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We introduce a description of Ramsey spectra under atomic interactions as a sum of decomposed
components with differing dependence on interaction parameters. This description enables intuitive
understanding of the loss of contrast and asymmetry of Ramsey spectra. We derive a quantitative
relationship between the asymmetry and atomic interaction parameters, which enables their char-
acterization without changing atom density. The model is confirmed through experiments with a
Yb optical lattice clock.

I. INTRODUCTION

Ramsey spectroscopy is one of the standard tech-
niques of precision measurements of atomic reso-
nances [1]. It employs two excitation pulses, typi-
cally of equal length τ , that are separated by a dark
interval, where atoms are in a freely evolving quan-
tum superposition state. The resulting excitation
probability as a function of the frequency of the ex-
citing field shows characteristic spectra as in Fig-
ure 1. Compared to Rabi spectroscopy where atoms
are exposed to a single, continuous pulse, Ramsey
spectroscopy is capable of providing a reduction in
linewidth by a factor of 1.7 for a given interrogation
time [1, 2]. It is also possible to extend the Ramsey
method to achieve better controls of atomic states.
An example for this is the Hyper-Ramsey scheme
[3], where the addition of a third pulse, along with
careful control of amplitude and phase, can elimi-
nate frequency shifts resulting from the excitation
field itself [4].
In a situation where multiple atoms are interro-

gated simultaneously, their interactions are of signifi-
cant importance for precision measurements. For ex-
ample, the resulting frequency shifts in cesium foun-
tain clocks need to be either measured continuously
and with great accuracy [5], or the conditions govern-
ing the interactions have to be precisely controlled to
minimize their effect [6].

∗ Email: ryotatsu@stanford.edu; now Edward L. Gintz-
ton Laboratory, Stanford University, Stanford, California
94305, USA

† Now Space-Time Standards Laboratory, NICT, Koganei,
Tokyo 184-0015, Japan

When p-wave atomic interactions (described by
anti-symmetric wavefunctions) are dominant, their
dependence on the excitation probability can be used
to control the collisional shifts [7, 8]. This control of
collisional shift is experimentally feasible in certain
systems of ultra-cold atoms, such as neutral 171Yb,
where the contribution caused by p-wave atomic in-
teractions is sufficiently larger than that of s-wave
atomic interactions (described by symmetric wave-
functions). Our work focuses on situations where
this assumption of p-wave dominance is valid.

FIG. 1 Ramsey spectrum with (blue dashed line) and
without (red solid line) atomic interactions. Without
interactions, the spectum is symmetric about δ = 0. Atomic
interactions shift the nth peak to δIn. The separations from
the center fringe dIn and dI−n then become unequal, resulting

in asymmetry. As an example, dI
3
and dI−3

are shown.
Plotted spectrum is obtained by a sequence of two τ = 16 ms
π
2
-pulses separated by a 60 ms dark interval.

The shift of the central peak is usually the most
relevant concern for precision measurements [9, 10],
while atomic interactions also alter the shape of
the entire spectrum, manifesting as loss of contrast
and asymmetry as discussed in Ref. [11]. Here, we
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present a model that decomposes the Ramsey spec-
trum into the sum of two components distinguished
by their dependence on the interaction parameters.
This intuitively describes the loss of contrast due to
atomic interactions through the simultaneous pres-
ence of both components. We also derive a formula
which quantitatively relates the summed interaction
parameter W , which will be discussed in detail later,
to the asymmetry of the Ramsey spectra. A mea-
surement method based on this allows measuring the
strength of atomic interactions without changing the
atom density. The new model is experimentally con-
firmed using our 171Yb optical lattice clock.

II. THEORETICAL MODEL

We consider spin-polarized fermionic atoms
trapped inside a 1D optical lattice oriented along
the z axis. The lattice is created by the standing
wave of a laser at a magic frequency minimizing the
ac Stark shift of the clock transition [12]. The tight
confinement along the lattice axis allows interroga-
tion of atoms in the Lamb-Dicke regime for the co-
propagating clock laser.

As described in Ref. [7], we first consider a simple
case where two fermions 1, 2 are trapped inside a lat-
tice site. We assume that these fermions are spin po-
larized along the direction of a homogenous external
magnetic field B. We denote the vibrational quan-
tum number of atom i = 1, 2 along the j = x, y, z
direction as nij .

The state of the two atoms can be written in a
four-state basis composed of (in order) three triplet

states |gg〉, |ee〉, and |eg+〉 = (|eg〉+ |ge〉) /
√
2 and

a singlet state |eg−〉 = (|eg〉 − |ge〉) /
√
2, depending

on whether each atom is in the electronic ground
state |g〉 or in the excited state |e〉. Since the over-
all wavefunction of spin-polarized fermions has to be
anti-symmetric about particle exchange, atom pairs
in the triplet and the singlet electric states have anti-
symmetric and symmetric spatial wavefunctions re-
spectively. We will therefore refer to their lowest or-
der interactions as p-wave and s-wave interactions,
since higher order interactions are suppressed due
to the low temperature of the atoms. Respectively,
we denote the corresponding energy shifts as inter-
action parameters V αβ and Uαβ for atomic states
α = g, e and β = g, e [7, 13] as shown in Figure 2. In
the presence of an electromagnetic field of detuning
δ = ωl − ω0 from the atomic resonance ω0, the two-

body Hamiltonian in the four-state basis becomes [7]

Ĥ =




δ + V gg 0 Ω/
√
2 ∆Ω/

√
2

0 −δ + V ee Ω/
√
2 −∆Ω/

√
2

Ω/
√
2 Ω/

√
2 V eg 0

∆Ω/
√
2 −∆Ω/

√
2 0 Ueg


 .

(1)
where Ω = (Ω1 + Ω2)/2 and ∆Ω = (Ω1 − Ω2)/2
are the mean and deviation of the Rabi frequen-
cies experienced by the two atoms. ∆Ω/Ω corre-
sponds to the inhomogeneity of the Rabi frequency
of the atoms. As the contribution from s-wave in-
teractions is on the order of O

(
∆Ω2

Ω
2

)
, the contribu-

tion becomes negligible when the Rabi frequency of
the atoms is homogeneous. However, it is generally
difficult to completely eliminate ∆Ω, since any mis-
alignment of the clock laser from the axis of strong
confinement causes the Rabi frequency to depend on
the radial vibrational modes nx and ny [14].

FIG. 2 Energy shifts of two-atom states due to the atomic
interactions whose strength is denoted by interaction
parameters V αβ and Uαβ . Straight arrows show energy
differences in terms of detuning δ, and curved arrows
indicate coupling strengths expressed as Rabi frequencies.

The Rabi frequency is treated as constant during
the excitation pulses, which are characterized by a
pulse area Ωτ . For atoms initially in the state |gg〉,
we use the Hamiltonian in Eq. (1) to calculate the
excitation probability P (δ) after a Ramsey sequence
consisting of two identical pulses separated by a dark
time T , during which Ω and ∆Ω are zero. For the
calculation of P (δ), we assume that the lifetime of
the excited state |e〉 is long enough compared to the
Ramsey sequence and thus ignore the effect of the
spontaneous decay. For small inhomogeneity ∆Ω/Ω,
P (δ) can be decomposed into a sum of two oscillating
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components as

P (δ) = A1(δ) cos
2

[
(δ − V eg + V gg)T + φ(δ)

2

]

+A2(δ) cos
2

[
(δ + V eg − V ee)T + φ(δ)

2

]

+O
(
∆Ω2

Ω
2

)
(2)

with envelope functions

A1(δ) =
Ω

2

(
Ω

2
+ δ2

)3 sin2
(
1
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τ

√
Ω

2
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)
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τ

√
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2
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)
+ 1

]
+ 2δ2

}2

,

(3)

A2(δ) =
2Ω

4
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×
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}
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(4)

and the additional phase arising from the finite pulse
length τ

φ(δ) = arctan




2δ

√
Ω

2
+ δ2 sin

(
τ

√
Ω

2
+ δ2

)

(
Ω

2
+ 2δ2

)
cos

(
τ

√
Ω

2
+ δ2

)
+Ω

2


 ,

(5)

which is an odd function. As shown in Figure 3(a),
this additional phase can be well approximated as
φ(δ) ≃ δτ . In the limit of weak interactions (V αβ →
0), the phases of the oscillating components given
by the first and second line of Eq. (2) are identical
and P (δ) simplifies to the Ramsey spectrum without
atomic interactions. Otherwise the V eg − V gg and
−V eg + V ee terms introduce different phase shifts
without affecting the envelope functions A1 and A2.
Note that for T ≫ τ , the slow variation of A1 and
A2 is negligible compared to the oscillation result-
ing from δT , and thus the oscillatory behavior of
the spectrum is mostly explained by the cosinusoidal
part of Eq. (2). Physically, as can be seen from the
phase of the cosinusoidal part, the A1 term (A2 term)
is generated by the interference between the phase
of |gg〉 and |eg+〉 states (|eg+〉 and |ee〉 states) dur-
ing the dark time (see Figure 2). Note that these
envelope functions do not depend on the atomic in-
teractions, or the length of the dark time T . For
illustration, A1 and A2 are plotted in Figure 3(b)

(a)

(b)

FIG. 3 (a) φ (red solid line) plotted together with the
approximation δτ (blue dashed line) for τ = 16 ms π

2
-pulse.

(b) A1 and A2, plotted as red solid and blue dashed lines
respectively for the same parameters as (a). As a reference,
A1 +A2, which corresponds to the envelope of the Ramsey
spectra in the absence of atomic interactions, is also plotted
as dotted gray lines.

for a typical Ramsey sequence. While A1 and A2

have comparable contributions to the spectrum in
the central part, A1 starts to dominate over A2 with
increased detuning, which reflects the decrease in the
population in the |ee〉 state. In general, the phase
shifts of the two decomposed components are not
equal (V eg − V gg 6= −V eg + V ee), resulting in a loss
of contrast where both A1 and A2 exist. In a typi-
cal spectrum, this effect is most visible in the center
region (Figure 1).

We now discuss the frequency shift in the picture
of the decomposed description. First, as shown in
Figure 1, we enumerate the peaks starting at δ = 0.
We also denote the nth peak’s original positions in
the absence of atomic interactions as δn, for which
φ(δ) ∼ δτ yields δn ∼ 2πn

T+τ
. In the vicinity of δn, P
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can be expanded as a quadratic function as

P (δ) ≃− α
[
A1 (δn) (δ − δn − V eg + V gg)2

+A2 (δn) (δ − δn + V eg − V ee)
2
]
+ const

(6)

using a positive constant α. It can be rewritten as

P (δ) ≃ −α(A1 +A2)
(
δ − δIn

)2
+ const, (7)

where δInrepresents the position for the nth peak in
the presence of atomic interactions. As a conse-
quence, the frequency shift can be written as

δ
I

n − δn =
A1(δn) (V eg

− V gg) + A2(δn) (−V eg + V ee)

A1(δn) + A2(δn)
.

(8)

As can be seen in the equation, δIn−δn is an average
of the shift of each oscillating component weighted
by their amplitudes. After some calculations, δIn−δn
becomes

δ
I

n − δn =
V ee

− V gg

2
−

δ2n + Ω
2

cos

(

τ

√

δ2n + Ω
2

)

2
(

δ2n + Ω
2
) W

(9)

with W = −2V eg + V gg + V ee. For the center peak
in particular, the shift becomes

δI0 =
V ee − V gg

2
+

(
p1 −

1

2

)
W, (10)

where p1 is the excitation probability after the first
pulse. This result is identical to that of Ref [7]. It
shows that W is experimentally accessible by mea-
suring δI0 for various values of p1, and we shall refer
to this as the p1-based measurement method.
In the following, we quantitatively formalize the

asymmetry of the Ramsey spectrum using Eq. (8).
When accounting for atomic interactions, the fre-
quency separation dIn from the 0th peak is

dIn =
∣∣δIn − δI0

∣∣ . (11)

As a measurable quantity for the asymmetry of the
Ramsey spectrum for the ±nth peaks, we define

an =
dIn − dI−n

2
. (12)

By substituting Eq. (11) and using the result of
Eq. (9) together with the anti-symmetry of the peak
positions δn = −δ−n, the asymmetry an becomes

an =
δIn + δI−n

2
− δI0 = CnW, (13)

where we have defined

Cn =
1

2


cos

(
Ωτ

)
−

Ω
2
cos

(
τ

√
Ω

2
+ δ2n

)
+ δ2n

Ω
2
+ δ2n


 .

(14)
Since Cn depends only on the known experi-
mental quantities Ω and δn, it is possible to
directly relate the measured asymmetry an to W
using Eq. (13), and we shall refer to this method
as the asymmetry-based measurement method ofW .

III. EXPERIMENTAL CONFIRMATION

To test the theoretical model, measurements were
performed with the Yb optical lattice clock [15].
Figure 4 gives an overview of the experimental
setup. Atoms are cooled down through two stages
of magneto-optical trap and trapped in the magic
wavelength optical lattice. This is created by a retro-
reflected beam with a radius of w ≃ 43 µm at the
trap position. Its intensity is actively stabilized us-
ing an acousto-optic modulator (AOM). The axial

FIG. 4 Overview of the experimental setup of our 171Yb
optical lattice clock. The upper left inset shows the relevant
electronic states of the 171Yb atom, along with the
wavelengths and natural linewidths of the transitions
between them.

motional state nz is sideband cooled via the red side-
band transition 1S0(nz) → 3P0(nz − 1). The supres-
sion of the red sideband after the cooling sequence
indicates that more than 95% of the atoms populate
the axial vibrational ground state nz = 0. Atoms
are spin polarized in the mF = 1/2 or −1/2 state by
optical pumping on the 1S0 − 3P1 transition, reduc-
ing the population in the undesired spin state to less
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than 1%. The excitation probability after the clock
laser pulses is determined by measuring the fluores-
cence on the 1S0 − 1P1 transition using a CCD cam-
era. The lifetime of the excited 3P0 clock state [16] is
significantly longer than our experimental sequences,
which justifies our assumption of negligible sponta-
neous decay.
Figure 5 shows a Ramsey spectrum taken with a

particularly strong confinement corresponding to a

trap depth of 650Er, where Er = h2

2mλ2 is the lat-
tice photon recoil energy for an atom mass of m and
lattice wavelength λ = 759 nm. The comparison to
a theoretical spectrum calculated based on Eq. (2),
clearly shows that the model successfully reproduces
the loss of contrast that is more pronounced in the
center of the spectrum than in the side lobes.

FIG. 5 Experimental Ramsey spectrum (blue dashed line)
for τ = 30 ms π

2
pulses and T = 150 ms with an atom

number of ∼ 1500, which corresponds to an average number
of 1.5 ∼ 3 atoms per lattice site. To increase atomic
interactions, the trap depth is set to a large value of 650Er.
Gray line indicates the theoretical spectrum without atomic
interactions. Red line includes interactions with
W̃ = 2π × 1.6 Hz obtained from experimental data by the
asymmetry-based measurement.

We have defined the interaction parameters
through the energy shift due to two-body atomic in-
teractions. While the experimental system of the
171Yb clock is not designed to specifically populate
two atoms per lattice site, it is possible to describe
the overall interaction of a larger number of atoms
in the weakly interacting regime as a sum of pair-
wise interactions [7]. In the following, we use the ef-

fective interaction parameters Ṽ αβ to represent the
total energy shift resulting from interactions with all
other atoms in the same site, averaged over the en-
tire lattice. In this way, the model can be tested by

comparing the effective W̃ values obtained through
p1-based and asymmetry-based methods. To ensure
comparable conditions, following measurements are

(a)

(b)

(c)

FIG. 6 (a) Asymmetry a4 plotted as a function of the atom
number with a linear fit. For our Ramsey sequence with
τ = 16 ms, T = 100 ms and Ωτ = π

2
, the 4th peak is located

at δ4/2π = 34 Hz. (b) Asymmetry an measured for different
τ with pulse areas Ωτ = 0.8π, 1.0π, 1.2π, 1.4π as indicated.
All the points are measured with the atom number of
∼ 3000. The black dashed lines indicate the position of the
nth peak for each pulse length. (c) Collisional frequency
shift of the central peak δI

0
is measured for different

excitation probability p1 after the first Ramsey pulse. All
error bars represent 1-σ statistical uncertainties without
accounting for instability of experimental parameters.

performed for a constant trap depth of ∼ 200Er,
and a Ramsey sequence of T = 100 ms dark time,
enclosed by pulses of Ω = 2π × 15.6 Hz. For the
asymmetry-based measurement, the pulse length is
chosen as τ = 16 ms for a pulse area of π

2 . We inves-
tigate the peaks identified by n = ±4, which show a
significant asymmetry at sufficient signal P ∼ 0.5 to
avoid loss of clock stability due to reduced signal-to-
noise ratio.

Measurements of an are performed by alternately
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stabilizing the clock laser to the 0th and ±nth peaks
using a three-fold interleaved measurement sequence.
First, we investigate the atom number dependence of
an to find the results shown in Figure 6(a). The ab-
sence of a significant nonlinearity indicates negligible
effects of three-body collisions, which are expected
to manifest as a contribution with a quadratic de-
pendence on atom number. The linear dependence
allows us to normalize the results to a reference atom
number in the following.

The actual measurement of W̃ through the
asymmetry-based method is performed by measur-
ing an for various n and Ramsey pulse areas Ωτ and

fitting the result for W̃ using Eq. (13). The mea-
surement results are shown in Figure 6(b) together
with interpolations according to the fit. The good
agreement of the measurement points and theoretical
curves confirms the validity of Eq. (13) over a wide
range of parameters. The increased magnitude of an
for larger pulse areas Ωτ reflects that the amplitude
of Cn has a positive correlation with Ωτ . Dashed
lines indicate the position of each peak with varying
pulse length τ . Their tilt and curvature are due to
the contribution from φ(δ). All the points are fit-

ted simultaneously to find W̃ = 2π × (0.90 ± 0.02)
Hz[17] for the typical atom number of 3000. Since
atoms are distributed over 500 ∼ 1000 lattice sites,
this represents 3 ∼ 6 atoms per site.

The alternative measurement of W̃ is performed
by measuring the frequency shift of the central peak
δI0 for various p1 and fitting the result using Eq. (10)

for W̃ . For each measurement, p1 is set to a de-
sired value by changing the pulse areas of both of
the Ramsey pulses. δI0 is then determined by mea-
suring the shift of the central peak while alternat-
ing between high atom number N (H) and low atom
number N (L). The frequency shift δI0 for a specific

atom numberN (T) is extrapolated as
δ
I(H)
0 −δ

I(L)
0

N(H)−N(L)N
(T)

where δ
I(H)
0 − δ

I(L)
0 is the shift measured in the ex-

periment. The measurements results for δI0 are fit-
ted as a linear function of p1 in Figure 6(c), and

the fitting gives W̃ = 2π × (1.07 ± 0.06) Hz for the

nominal atom number of N (T) = 3000 used in the
asymmetry-based measurements.
The stated uncertainties represent only the statis-

tical uncertainty of the contributing measurements
and do not account for changes in experimental con-
ditions between measurements. Realistically, we ex-
pect about ∼ 5% variation in the trap depth D
for each measurement. This implies ∼ 10% uncer-

tainty of W̃ , when considering the empirically ob-
served scaling of collisional frequency shifts as D2

or greater. A similar discrepancy will occur if the
number of populated lattice sites changes. We thus
consider the two methods to show agreement within
our measurement precision.

IV. CONCLUSION

In conclusion, the decomposed description suc-
ceeds in providing simple explanations for the loss
of the contrast of the Ramsey spectra in the pres-
ence of atomic interactions, and the theoretical pre-
diction shows great agreement with the experiment.
The quantitative relationship between the asym-
metry and the interaction parameter W shown in
this research reveals that the Ramsey spectra con-
tain information about atomic interactions, which
form an important systematic effect in atomic clocks.
Specifically, the asymmetry-based measurement al-
lows extracting information about the strength of
the atomic interactions without changing the atom
density, which will find useful applications in a case
where changing atom number introduces additional
effects such as the variation of the populated number
of lattice sites.
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