present expan-
sions.

As seen from Table I, we additionally found that the 3d−4 f
promotion also contributes significantly to correlation effects.
No such configurations were included in the previous calcu-
lations. Note that 4 f correlated orbitals have the mean radius
close to the 3d orbital, and it explains its large influence. For
the 3d64s states it is also important to include the 3d − 4s
inter-shell correlation, that reflects in the large contributions
of the 3d54p2 and 3d54p4 f configurations, which corresponds
to the dipole interaction 3d4s − 4p2 and 3d4s − 4p4 f , re-
spectively. The same concerns the 3d − 4p inter-shell cor-
relation in the the 3d64p states. It reflects in the large con-
tribution of the 3d54p5s configuration that corresponds to the
3d4p−4p5s dipole interaction. The 3d64s2 states show strong
mixing with the 3d64p2 configuration, and for the 3d64s4p
states the valence correlation between two outer electrons re-
flects in the large contribution of the 3d54s5p and 3d54p4d
configurations.

The above analysis allows us to choose the most important
configurations which should be included in the final target ex-
pansions and, at the same time, to keep these expansions of
manageable size, appropriate for the scattering calculations.
We chose to keep all configurations with mixing coefficients
more than ∼ 0.025. This resulted in CI expansions of size
from 200 to 400 for each LS target state, suitable for the scat-
tering calculations with the modern computational facilities.
At this stage we also applied first semi-empirical correction
using the above cut-off parameter to adjust the theoretical LS
energies to experiment obtained by taking a weighted average
over the fine-structure levels [25]. Due to different conver-
gence of different terms, it required to vary cut-off parameters
in the range from 0.015 to 0.030 for the different terms. With
this procedure, we managed to reach agreement with observed
LS energies of less than 0.1 eV for all included states.

As the next step, we obtained the J-dependent target states
by diagonalizing the Breit-Pauli Hamiltonian on the basis of
multi-configuration LS wave functions described above, using
the configuration-interaction procedure and non-orthogonal
orbitals [26, 27]. The target expansion, for total angular mo-
mentum J and parity π have the form

ΨβJπ =
∑
αLS

C(βJπ;αLS π)ΦαLS π. (1)

We included all one-electron Breit-Pauli operators, and no
cut-off factor has been applied at this stage. Final target
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expansions contain on an average 1,000 configurations and
still can be used in the collision calculations with available
computational resources. Note that functions ΦαLS π in the
above equation are the multi-configurational expansions from
the LS calculations, where coefficients for individual config-
uration were frozen. The diagonalization of the the Breit-
Pauli atomic Hamiltonian provides then only the coefficients
C(βJπ;αLS π), which describe the spin-orbit mixing of differ-
ent LS terms. Accurate representation of the term mixing is
very important for accurate description of transitions between
the fine-structure levels. This mixing crucially depends both
on the spin-orbit interaction and the energy separation be-
tween the LS states. In order to improve the term mixing, we
made additional semi-empirical corrections to the energies of
the ΦαLS π functions in such a way that the final fine-structure
LS J levels agree with the observed levels as closely as possi-
ble. These corrections are relatively small (less than 0.1 eV)
but considerably improve the agreement with observed spec-
trum of the Fe II discussed below. Such fine-tuning of the LS
terms is frequently used in the structure calculations [22, 23]
and aims to improve the description of the forbidden fine-
structure transitions which crucially depends on the mixing
coefficients.

B. Collision calculations

For the scattering calculations we employed the parallelized
version of the BSR code [20] which is based on the R-matrix
method. The BSR code was substantially modified and ex-
tended for the present calculations. The distinctive feature of
the code is the use of B-splines as a universal basis to repre-
sent the scattering orbitals in the inner region, r ≤ a. Hence,
the R-matrix expansion in this region takes the form

Ψk(x1, . . . , xN+1) =

A
∑

i j

Φ̄i(x1, . . . , xN ; r̂N+1σN+1) r−1
N+1 B j(rN+1) ai jk

+
∑

i

χi(x1, . . . , xN+1) bik . (2)

Here A denotes the antisymmetrization operator, Φ̄i are the
channel functions while the splines B j(r) represent the contin-
uum orbitals. The principal advantage of B-splines is that they
form an effectively complete basis, and hence no Buttle cor-
rection to the R-matrix is needed in this case. The amplitudes
of the wave functions at the boundary, which are required for
the evaluation of the R-matrix, are given by the coefficient of
the last spline, which is the only spline with nonzero value at
the boundary.

The other important feature of the present code concerns the
orthogonality requirements for the one-electron radial func-
tions. The χi function in the above equation are additional
(N+1)-electron bound states. In the standard R-matrix calcu-
lations [28], the latter are included one configuration at a time
to ensure completeness of the total trial wave function and to
compensate for orthogonality constraints imposed on the con-
tinuum orbitals. The use of non-orthogonal orbitals allows

us to reduce or even to avoid the introduction of additional
(N + 1)-electron terms in the R-matrix expansion. We impose
only limited orthogonal conditions to the continuum orbitals.
In the present calculations we only require the orthogonality
of continuum orbitals to the bound orbitals in the filled 1s,
2s, 2p, 3s, and 3p shells. No orthogonality constraints to the
spectroscopic excited orbitals or the correlated orbitals were
imposed. Thus the (N + 1)-electron configurations χi can be
completely avoided. It allows us to use much more extensive
multi-configuration expansions for target states and avoid the
pseudo-resonance structure which usually appears in the stan-
dard R-matrix calculations due to inconsistency of the scatter-
ing and bound parts of the close-coupling expansions.

The BSR code previously was applied for several iron
ions [29–31] in the direct Breit-Pauli mode. That means the
calculations of collision strengths in the intermediate coupling
by including fine-structure effects directly in the solutions of
scattering equations. In the present case of Fe II, such direct
Breit-Pauli calculations are not possible due to extensive tar-
get expansions and big number of scattering channels. There-
fore, we chose to perform calculations in two stages, first the
LS calculations for transitions between LS terms, and than a
transformation of the Hamiltonian matrix in the inner region
to the intermediate coupling. This scheme provides the same
level of accuracy, but avoids to repeat calculations of matrix
elements for non-relativistic Hamiltonian for the different J-
values.

In the first step, we obtained the non-relativistic Hamilto-
nian matrices in the inner region for the close-coupling equa-
tion containing all LS terms of the 3d64s, 3d54s2, 3d7, 3d64p,
and 3d54s4p configurations. Overall it includes 261 LS lev-
els and the CC expansions for the e-Fe II scattering problem
contains up to 818 different scattering channels in the LS -
coupling scheme. We consider all partial waves up to L =

50 and total spin S = 0 - 3, with overall number of partial
waves equals 510. The continuum orbitals in the internal re-
gion with radius a = 25 a0 were represented by 78 B-splines of
order 8. It leads to the Hamiltonian matrices with dimensions
up to 60,000. The characteristic feature of the present Fe II
calculation is the large configuration expansions for the total
scattering functions, and extremely large number of different
two-electron matrix elements. Partly it is due to open 3d-shell
configurations, but main complication comes from the huge
number of overlap factors due to the non-orthogonal orbitals.
It required further optimization of the code for the determina-
tion of the angular coefficients and subsequent construction of
the Hamiltonian matrix. In particular, the previous standard
procedure to calculate first the angular coefficient using the
BSR BREIT program and then set up the Hamiltonian matrix
using the BSR MAT program cannot be applied in the present
case due to large size of the intermediate files of the angular
coefficients that may reach several hundreds of Gb. We com-
bined these two programs in one, BSR BMAT, to calculate the
angular coefficients for given configurations and then dynam-
ically added the corresponding integrals to the Hamiltonian
matrix. This procedure treats the Hamiltonian matrix in parts,
and adds to the flexibility of performing calculations. The cal-
culation of one partial wave required from 1 to 24 hours on the
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supercomputer with 1,000 processors.
Having calculated the LS Hamiltonian matrix, the Breit-

Pauli matrices have been then constructed using the transfor-
mation to the intermediate coupling scheme. It was performed
in three steps. First, we modified the LS Hamiltonian matri-
ces according to the fine-tuning of LS term energies discussed
above. In case of the orthogonal one-electron orbitals it is a
trivial procedure which is reduced just to modification of the
diagonal matrix elements. In case of non-orthogonal orbitals,
the Shrödinger equation reduces to the generalized eigenvalue
problem

HC = S CE, (3)

where S is overlap matrix. Let us denote the energy correc-
tions by the diagonal matrix D. As discussed in the BSR de-
scription [20], the above matrix equation is then transformed
to

(H + S 1/2DS 1/2)C = S CE, (4)

where the final correction is defined by the S 1/2DS 1/2 term.
This correction was added to Hamiltonian matrix in the inter-
nal region for all partial waves.

In the next step, we transform the Hamiltonian matrices in
the internal region to the jK coupling using the equation

H(αiLiS iJiliKiJ;α f L f S f J f l f K f J)

=
∑
LS

TLS ,JiKi H(αiLiliLS iS ;α f L f l f LS f S ) TLS ,J f K f , (5)

where the transformation coefficient is given by the following

TLS ,JiKi = 〈[(Lili)L, (S is)S ], J|[(LiS i)Ji, li]Ki, s, J〉

= (−1)(s−li+J−Ji)
√

(2L + 1)(2S + 1)(2Ji + 1)(2Ki + 1){
L S J
s Ki S i

}{
Li li L
Ki S i Ji

}
. (6)

Now we can use term-coupling coefficients from equation 1
to transform Hamiltonian matrices in the jK coupling to full
intermediate coupling

H(βiJiliKiJ; β f J f l f K f J) =
∑

αiLiS iα f L f S f

C(βiJi;αiLiS i)

H(αiLiS iJiliKiJ;α f L f S f J f l f K f J) C(βiJi;αiLiS i). (7)

This part of calculations was performed with the program
BSR RECOUP which is a new program in the BSR complex.

In the last third step, the final Hamiltonian matrices were
augmented by adding the spin-orbit interaction term related
to the scattering electron. Thus the above scheme is com-
pletely equivalent to the direct Breit-Pauli calculations. The
advantage is its flexibility. Computationally, this scheme al-
lows us to divide the full calculations in the moderate three
steps and consider much more extensive models as used in the

Breit-Pauli calculations for simpler atomic systems. It also
allows us to avoid repeating calculations of the same LS ma-
trix elements for the different J. The above scheme also al-
lows us to apply the energy fine-tuning of the LS terms, that
in turn improves the description of the target spin-orbit mix-
ing which is important for spin-forbidden transitions between
fine-structure levels of Fe II. It was an important reason in
choosing this computational scheme.

Our final intermediate-coupling model contains 340 fine-
structure levels of Fe II and includes all levels of the 3d64s,
3d54s2, 3d7, 3d64p configurations, plus a few lowest levels of
the 3d54s4p configuration. This model will be afterwards de-
noted as BSR-340. At present, we are not able to include all
716 fine-structure levels for the above configurations, mainly
due to the computational reasons. Direct numerical calcula-
tions were performed for 82 partial waves, with total elec-
tronic angular momentum up to J = 40, for both even and odd
parities. It requires inclusion of all LS partial waves up to L =

50. The maximum number of channels in a single partial wave
was 2354. With a basis size of 78 B-splines, this required the
diagonalization of matrices with dimensions up to 160,000.
The calculations were carried out with parallelized versions
of the BSR complex, using supercomputers with distributed
memory. Such extensive calculations were made possible by
the NSF XSEDE grant.

The asymptotic solutions in the outer region and subse-
quently the collision parameters were calculated with the par-
allel version of the STGF program [32]. In the resonance re-
gion for impact energies below the excitation energy of the
highest level included in the CC expansion, we used a fine en-
ergy step of 10−4 Ryds to properly map resonance structures.
For energies above the highest excitation threshold included in
the CC expansion, the collision strengths vary smoothly, and
hence we chose a coarser electron energy step of 10−2 Ryds.
We calculated collision strengths up to 10 Ryds, which is
enough to achieve the asymptotic region. Altogether, 12,000
energies for the colliding electron were considered. For even
higher energies, we extrapolated collision strengths Ω using
the well-known asymptotic energy dependence of the various
types of transitions. The included partial waves are sufficient
to achieve convergence for forbidden transitions at all ener-
gies. Additional partial wave contributions are needed for
high electron energies in case of the dipole-allowed transi-
tions. These contributions were estimated with a top-up pro-
cedure based on the Coulomb-Bethe method or on geometric
series approximation.

To obtain effective collision strengths Υ(Te), we convoluted
the collision strength Ω with a Maxwellian distribution for
electron temperature Te, i.e.,

Υi− j(Te) =

∫ ∞

Eth

dE Ωi− j(E) exp
(

E − Eth

kTe

)
. (8)

Here Eth is the i − j transition energy and k is the Boltzmann
constant. We calculated Υ for temperatures from 102 to 105 K.
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TABLE II: Excitation Level Energies and Lifetimes for Fe II.

Level Energy (eV) Lifetime (s)
Index Configuration Term J Present NISTa diff. Present B2016b HD2011c Expt.

1 3d6(5D)4s a 6D 9/2 0.00000 0.00000 0.000
2 7/2 0.04744 0.04771 0.000 4.67 × 102 4.72 × 102 4.67 × 102

3 5/2 0.08244 0.08278 0.000 6.35 × 102 6.37 × 102 6.33 × 102

4 3/2 0.10658 0.10695 0.000 1.39 × 103 1.39 × 103 1.39 × 103

5 1/2 0.12077 0.12114 0.000 5.28 × 103 5.29 × 103 5.29 × 103

6 3d7 a 4F 9/2 0.22723 0.23217 -0.005 3.87 × 104 1.47 × 104 7.06 × 103

7 7/2 0.30092 0.30130 0.000 1.70 × 102 1.69 × 102 1.66 × 102

8 5/2 0.35525 0.35186 0.003 2.53 × 102 2.51 × 102 2.48 × 102

9 3/2 0.39264 0.38652 0.006 7.02 × 102 6.94 × 102 6.84 × 102

10 3d6(5D)4s a 4D 7/2 0.98570 0.98633 -0.001 8.12 × 101 6.76 × 101 7.12 × 101

11 5/2 1.04058 1.04047 0.000 8.88 × 101 7.25 × 101 7.70 × 101

12 3/2 1.07705 1.07624 0.001 1.00 × 102 7.94 × 101 8.60 × 101

13 1/2 1.09811 1.09686 0.001 1.08 × 102 7.94 × 101 9.24 × 101

14 3d7 a 4P 5/2 1.66597 1.67062 -0.005 3.03 × 101 2.00 × 101 1.91 × 101

15 3/2 1.69561 1.69526 0.000 3.46 × 101 2.20 × 101 2.10 × 101

16 1/2 1.72941 1.72398 0.005 3.48 × 101 2.20 × 101 2.10 × 101

17 3d7 a 2G 9/2 1.96117 1.96449 -0.003 4.47 4.81 3.98
18 7/2 2.03119 2.02955 0.002 8.15 8.85 7.25
19 3d7 a 2P 3/2 2.27492 2.27643 -0.002 5.71 5.15 4.54
20 1/2 2.34326 2.34166 0.002 9.85 9.01 7.89
21 3d7 a 2H 11/2 2.52034 2.52187 -0.002 5.67 × 101 6.67 × 101 5.12 × 101

23 9/2 2.58197 2.57959 0.002 1.40 × 101 1.65 × 101 1.28 × 101

22 3d7 a 2D 5/2 2.53930 2.54378 -0.004 2.33 2.30 1.89
26 3/2 2.64821 2.64186 0.006 1.74 1.77 1.50
24 3d6(3P)4s b 4P 5/2 2.58690 2.58266 0.004 9.67 × 10−1 8.62 × 10−1 8.56 × 10−1

30 3/2 2.70529 2.70435 0.001 7.78 × 10−1 6.99 × 10−1 6.88 × 10−1

31 1/2 2.78459 2.77846 0.006 7.08 × 10−1 6.62 × 10−1 6.26 × 10−1

25 3d6(3H)4s a 4H 13/2 2.63882 2.63486 0.004 2.19 1.83 2.10
27 11/2 2.65744 2.65703 0.000 2.34 1.89 2.24
28 9/2 2.67312 2.67578 -0.003 2.46 2.04 2.33
29 7/2 2.68694 2.69193 -0.005 2.61 2.25 2.49
32 3d6(3F)4s b 4F 9/2 2.80250 2.80665 -0.004 9.00 × 10−1 9.26 × 10−1 8.30 × 10−1

33 7/2 2.82671 2.82812 -0.001 1.06 1.08 9.87 × 10−1

34 5/2 2.84584 2.84412 0.002 1.33 1.33 1.24
35 3/2 2.86020 2.85552 0.005 1.72 1.66 1.61
36 3d54s2 a 6S 5/2 2.89310 2.89102 0.002 2.25 × 10−1 2.41 × 10−1 2.33 × 10−1 0.23(3)d

37 3d6(3G)4s a 4G 11/2 3.15197 3.15277 -0.001 9.34 × 10−1 9.09 × 10−1 9.60 × 10−1 0.75(1)e

39 9/2 3.20112 3.19945 0.002 8.76 × 10−1 8.47 × 10−1 8.62 × 10−1

40 7/2 3.22278 3.22131 0.001 8.60 × 10−1 7.63 × 10−1 8.64 × 10−1

41 5/2 3.22964 3.23046 -0.001 8.74 × 10−1 7.58 × 10−1 8.75 × 10−1 0.65(2)e

38 3d6(3P)4s b 2P 3/2 3.19432 3.19725 -0.003 1.71 1.87 1.46
44 1/2 3.34251 3.33923 0.003 1.39 1.52 1.20
42 3d6(3H)4s b 2H 11/2 3.24671 3.24469 0.002 4.18 5.75 3.71 3.8 (3)e

43 9/2 3.26469 3.26733 -0.003 9.64 1.33 × 101 1.16 × 101

45 3d6(3F)4s a 2F 7/2 3.38551 3.38662 -0.001 1.76 1.77 1.52
46 5/2 3.42483 3.42449 0.000 2.91 2.90 2.53
47 3d6(3G)4s b 2G 9/2 3.76784 3.76770 0.000 3.94 3.42 3.49
48 7/2 3.81417 3.81431 -0.000 4.09 3.52 3.63
49 3d6(3D)4s b 4D 1/2 3.88885 3.88870 -0.000 6.32 × 10−1 5.92 × 10−1 6.27 × 10−1 0.54(3)e

50 3/2 3.88836 3.88919 -0.000 6.38 × 10−1 5.99 × 10−1 6.38 × 10−1

51 5/2 3.89333 3.89161 0.002 6.31 × 10−1 5.92 × 10−1 6.34 × 10−1

52 7/2 3.90676 3.90342 0.003 5.75 × 10−1 5.46 × 10−1 5.78 × 10−1 0.53(3)d

53 3d7 b 2F 5/2 3.94353 3.94416 -0.001 3.32 2.50
54 7/2 3.96910 3.96738 0.002 2.63 2.13
55 3d6(1I)4s a 2I 13/2 4.07746 4.07606 0.001 2.61 2.38
56 11/2 4.07887 4.08031 -0.001 3.19 2.91
57 3d6(1G)4s c 2G 9/2 4.14972 4.14932 0.000 9.84 × 10−1 7.30 × 10−1

58 7/2 4.15387 4.15363 0.000 1.03 6.58 × 10−1

59 3d6(3D)4s b 2D 3/2 4.46916 4.47910 -0.010 7.71 × 10−1 6.48 × 10−1

60 5/2 4.50381 4.49479 0.009 6.12 × 10−1 5.13 × 10−1
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TABLE II: continued.

Index Configuration Term J Present NISTa diff. Present B2016b HD2011c Expt.
61 3d6(1S )4s a 2S 1/2 4.61565 4.61559 0.000 5.68 × 10−1 5.19 × 10−1

62 3d6(1D)4s c 2D 5/2 4.72457 4.73176 -0.007 6.45 × 10−1 6.59 × 10−1

63 3/2 4.74727 4.73799 0.009 5.76 × 10−1 5.65 × 10−1

64 3d6(5D)4p z 6Do 9/2 4.76109 4.76831 -0.007 3.17 × 10−9 3.68 × 10−9(7)f

65 7/2 4.79029 4.79324 -0.003 3.19 × 10−9 3.67 × 10−9(9)
66 5/2 4.81801 4.81790 0.000 3.20 × 10−9 3.69 × 10−9(5)
67 3/2 4.83953 4.83702 0.003 3.21 × 10−9 3.73 × 10−9(7)
68 1/2 4.85299 4.84894 0.004 3.21 × 10−9 3.68 × 10−9(11)
69 3d6(5D)4p z 6Fo 11/2 5.19807 5.20338 -0.005 2.58 × 10−9 3.20 × 10−9(5)
70 9/2 5.21950 5.22157 -0.002 2.63 × 10−9 3.28 × 10−9(4)
71 7/2 5.23748 5.23673 0.001 2.65 × 10−9 3.25 × 10−9(6)
72 5/2 5.25162 5.24885 0.003 2.66 × 10−9 3.30 × 10−9(5)
73 3/2 5.26140 5.25709 0.004 2.67 × 10−9 3.45 × 10−9(12)
74 1/2 5.26713 5.26187 0.005 2.68 × 10−9

75 3d6(5D)4p z 6Po 7/2 5.29210 5.28895 0.003 2.93 × 10−9 3.71 × 10−9(4)
76 5/2 5.36066 5.36090 -0.000 2.91 × 10−9 3.75 × 10−9(10)
77 3/2 5.40511 5.40831 -0.003 2.89 × 10−9 3.70 × 10−9(12)
78 3d6(5D)4p z 4Fo 9/2 5.48707 5.48414 0.003 3.29 × 10−9 3.72 × 10−9(10)
80 7/2 5.55079 5.54877 0.002 3.14 × 10−9 3.59 × 10−9(10)
85 5/2 5.58996 5.58920 0.001 3.16 × 10−9 3.55 × 10−9(8)
87 3/2 5.61459 5.61522 -0.001 3.20 × 10−9

79 3d6(5D)4p z 4Do 7/2 5.50965 5.51071 -0.001 2.74 × 10−9 2.97 × 10−9(4)
81 5/2 5.55187 5.55261 -0.001 2.76 × 10−9 2.90 × 10−9(6)
84 3/2 5.58449 5.58477 -0.000 2.74 × 10−9 2.91 × 10−9(9)
86 1/2 5.60521 5.60489 0.000 2.69 × 10−9

88 3d6(5D)4p z 4Po 5/2 5.82516 5.82322 0.002 3.20 × 10−9 3.27 × 10−9(6)
89 3/2 5.87575 5.87559 0.000 3.21 × 10−9 3.23 × 10−9(9)
90 1/2 5.90427 5.90488 -0.001 3.21 × 10−9

100 3d5(6S )4s4p z 8Po 5/2 6.48856 6.48435 0.004 7.57 × 10−6

101 7/2 6.51981 6.51944 0.000 5.27 × 10−6

102 9/2 6.56098 6.56697 -0.006 7.60 × 10−5

138 3d5(6S )4s4p y 6Po 3/2 7.69120 7.68391 0.007 4.19 × 10−9 3.90 × 10−9(20)g

139 5/2 7.69997 7.69310 0.007 4.05 × 10−9 3.80 × 10−9(20)
145 7/2 7.70479 7.70830 -0.004 3.79 × 10−9 3.65 × 10−9(20)

References. a NIST; b Bautista et al. [19]; c Deb and Hibbert [23]; d Rostohar et al. [33]; e Gurell et al. [34]; f Schnabel et al. [35];
g Li et al. [36].

III. RESULTS AND DISCUSSION

A. Target energies and radiative parameters

Table II compares the calculated target excitation energies
with the experimental values. Experimental excitation ener-
gies are taken from the NIST compilation [25] where possible,
but for some of the higher lying levels no observed values are
available. Note that the NIST database presents the excitation
energies with accuracy up to 9 significant digits. Full list of
levels included in the present scattering calculations are given
in the Supplemental Material[37]. As in the NIST compila-
tion, the levels in the table are ordered according to their LS
terms. The energy level position is defined by the index given
in the first column. This index will be referred to in following
discussion to denote a particular transition. The present exci-
tation energies agree closely with experimental energies, the
difference for most levels is less than 0.01 eV. The order of the
levels also agree with the observed spectrum for most of the
levels, with the first different ordering is detected only for the

level 106. The agreement with the experimental energy lev-
els is considerably better than in any other previous scattering
calculations for Fe II, due to the semi-empirical fine-tuning
procedure discussed above. Our fine-tuning procedure is de-
signed not just to get close agreement with observed energies,
but this procedure also includes all strong CI effects and leads
to better spin-orbit term mixing.

The radiative data, along with collision strengths, are the
important part of the plasma modeling. The Fe II spectrum
contains many metastable levels. They decay to lower lev-
els only via forbidden electric quadrupole (E2) and magnetic
dipole (M1) transitions. Table III contains present results for
the line strengths, oscillator strengths, and decay probabili-
ties both for dipole-allowed (E1) and dipole-forbidden (M1
and E2) transitions between all levels included in our scatter-
ing calculations. These results can be used to estimate the
lifetimes of the excited levels. Comparison of the present life-
times with available experimental values and the most recent
theoretical calculations is given in Table II.

First we discuss the low-lying even-parity metastable states.
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TABLE III: Line Strengths, Oscillator Strengths, and Transition Probabilities for E1, E2, and M1 Transitions in Fe II.

i k Type λ(Å) S fik Aki(s−1)

1 2 E2 259883.22 3.30 3.15 × 10−15 3.89 × 10−10

1 2 M1 259883.22 1.12 × 101 1.74 × 10−8 2.14 × 10−3

1 3 E2 149771.44 9.02 × 10−1 4.51 × 10−15 2.23 × 10−9

1 6 E2 53401.69 1.74 × 10−2 1.92 × 10−15 4.49 × 10−9

1 6 M1 53401.69 1.34 × 10−3 1.01 × 10−11 2.37 × 10−5

1 7 E2 41149.94 4.43 × 10−3 1.07 × 10−15 5.26 × 10−9

1 7 M1 41149.94 1.59 × 10−4 1.57 × 10−12 7.71 × 10−6

1 8 E2 35236.32 3.40 × 10−4 1.30 × 10−16 1.17 × 10−9

1 10 E2 12570.21 7.06 × 10−3 5.97 × 10−14 3.15 × 10−6

1 10 M1 12570.21 3.17 × 10−3 1.02 × 10−10 5.38 × 10−3

1 64 E1 2600.17 2.39 × 101 2.79 × 10−1 2.75 × 108

1 65 E1 2586.65 6.84 8.03 × 10−2 1.00 × 108

1 69 E1 2382.76 3.11 × 101 3.96 × 10−1 3.88 × 108

1 70 E1 2374.46 3.17 4.05 × 10−2 4.80 × 107

1 71 E1 2367.59 2.60 × 10−2 3.33 × 10−4 4.96 × 105

1 75 E1 2344.21 1.16 × 101 1.50 × 10−1 2.27 × 108

1 78 E1 2260.78 1.72 × 10−1 2.31 × 10−3 3.02 × 106

1 79 E1 2249.88 1.34 × 10−1 1.81 × 10−3 2.98 × 106

1 80 E1 2234.45 1.40 × 10−3 1.90 × 10−5 3.17 × 104

The comprehensive comparison of the lifetimes for the first
52 levels in Fe II has been recently provided by Bautista
et al. [19]. His recommended values are based on the analy-
sis of data obtained from different computational models. The
lifetimes of Deb and Hibbert [23] are based on a large-scale CI
calculation of the M1 and E1 transitions among the levels be-
longing to 3d64s, 3d7, and 3d54s2 configurations. They used
very extensive CI expansions, including the 3s and 3p electron
promotions, and they also applied semi-empirical corrections
to the diagonal elements of the Hamiltonian matrix so that the
energy eigenvalues matched experimental energy differences.
To estimate the accuracy of lifetimes for the metastable levels,
Fig. 2 displays the ratios of lifetimes for the lowest 63 levels
in Fe II. As seen from the figure, most of the lifetimes agree,
with a few exceptions, within 20%, with average difference
being about 12%. The dispersion between lifetimes obtained
in different models can serve as an uncertainty indicator, how-
ever, further analysis is needed for the individual levels and
transitions.

The biggest difference was found for the level 3d7 4F9/2,
but there is close agreement for other J-levels of this term.
It can be explained by the fact that the lifetime for the
4F9/2 level is mainly determined by a single M1 transition,
3d7 4F9/2 − 3d64s 4D9/2, to the ground state. For the higher
4F7/2,5/2,1/2 levels, the lifetime is determined by the M1 tran-
sitions within a multiplet. The dipole M1 matrix elements do
not involve the radial functions, and M1 transition rates within
a multiplet depend only on the energy difference and the lead-
ing configuration coefficient. For this reason, most calcula-
tions provide close results for spectroscopically pure states,
where the leading coefficient is close to unity. For transitions
between levels from different LS states, the rates are strongly
dependent on the mixing between different LS terms, usually

on rather small CI coefficients in the wave functions for the
two levels. These coefficients strongly depend on the model,
and the different methods for such transitions give very differ-
ent results, that even differ by several orders of magnitude.

For other states presented in the Table II, the difference
between lifetimes mainly depend on the LS term and con-
figuration mixing, and to the lesser extent on the J-value.
It indicates the importance of configuration mixing and cor-
rect energy difference, whereas the spin-orbit mixing inside
the given multiplet is approximately the same. The large
difference (around 35%) was also found for the 3d7 4P and
3d6(3P)4s 2H levels. The lifetimes of the 3d7 4P levels are
mainly determined by the E2 transitions to the lower 3d7 4F
states. Because the matrix elements here are defined by the
leading configurations with coefficients close to unity, the dif-
ferences between calculations are most likely due to the dif-
ferent values for the quadrupole radial integrals. The radial in-
tegrals, in turn, depend on the 3d orbital. In the present calcu-
lations we use the configuration-dependent 3d orbitals which
include the corresponding relaxation effects. The lifetimes of
the 3d6(3P)4s 2H levels are also mainly defined by the E2
transitions to the 3d7 4P levels due to large admixture of the
4G term. In this case, the spin-orbit interaction plays the de-
cisive role and the differences between calculations are again
due to the differing values of the term-mixing coefficients. All
calculations agree with available experimental values within
25%, with the dispersion between theory and experiment be-
ing on the same level as the dispersion of lifetimes obtained
in different models.

Comparison of the radiative rates for transitions between
individual levels provides more detailed information about
agreement between existing data sets. Comparison with the
recent CIV3 calculation [23] is given in Fig. 2, for all forbid-
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FIG. 2: Left panel: Comparison of lifetimes for the first 63 even-parity metastable levels in Fe II; red circles - Deb and Hibbert [23], black
squares - Bautista et al. [19], circles with error bars - experimental data [33–36]. Right panel: Comparison of the present radiative rates for the
forbidden E2 and M1 transitions with the CIV3 calculation by Deb and Hibbert [23].

den E2 and M1 transitions between the first 63 metastable lev-
els in Fe II. Overall good agreement was found for the stronger
lines with A-values bigger than 10−2 s−1, where radiative rates
are estimated to be accurate within 20-30%, or better. As seen
from the figure, the weaker transition rates are much less re-
liable. Both our and CIV3 calculations use the experimental
energies, not only for transition energies, but also to enhance
the accuracy of the CI mixing coefficients in the wave func-
tions through the fine-tuning procedure. However, dispersion
between individual radiative rates increases considerably as
their absolute values decrease, to several orders of magnitude.
The weak transitions are usually driven by coupling with other
configurations or small term admixing. In order to obtain the
accurate radiative rate for such transitions one needs to check
the convergence in each individual case.

Lifetimes of the higher levels with index 63 and more are
defined by strong electric-dipole E1 transitions. Compari-
son with the experimental data in the Table II shows that the
present calculations reproduce these lifetimes within 10-25%.
The same accuracy may be expected for the strong E1 radia-
tive rates. There is a huge number of different experimental
measurements and theoretical calculations for the individual
E1 transitions. Most of them are presented in the NIST criti-
cal compilation. Overall comparison with the existing data is
out of scope of the present work. Our main goal here is the
calculation of scattering parameters. Note that cross sections
for the dipole-allowed transitions at high electron energies are
directly proportional to the oscillator strengths, whereas the
main contribution to the rate coefficient for the weak spin-
forbidden transitions comes from the resonance excitation. In
order to illustrate the accuracy of our A-values for the indi-
vidual E1 transitions, Table IV compares our radiative rates
with the selected experimental data taken from the most recent
measurements [35]. They report absolute transition probabil-
ities of 140 Fe II lines in the wavelength range 220-780 nm,
with overall uncertainties estimated to be 6% for the strong

and up to 26% for the weak transitions. This large set of
experimental data can be used for a reliability check of the-
oretical data. As seen from the table, there is a good agree-
ment in the limits of 25% between experiment and theory
for the strong spin-allowed transitions with A-values greater
than 107 s−1. Agreement with weaker lines is more scattered.
Weak lines are usually related to the spin-forbidden or two-
electron transitions, and depend strongly on the configuration
and term mixing. The term mixing in our calculations are han-
dled with our fine-tuning process. As seen from the table, in
most cases it results in an accuracy of 20-50% for transitions
with A-values greater than 105 s−1. For weaker transitions
the disagreement may reach several orders of magnitude. We
omit such transitions from comparison because this compari-
son will not provide any useful information.

The above comparison of radiative rates and lifetimes with
experimental values is given primarily to illustrate the accu-
racy of the present target wave functions. We illustrated that
our target states accurately reproduce the strong E1 as well
as M1 and E2 transitions in Fe II. Note that our target ex-
pansions are restricted in size to keep further scattering cal-
culations manageable. Further improvement of the accuracy
of radiative data, especially for the weaker lines, requires the
further extension of the configuration expansions. Such cal-
culations devoted to the detailed analysis of the individual ra-
diative lines will be presented in a separate paper.

B. Collision strengths and thermally averaged collision
strengths

We begin our discussion with collision strengths for the
fine-structure forbidden transitions between the low-lying lev-
els of Fe II. Fig. 3 shows collision strengths for excitation
of the 3d64s 6D7/2 and 3d7 4D9/2 levels from the ground
3d64s 6D9/2 level. The same transitions were also discussed
by Ramsbottom et al. [17]. We concentrate on the low-energy
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TABLE IV: Comparison of Transition Probabilities (s−1) for Selected E1 Lines of Fe II.

Upper Lower Present Ref. [35] Upper Lower Present Ref. [35]
Level Level Level Level
z 6Do

9/2 a 6D9/2 2.75 × 108 2.35 × 108(6) z 4Fo
5/2 a 4F5/2 6.53 × 106 1.13 × 107(13)

a 6D7/2 4.02 × 107 3.63 × 107(6) a 4F3/2 2.12 × 106 3.27 × 106(24)
a 4D7/2 2.13 × 105 3.31 × 105(8) a 4D5/2 8.60 × 106 1.06 × 107(24)

z 6Do
7/2 a 6D9/2 1.00 × 108 9.26 × 107(6) a 4D3/2 2.60 × 108 2.14 × 108(13)

a 6D7/2 1.41 × 108 1.16 × 108(6) a 4P5/2 2.03 × 105 1.92 × 105(14)
a 6D5/2 7.19 × 107 6.36 × 107(6) a 4P3/2 9.09 × 105 9.80 × 105(13)
a 4D7/2 2.18 × 105 2.78 × 105(8) b 4F5/2 2.05 × 105 2.37 × 105(24)

z 6Do
5/2 a 6D7/2 1.63 × 108 1.43 × 108(6) a 4G7/2 2.48 × 105 2.48 × 105(30)

a 6D5/2 5.36 × 107 4.84 × 107(8) z 4Fo
3/2 a 6D3/2 1.72 × 106 1.67 × 106(12)

a 6D3/2 9.51 × 107 7.92 × 107(6) a 4F5/2 2.38 × 107 2.89 × 107(12)
a 4D5/2 1.92 × 105 2.31 × 105(8) a 4F3/2 1.01 × 107 1.89 × 107(12)

z 6Do
3/2 a 6D5/2 2.08 × 108 1.72 × 108(6) a 4D5/2 1.08 × 106 2.78 × 105(12)

a 6D3/2 3.91 × 106 4.30 × 106(8) a 4D3/2 2.74 × 107 2.89 × 107(12)
a 6D1/2 9.93 × 107 9.14 × 107(6) a 4D1/2 2.46 × 108 1.89 × 108(12)
a 4D3/2 1.38 × 105 2.04 × 105(8) a 4P1/2 3.52 × 105 3.00 × 105(12)

z 6Do
1/2 a 6D3/2 2.49 × 108 2.13 × 108(7) b 4F3/2 1.96 × 105 1.89 × 105(24)

a 6D1/2 6.21 × 107 5.76 × 107(7) a 4G5/2 3.26 × 105 5.45 × 105(24)
z 6Fo

11/2 a 6D9/2 3.88 × 108 3.13 × 108(2) z 4Do
7/2 a 6D9/2 2.98 × 106 5.32 × 106(24)

z 6Fo
9/2 a 6D9/2 4.80 × 107 4.80 × 107(6) a 4F9/2 5.52 × 107 7.09 × 107(6)

a 6D7/2 3.29 × 108 2.51 × 108(6) a 4F7/2 2.03 × 107 3.04 × 107(6)
a 4D7/2 3.58 × 106 5.12 × 106(24) a 4F5/2 1.87 × 106 3.17 × 106(24)

z 6Fo
7/2 a 6D7/2 1.19 × 108 1.14 × 108(6) a 4D7/2 2.77 × 108 2.15 × 108(6)

a 6D5/2 2.54 × 108 1.88 × 108(6) a 4P5/2 5.75 × 106 8.86 × 106(24)
a 4D5/2 3.44 × 106 5.20 × 106(24) b 4P5/2 4.83 × 105 7.22 × 105(14)

z 6Fo
5/2 a 6D5/2 1.67 × 108 1.40 × 108(6) b 4F9/2 5.15 × 105 7.22 × 105(13)

a 6D3/2 1.94 × 108 1.50 × 108(6) z 4Do
5/2 a 4F7/2 4.74 × 107 6.23 × 107(6)

a 4D7/2 1.08 × 105 2.70 × 106(8) a 4F5/2 2.64 × 107 3.59 × 107(6)
z 6Fo

3/2 a 6D5/2 3.41 × 107 3.13 × 107(24) a 4D7/2 6.74 × 107 5.70 × 107(6)
a 6D3/2 2.12 × 108 1.52 × 108(7) a 4D5/2 2.08 × 108 1.69 × 108(6)
a 6D1/2 1.25 × 108 1.04 × 108(7) a 4D3/2 2.95 × 106 4.75 × 106(8)

z 6Fo
1/2 a 6D3/2 7.49 × 107 6.88 × 107(11) a 4P5/2 1.08 × 106 1.27 × 106(24)

a 6D1/2 2.97 × 108 2.33 × 108(11) a 4P3/2 4.67 × 106 6.12 × 106(13)
z 6Po

7/2 a 6D9/2 2.27 × 108 1.70 × 108(11) b 4P5/2 1.02 × 105 4.43 × 105(13)
a 6D7/2 7.79 × 107 6.03 × 107(11) b 4P3/2 3.49 × 105 4.86 × 105(14)
a 6D5/2 3.21 × 107 3.21 × 107(11) b 4F7/2 4.89 × 105 1.00 × 106(13)
a 4D7/2 1.73 × 106 2.21 × 106(23) z 4Do

3/2 a 6D3/2 1.35 × 106 1.98 × 106(9)
a 6S 5/2 2.28 × 106 4.22 × 106(23) a 6D1/2 5.05 × 105 6.05 × 105(24)

z 6Po
3/2 a 6D5/2 8.22 × 107 5.89 × 107(11) a 4F5/2 5.03 × 107 6.49 × 107(7)

a 6D3/2 1.42 × 108 1.18 × 108(11) a 4F3/2 2.80 × 107 3.85 × 107(24)
a 6D1/2 1.18 × 108 8.99 × 107(11) a 4D5/2 1.14 × 108 9.35 × 107(7)

z 4Fo
9/2 a 6D9/2 3.02 × 106 4.23 × 106(24) a 4D3/2 1.52 × 108 1.21 × 108(7)

a 4F9/2 2.60 × 107 3.89 × 107(6) a 4D1/2 1.12 × 107 1.54 × 107(24)
a 4F7/2 2.44 × 106 3.89 × 106(8) a 4P3/2 2.90 × 106 3.85 × 106(9)
a 4D7/2 2.67 × 108 2.17 × 108(6) a 4P1/2 3.00 × 106 3.63 × 106(9)
b 4F9/2 1.45 × 105 1.72 × 105(24) b 4P3/2 2.28 × 105 2.20 × 105(26)

z 4Fo
7/2 a 6D7/2 3.71 × 106 4.41 × 106(13) b 4F5/2 5.32 × 105 8.36 × 105(24)

a 6D5/2 3.54 × 106 3.87 × 106(13) z 4Po
5/2 a 4D7/2 2.05 × 108 1.79 × 108(13)

a 4F9/2 2.83 × 107 3.44 × 107(13) a 4D5/2 5.99 × 107 5.72 × 107(13)
a 4F7/2 9.02 × 106 1.51 × 107(13) a 4D3/2 8.24 × 106 7.28 × 106(13)
a 4F5/2 2.33 × 106 3.87 × 106(13) a 4P5/2 2.83 × 107 4.29 × 107(24)
a 4D5/2 2.69 × 108 2.15 × 108(13) a 4P3/2 1.02 × 107 1.79 × 107(13)
b 4P5/2 1.50 × 105 1.72 × 105(24) a 4D3/2 9.50 × 107 8.80 × 107(7)
b 4F7/2 1.98 × 105 2.26 × 105(24) a 4D1/2 1.66 × 107 1.63 × 107(9)

z 4Fo
5/2 a 6D5/2 3.08 × 106 3.49 × 106(13) a 4P5/2 1.90 × 107 2.01 × 107(9)

a 6D3/2 2.10 × 106 2.37 × 106(13) a 4P3/2 5.87 × 106 9.43 × 106(9)
a 4F7/2 2.89 × 107 3.38 × 107(13) a 4P1/2 1.55 × 107 2.39 × 107(9)

a Numbers in parentheses are the experimental uncertainties in per cent.
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FIG. 3: Upper panel: Collision strengths for the 3d64s 6D9/2 − 3d64s 6D7/2 (1-2) and 3d64s 6D9/2 − 3d7 4D9/2 (1-6) fine-structure transitions.
Lower panel: Effective collision strength for the (1-2) and (1-6) transitions; solid curve - present BSR-340 model, dash-dotted curve - the
RM-262 calculations of Ramsbottom et al. [17], dashed curve - the RM-142 calculations of Zhang and Pradhan [9], solid rectangles - the
RM-AV calculations of Bautista et al. [19].

resonance region up to 0.5 Ryds, where collision strength ex-
hibits rich resonance structures. The resonance structures con-
siderably exceed the background collision strength and pro-
vide dominant contribution to the rate coefficients at lower
temperatures. It is a typical behavior for the forbidden transi-
tions found in many other electron-ion scattering processes.

The resonance structure exhibits a set of Rydberg series
of resonances converging to the different target thresholds.
For the 3d64s 6D9/2 − 3d64s 6D7/2 (1-2) transition, the most
noticeable Rydberg series are lying below the 3d64s 4D7/2,
3d64p 4D9/2, and 3d64p 6F11/2 thresholds. Most likely, these
series of the narrow resonances are related to the 3d64snl or
3d64pnl states, created by trapping of the scattering electron
to the highly-excited nl states with simultaneous 4s − 4p ex-
citation of the valence 4s electron (or just changing the cou-
pling scheme). Note that above the 3d64p 6F threshold the
resonance structures diminish considerably and do not con-
tribute much to the excitation process. There is also a set
of strong and wide resonances, especially in the region from
0.2 to 0.3 Ryds. The large width of these resonances indi-
cates strong interaction between the 3d electrons. We suggest
that these resonances have the principal configuration 3d74p

or 3d8. Comparisons are made with most recent and exten-
sive R-matrix calculations available in the literature. We will
use following abbreviations for different calculations: RM-
142 for the 142 target states R-matrix calculations of Zhang
and Pradhan [9]; RM-262 for the 262 target states R-matrix
calculations of Ramsbottom et al. [17]; RM-AV for the effec-
tive collision strengths obtained by Bautista et al. [19] as aver-
age from different R-matrix calculations. The present calcula-
tions will be denoted as BSR-340. The resonance structure for
this transition is very close in form to the resonance structure
found in the RM-262 calculations of Ramsbottom et al. [17],
but differs in many details from the resonance structure found
in the RM-142 calculations of Zhang and Pradhan [9]. The
RM-142 resonance structure is not as strong, partly because
their CC expansion does not include the 3d7 double excitation
terms lying in this energy region.

The Maxwellian averaged effective collision strength for
the 3d64s 6D9/2−3d64s 6D7/2 transition is presented in Fig. 3,
lower panels. As seen from the Fig. 3, the rate coefficients ob-
tained in different models are rather different both in magni-
tude and in the temperature behaviour. Most close agreement
is obtained with the RM-262 calculations of Ramsbottom et
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FIG. 4: Comparison of effective collision strengths obtained in the present BSR-340 model with the RM-262 [17] (upper panels) and
RM-142 [9] (lower panels) for three temperatures. Also indicated in the panels is the average deviation σ from the BSR-340 results. Compar-
ison includes the forbidden transitions between the first 52 even-parity levels of Fe II

al. [17], however, only for higher temperatures. For low tem-
perature around 500 K, our rates show maximum which is ab-
sent in the RM-262 calculations. As seen from the figure,
this low-temperature maximum is due to the resonances lying
close to excitation thresholds. This set of strong resonances
is shifted to the higher energies in the RM-262 calculations
due to the higher excitation thresholds in the RM-262 model.
Strong dependence of the resonance structure and its contribu-
tion to the rate coefficients on the position of excitation thresh-
olds was also clearly illustrated by Bautista et al. [19]. By
comparing the results from various models Bautista et al. [19]
found that the collision strengths for transitions among lev-
els of the 3d64s 6D ground multiplet are greatly enhanced
when the excitation threshold are shifted to experimental val-
ues. Our target thresholds are very close to the experimen-
tal values, so we may expect the most accurate representation
of the resonance structure in our scattering calculations. The
RM-142 rate coefficients of Zhang and Pradhan [9] consider-
ably exceed the present results for all temperatures, whereas
the recommended rate coefficients of Bautista et al. [19] are
considerably lower than all other rates. It indicates that these
calculations predict different values of both the resonance con-
tributions and the background collision strengths. The same
trends were found to occur for all other fine-structure transi-
tions among the ground state levels.

Transition 3d64s 6D9/2−3d7 4D9/2 (1-6) in Fig. 3 represents
transition between different terms. We again see a rich reso-
nance structure which, however, is less intense in magnitude
than for the (1-2) transition considered above. Our resonance

structure qualitatively agree with the resonance structure from
the RM-262 calculations, however, there is noticeable differ-
ence in the positions and widths of strong resonances in the
region from 0.2 to 0.3 Ryds. The different calculations again
predict rather different rate coefficients. For this transition
our effective collision strengths are most close to the RM-
AV results of Bautista et al. The RM-262 rates show maxi-
mum at intermediate temperatures which is not predicted in
our calculations. The RM-142 rate coefficients considerably
exceed other results, especially at low temperatures. It may
be pointed out that the recoupling transformation method em-
ployed in these calculations does not appear to reproduce the
resonance structure accurately enough. We suggest that the
contribution of some high-lying resonances in the RM-262
model is highly overestimated. Rate coefficients from dif-
ferent calculations converge to each other at high tempera-
tures, indicating the similar background collision strengths in
the different models.

Above examples show that there are considerable discrep-
ancies between the existing calculations for the rate coeffi-
cients of forbidden transitions in Fe II. A global comparison
between the present BSR-346 results and the effective colli-
sion strengths obtained previously is presented in Fig. 4 at
three different temperatures. In this figure we consider only
the forbidden transitions among low-lying even-parity states.
As seen from the figure, the worst agreement between calcu-
lations is observed at low temperatures, with average devia-
tions of around 22%, however, for the individual transitions
some rates exhibit substantial disagreement. At low tempera-
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FIG. 5: Comparison of effective collision strengths obtained in the present BSR-340 model with the RM-AV results of Bautista et al. [19] at
temperature of 104 K.

tures, the effective collision strength crucially depends on the
near-threshold resonance structure. This resonance structure
depends in turn on the target excitation energies and the size
of CC expansions. We use the experimental excitation thresh-
olds and employed the most extensive CC expansion, that al-
lows us to argue that the present resonance structure is most
accurate. The energy mesh used in the RM-142 calculation
is much coarser than in the other calculations. This also may
lead to a poor account of the resonance contributions. Note
also that the resonance structure for the forbidden transitions
extends mainly up to ∼ 0.4 Ryds, the region where the chan-
nels of odd-parity states 3d64p begin to open. For higher elec-
tron energies the resonance contribution greatly diminishes.

As seen from the Fig. 4, agreement considerably improves
for the intermediate temperatures around T=104 K. The aver-
age deviation for these temperatures decrease to 15%. Ex-
cept a few transitions, the agreement further improves for
the higher temperatures, indicating that all calculations gen-
erally agree on background cross sections, and the differ-
ences are mostly due to the resonance structures. However,
there are transitions where the disagreement increases with
temperature, though influence of resonance structure is min-
imal. There may be several reasons for this. It may be
caused by partial wave convergence, different target state ex-
pansions and thereby different background collision strengths,
or appearance of pseudo-resonance structure at higher elec-
tron energies. There are many examples of the strong pseudo-
resonance structures that can substantially change the cross
sections (see, e.g., [38]). This reason looks most probable that
the RM-142 calculation shows very different rates for some
transitions, whereas majority rates are in very close agreement
with the present calculations at T = 105 K. Overall, compari-
son in Fig. 4 can serve as accuracy estimation for the existing
data sets.

The forbidden transitions between lowest 52 levels were re-
cently investigated carefully by Bautista et al. [19]. They used

two different methods, specifically R-matrix+ICFT and fully-
relativistic DARC approach [39]. They also investigated the
sensitivity of collision strengths to the details of the scatter-
ing calculations, such as size of the target and close-coupling
expansions, shifting the excitation thresholds to the experi-
mental positions, or size of the R-matrix box. The compari-
son of effective collision strengths from different models was
presented at 104 K, the temperature where Fe II is most fre-
quently found. The statistical dispersion of results from dif-
ferent models is assumed as an accuracy indicator. In par-
ticular, they estimated uncertainties in the range of 10%-20%
for excitations from the lower nine levels. However, if the
complete collision inventory is considered, the effective colli-
sion strength discrepancies vary widely, reaching factors of
two or more in some cases. Figure 5 compares our effec-
tive collision strengths with the recommended data of Bautista
et al. obtained as average of results from their numerous
models (denoted as RM-AV). We see large discrepancies be-
tween these two sets, which are much bigger than the differ-
ences with the RM-142 and the RM-262 effective collision
strengths discussed above. Overall, the RM-AV effective col-
lision strengths are systematically lower than the present re-
sults, with the average relative deviation of more than 50%.
Note that for the subset of data presented in their paper as
comparison of different models, much better agreement is
found with the DARC results than with R-matrix+ICFT calcu-
lations. We may conclude that the averaging of the ”chaotic”
data sets does not lead to better accuracy. Instead, the ac-
curacy estimations based on the careful analysis of the con-
vergence of target and close-coupling expansions are more
preferable.

Now we turn to the discussion of the electric-dipole transi-
tions which involves the 3d64p and 3d54s4p odd-parity levels
of Fe II. Examples of collision strengths and thermally aver-
aged collision strengths for electron-impact excitation to the
lowest odd-parity states are given in Fig. 6. We chose exci-
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FIG. 6: Upper pannels: Collision strengths for the 3d64s 6D9/2 - 3d64p 6Do
9/2 (1-64) and 3d64s 6D9/2 - 3d64p 6Fo

11/2 (1-69) fine-structure
transitions. Lower panels: Effective collision strength for the (1-64) and (1-69) transitions; solid curve - present BSR-340 model, dot-dashed
curve - the RM-262 calculations of Ramsbottom et al. [17], dashed curve - the RM-142 calculations of Zhang and Pradhan [9].

tation of the 3d64p 6Do
9/2 and 3d64p 6Fo

11/2 levels from the
ground 3d64s 6D9/2 level as these were also discussed by
Zhang and Pradhan [9] and Ramsbottom et al. [18]. Both
of these transitions are the strong electric-dipole transitions,
which exhibit the characteristic ln(E) behaviour almost at all
energies. Resonance structure at low energies is very scarce
and provide only limited contribution to the rate coefficients.
For the 3d64s 6D9/2 −3d64p 6Do

9/2 (1-64) transition, our colli-
sion strengths agree closely with the RM-142 calculations by
Zhang and Pradhan, and are systematically lower by 20-30%
than the RM-262 results of Ramsbottom et al. This differ-
ence can be caused by several reasons. First, we should be
sure that all partial wave contributions were correctly incor-
porated. Due to the long range nature of the Coulomb po-
tential, the dominant contribution to the dipole allowed tran-
sitions comes from the partial waves with large total orbital
momentum, especially for higher electron energies. Rams-
bottom et al. [18] devoted large part of their discussion to this
problem and concluded that in order to obtain convergence of
the electron-impact excitation collision strengths for the al-
lowed transitions in Fe II, it is necessary to include contribu-
tions from partial waves up to about L = 50 explicitly, with
additional account for contributions from even higher partial

waves via a top-up procedure. They also suggested that the
incomplete partial wave contribution in the RM-142 calcula-
tions of Zhang and Pradhan was the primary reason for dis-
agreement between these two calculations. We argue that the
partial wave convergence can be reached for much lower L.
Our collision strengths obtained with direct calculations up to
L = 50, followed by the top-up procedure differ only in limits
of 1-2%differ only from the test results with direct calcula-
tions up to L = 25 and followed by the top-up procedure. Be-
sides, all discussed collision strengths behave asymptotically
as ln(E). This fact also indicates that top-up correction was
correctly implied in all calculations.

The differences with the RM-262 collision strengths are
most likely due to the different representation of target states,
and as a consequence, differences in oscillator strengths for
the electric-dipole transitions. For higher energies, collision
strengths for dipole-allowed transitions are proportional to the
oscillator strengths, so their accuracy is very important for ac-
curate description of the scattering process at higher energies.
Our oscillator strength for the 3d64s 6D9/2−3d64p 6Do

9/2 tran-
sition is 0.279, which is 12% lower than the f -value of 0.311
from the RM-262 calculations. This partly explains why our
collision strengths are systematically lower than the RM-262
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FIG. 7: Comparison of effective collision strengths obtained in the present BSR-340 model with RM-262 [17] (left panel) and RM-142 [9]
(right panel) for electron temperature T = 104 K. Also indicated in the panels is the average deviation σ from the BSR-340 results. The squares
in the left panel represent transitions from the ground level only.

results. Note that our oscillator strength is even larger than
the experimental oscillator strength of 0.238 derived from
the radiative rates of Schnabel et al. [35] presented in Ta-
ble IV. We then may suppose that actual collision strengths
should be even lower than presented in Fig. 6. The corre-
sponding Maxwellian averaged effective collision strengths
for this transition, plotted in lower panel in Fig. 6, show ag-
greement/disagreement similar to those for the corresponding
collision strengths. Our effective collision strengths are sys-
tematically lower than the RM-262 values, and agree closely
with the RM-142 data at higher temperatures. The RM-142
data exceed our effective collision strengths at temperatures
below 5,000 K, that may indicate the bigger contribution of
the resonances in their calculations. Note that we compare the
RM-142 effective collision strengths based on the CHIANTI
database [10], which provides more extended set of data than
provided in the original publication [9].

A similar picture is observed for the 3d64s 6D9/2 −

3d64p 6Fo
11/2 transition, presented in the left panel of Fig. 6.

Again the RM-262 collision strengths exceed the present re-
sults, whereas our collision strengths agree closely with the
RM-142 data for all electron energies. The curves have simi-
lar shape but different slope which is defined by the oscillator
strength. Our oscillator strength for this transition, 0.396, is
lower by 12% than f -value of 0.446 from the RM-262 cal-
culations, but exceeds the experimental value of 0.319 [35].
The corresponding Maxwellian averaged effective collision
strengths from RM-262 and present calculations differ in the
same proportion as the collision strengths. The RM-142 cal-
culation agrees with the present results only for higher tem-
peratures, whereas exceeds both the present and RM-262 ef-
fective collision strengths at lower temperature below 104 K.
It can be explained by overestimated resonance contributions
in the LS plus frame transformation method employed in the
RM-142 calculations.

The overall comparison of the effective collision strengths

for the electric dipole-allowed transitions is given in Fig. 7 for
temperature T = 104 K. Dispersion between the present and
RM-262 results is considerable, with the average relative de-
viation around 42%. The general tendency is that RM-262
effective collision strengths exceed the present values for the
most of transitions. If we consider only the transitions from
the levels of the ground configuration (presented in the figure
with squares), the agreement is much better, with the average
relative deviation of around 10%. The large differences ap-
pear for transitions between excited states, beginning for tran-
sitions from the first excited 3d7 4F term. Some differences
reach the several order of magnitude, both for weak and strong
transitions. Such large differences may be due to the different
target representations in the two calculations. The restricted
target expansions used in the RM-142 calculation leads to in-
accurate oscillator strengths and consequently to the inaccu-
rate collision strengths. The average deviation of our results
with the RM-142 calculation is approximately on the same
level as with the RM-262 results, however, the deviation here
is more chaotic, with no systematic trend. Note that compar-
ison with RM-142 calculation in Fig. 7 additionally includes
the non-dipole transitions which are not presented in the RM-
262 results.

The entire tables of energies, radiative rates, and effec-
tive collision strengths for all temperatures and transitions
included in the present BSR-340 model can be found in the
online Supplemental Material [37] provided with the present
manuscript.

IV. SUMMARY

We have presented effective collision strengths and radia-
tive parameters for all transitions among the 340 fine-structure
levels of Fe II, belonging to the lowest 3d64s, 3d54s2, 3d7,
3d64p, and 3d54s4p configurations. The present results con-
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siderably expand the existing data sets for Fe II, allowing
a more detailed treatment of the available measured spectra
from different astrophysical sources. The calculations were
performed with the advanced BSR code [20] which employs
the R-matrix method in the B-spline basis. The BSR codes are
considerably modified and extended in order to deal with this
extremely complicated atomic system. To represent the target
states, we use extensive multiconfiguration expansions with
carefully chosen configurations. We also employ the term-
dependent one-electron orbitals for correct representation of
the relaxation effects. To further improve the accuracy of our
final collision rates, experimental energies through the fine-
tuning process have been used, not only for target level en-
ergies, but also to enhance the accuracy of the term-mixing
coefficients in the wave functions. This is a distinctive and
novel feature of the present calculations, that allowed us to
generate a more accurate description of the Fe II target states
than those employed before.

Comparison is made between our work and results avail-
able in existing databases. This comparison shows that previ-
ous calculations of collision strengths for many transitions are
much more uncertain than previously thought. We offer argu-
ments in favor of our results being the most accurate, where
differences occur. It is based on the more accurate represen-
tation of target states and more extensive close-coupling ex-
pansions. It is difficult to place uncertainty bounds on our
collision rates. Transitions from the ground multiplet levels
are probably correct to within about 10%. For transition be-
tween excited states better accuracy is expected for the levels
with well-defined main configuration. Such transitions should
be reliable to within 20-30% or better. For transitions be-

tween levels with strong configuration and term mixing, the
accuracy of collision strengths is dependent on the accuracy
of the mixing. Our fine-tuning process is designed to repre-
sent that mixing as accurately as possible. This allows us to
assume that an accuracy of about 20-50% can be achieved in
these cases too. This conclusion is supported by the compar-
ison of our radiative rates with available experimental data.
If additional factors specific for scattering calculations (such
as careful consideration of the resonance structure and partial
wave convergence) are treated properly, the accuracy of colli-
sion rates should be comparable with the accuracy of radiative
rates. Thus, the agreement of our radiative rates with experi-
mental values can also serve as an accuracy estimation for the
collision rates. For many transitions this agreement is within
20-50%, however, for some weak transitions the disagreement
can reach to order of magnitude. These transitions are related
to the case where there is considerable cancellation effects due
to CI or term mixing, and in this case small changes in mix-
ing can lead to substantial changes in the final collision rates.
Such transitions if needed should be considered in the specif-
ically designed calculations, which are concentrated on the
individual transitions.

Acknowledgments

This work was supported by the United States National Sci-
ence Foundation under grants No. 1714159 and No. PHY-
0555226. The numerical calculations were performed on
STAMPEDE at the Texas Advanced Computing Center. They
were made possible by the XSEDE allocation No. PHY-
090031.

[1] D. M. Meyer, K. M. Lanzetta, and A. M. Wolfe, Astroph. J.
Lett. 451, L13 (1995).

[2] J. C. Howk and K. R. Sembach, Astroph. J. Lett. 523, L141
(1999).

[3] M. A. Dopita, I. R. Seitenzahl, R. S. Sutherland, F. P. A. Vogt,
P. F. Winkler, and W. P. Blair, Astroph. J. 826, 150 (2016).

[4] B. C. Koo, J. C. Raymond, and H. J. Kim, J. Korean Astr.
Soc. 49, 109 (2016).

[5] P. S. Barklem, Astron. Astrophys. Rev. 24, 9 (2016).
[6] K. L. Baluja, A. Hibbert, and M. Mohan, J. Phys. B 19, 3613

(1986).
[7] K. A. Berrington, P. G. Burke, A. Hibbert, M. Mohan, and K.

L. Baluja, J. Phys. B 21, 339 (1988).
[8] A. K. Pradhan and K. A. Berrington, J. Phys. B 26, 157 (1993).
[9] H. Zhang and A. K. Pradhan, A&A 293, 953 (1995).

[10] http://chiantidatabase.org.
[11] M. A. Bautista and A. K. Pradhan, Astron. Astroph. Suppl. Ser.

115, 551 (1996).
[12] M. A. Bautista and A. K. Pradhan, Astroph. J. 492, 650 (1998).
[13] P. G. Burke, C. J. Noble, A. G. Sunderland, and V. M. Burke,

Physica Scripta T100, 55 (2002).
[14] C. A. Ramsbottom, M. P. Scott, K. L. Bell, F. P. Keenan, B. M.

McLaughlin, A. G. Sunderland, V. M. Burke, C. J. Noble, and
P. G. Burke, J. Phys. B 35, 3451 (2002).

[15] C. A. Ramsbottom, C. J. Noble, V. M. Burke, M. P. Scott, and

P. G. Burke, J. Phys. B 37, 3609 (2004).
[16] C. A. Ramsbottom, C. J. Noble, V. M. Burke, M. P. Scott, R.

Kisielius, and P. G. Burke, J. Phys. B 38, 2999 (2005).
[17] C. A. Ramsbottom, C. E. Hudson, P. H. Norrington, and M. P.

Scott, A&A 475, 765 (2007).
[18] C. A. Ramsbottom, At. Data Nucl. Data Tables 95, 910 (2009).
[19] M. A. Bautista, V. Fivet, C. Ballance, P. Quinet, G. Ferland, C.

Mendoza, and T. R. Kallman, Astroph. J. 808, 174 (2015).
[20] O. Zatsarinny, Comp. Phys. Comm. 174, 273 (2006).
[21] O. Zatsarinny and K. Bartschat, Phys. Rev. A 72, 020702

(2005).
[22] A. Hibbert, Physica Scripta T65, 104 (1996).
[23] N. C. Deb and A. Hibbert, A&A 536, A74 (2011).
[24] C. Froese-Fischer, G. Tachiev, G. Gaigalas, and M. R. Gode-

froid, Comp. Phys. Comm. 176, 559 (2007).
[25] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team

(2015). NIST Atomic Spectra Database (ver. 5.3), [Online].
Available: http://physics.nist.gov/asd [2016, April 28]. Na-
tional Institute of Standards and Technology, Gaithersburg,
MD.

[26] O. Zatsarinny and C. Froese Fisher, Comp. Phys. Comm. 124,
247 (2000).

[27] O. Zatsarinny and C. Froese Fisher, Comp. Phys. Comm. 180,
2041 (2009).

[28] P. G. Burke, R-Matrix Theory of Atomic Collisions, Springer-



18

Verlag (Berlin, Heidelberg, 2011).
[29] S. S. Tayal and O. Zatsarinny, Astroph. J. 788, 24 (2014).
[30] S. S. Tayal and O. Zatsarinny, Astroph. J. 743, 206 (2011).
[31] S. S. Tayal and O. Zatsarinny, Astroph. J. 812, 174 (2015).
[32] http://www.apap-network.org/codes.
[33] D. Rostohar, A. Derkatch, H. Hartman, S. Johansson, H. Lund-

berg, S. Mannervik, L. O. Norlin, P. Royen, and A. Schmitt,
Phys. Rev. Lett. 86, 1466 (2001).

[34] J. Gurell, H. Hartman, R. Blackwell-Whitehead, H. Nilsson, E.
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