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The apparent absence of meaningful assignments of electrons and indistinguishable nuclei to par-
ticular atoms in a chemical aggregate would seem to preclude quantum-mechanical definition of
atomic Hamiltonian operators within molecules and matter. The electronic energies of individual
constituent atoms, as well as the interactions between them, are accordingly widely perceived as ob-
jectively undefined in molecular quantum theory, requiring additional auxiliary conditions to achieve
quantitative specificity, giving rise to a plethora of individual preferences. Here we address the issue
of assignments of electrons to atoms within molecules at the Born-Oppenheimer classical “fixed-
nuclei” level of theory, and provide thereby quantum-mechanical definitions of atomic operators
and of the interactions between them. In the spirit of early work of Longuet-Higgins, a “van-der-
Waals” subgroup of the full molecular electronic symmetric group is shown to facilitate assignments
of electrons to particular atomic nuclei in a molecule. The orthonormal (Eisenschitz-London) outer-
products of atomic eigenstates that provide separable Hilbert space representations of this symmetric
subgroup furthermore support totally antisymmetric solutions of the molecular Schrödinger equa-
tion. Self-adjoint atomic and atomic-interaction operators within a molecule defined in this way
are seen to have universal Hermitian matrix representatives and physically significant expectation
values in totally antisymmetric molecular eigenstates. Adiabatic Born-Oppenheimer molecular en-
ergies emerge naturally from the development in the form of sums of the energies of individual
atomic constituents, and of their atomic pairwise interactions, in the absence of additional auxiliary
conditions. A detailed and nuanced quantitative description of electronic structure and bonding is
provided thereby which includes the interplay between atomic promotion and intereaction energies,
common representations of atomic-state hybridization and inter-atomic charge apportionment, po-
tentially measurable multi-atom entanglements upon coherent dissociations of molecules, and other
attributes of the development revealed by selected illustrative calculations. These include applica-
tions to the ground and electronically excited states of diatomic and triatomic hydrogen molecules,
which exhibit significant accommodation among the atomic promotion and interaction energies, as
well as entanglements among atomic states, over the entire range of molecular geometries transversed
in the course of two- and three-atom dissociations.

Pacs: 03.65.-w, 33.15.-e, 31.10.+z, 33.15.Fm, 61.46.Df, 73.22.-f, 78.67.Bf, 03.65.Aa

I. INTRODUCTION

While it is universally agreed upon that “all things are
made of atoms” [1], the notion of an atom in a molecule
[2] has been relegated by knowledgeable theorists to the
status of a “conceptual construct” or “noumenon”, ob-
servationally unknowable and without unique definition
[3–5]. Quantum-mechanical evaluations of the energies
of individual atoms and of their mutual interactions in
molecules using molecular eigenfunctions are correspond-
ingly thought to require introduction of subjective aux-
iliary conditions to achieve specificity in this connec-
tion [6], giving rise to unlimited individual preferences,
and rendering unique theoretical definition of atomic and
bonding energies within molecules continuingly elusive,
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even at the Born-Oppenheimer level of theory [7].

Such unresolved fundamental issues are seemingly con-
sequent of the apparent absence of unique quantum-
mechanical operator and matrix representatives of the
atomic constituents of molecules and matter, the re-
quired definitions apparently not in simultaneous accor-
dance with both the principles of quantum theory [8] and
Pauli’s Exclusion Principle [9]. In this absence, disparate
subjective physical interpretations of calculated molecu-
lar wave functions, and corresponding quantitative parti-
tions of total electronic energies into atomic and bonding
contributions, are a continuing focus of attention, dating
from the earliest applications of quantum mechanics to
predictions of molecular structure and properties [10–16].

Subjective qualitative opinions offered in this regard
are also plentiful [17, 18], ranging from concurrence that
atoms in molecules and bonds between them are mean-
ingless illusions [19, 20] to acceptance of the numerous
perspectives offered as profitably enriching the subject
[21]. Of course, these circumstances have not prevented
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a plethora of variational and other quantum-mechanical
calculations of total energies and other molecular prop-
erties employing familiar antisymmetric orbital-product
and other less-familiar representations of basis states
[22, 23], as well as charge-density-related computational
approaches [24, 25], all performed largely in the fixed-
nuclei Born-Oppenheimer approximation.

The ever-increasing abundance of molecular calcula-
tions provides both impetus and opportunity to pur-
sue physical interpretations of atomic modifications and
chemical bonding in molecules in spite of the elusive na-
ture of these quantities. In addition to early consider-
ations of atomic valence-state definitions [10–16], uni-
tary transformations of the molecular orbitals obtained
from calculated eigenfunctions have been employed in at-
tempts to identify the presence of physically significant
quasi-atomic or bonding character therein, adopting var-
ious ex-post-facto quantitative criteria for this purpose,
such as extreme values of overlap populations or of orbital
repulsion energies [26–28]. Additionally, so called natural
bonding orbitals have been employed in diagnostic trans-
formations of molecular eigenfunctions, providing plausi-
ble charge-density images of atoms and of the bonds be-
tween them in molecules [29]. Many other partitions of
total and partial charge densities can also be employed in
assignments of spatial regions in molecules to constituent
atoms or chemical bonds, and to provide estimates of the
degree to which individual atoms retain their electronic
structural integrity when incorporated in molecules [30–
34], including use of information-theory [35] and com-
plexity concepts [36] in charge-density partitions, as well
as so-called orbital entanglements in complex electronic
systems [37], to mention only some examples to illustrate
the absence of a quantum-mechanically unique or gener-
ally agreed upon quantitative physical interpretation of
molecular electronic charge distributions.

Correspondingly, interest in molecular electronic en-
ergy decompositions is already evident in Slater’s early
Virial-Theorem-based separation of total molecular elec-
tronic energies into kinetic and potential energy com-
ponents [38], and especially in the quantitative compar-
isons of valence-bond and molecular-orbital methods of
Van Vleck, who refers specifically to the interplay be-
tween atomic promotion and net bonding energies in
the methane molecule [11–14]. Well-known Hellmann-
Feynman considerations reveal the forces on individual
atomic nuclei in molecules [39, 40], and also provide a ba-
sis for their chemical rationalizations [41]. Spatial parti-
tions of molecular one- and two-electron reduced density
matrices [6, 42] can also provide total electronic energies
expressed as sums of atomic and bonding contributions,
whereas energy-decomposition schemes more generally,
in conjunction with apportionment of spatial regions to
define individual atoms and the bonds between them [26–
33], introduce intuitively sensible but ultimately arbi-
trary fragment components or clusters to obtain quan-
titative energy expansions [43–59], to cite some represen-
tative examples. Recent reviews describe only a small

fraction of the many subjective preferences expressed for
interpretations of calculated molecular wave functions,
charge distributions, and energy partitions reported to
date [60, 61].

Attempts to define meaningful self-adjoint operator
representatives of atomic fragments in molecules, as re-
quired of dynamical variables by the principles of quan-
tum mechanics [8], soon encounter restrictions conse-
quent of electron indistinguishability [9], which seemingly
preclude their unique fixed assignments to particular nu-
clei in a molecule [2–5]. Specifically, atomic fragment
operators do not commute with arbitrary aggregate elec-
tron permutations, and so are apparently ill-defined in a
molecular context, with Coulomb interaction terms, for
example, changing from intra- to inter-atomic character
upon electron transpositions. The absence of meaningful
partitions of molecular Hamiltonian operators into sums
of constituent atomic and interaction-energy operators,
and of corresponding representations of atomic and in-
teraction Hamiltonians as Hermitian matrices evaluated
with proper molecular wave functions [62], has largely
confounded early promising quantum-mechanical atoms-
in-molecules formulations [63–65].

The foregoing issues are addressed in the present report
by adopting and extending methods introduced largely
by Longuet-Higgins [66]. Specifically, a subgroup of
the full symmetric group of electron permutations in
a molecule is employed to exclude explicit inter-atomic
electron permutations [67–69], facilitating assignments
of designated electrons to particular nuclei. The rep-
resentations of this subgroup are constructed in terms
of Eisenschitz-London spectral products of atomic eigen-
states, familiar from early combined studies of covalent
and van der Waals forces in molecules [70]. Quantum-
mechanical operators for atoms in molecules are obtained
in this representation with fixed electron-nuclei assign-
ments made in accordance with those assignments em-
ployed in the atomic spectral functions. Totally antisym-
metric eigenstates supported in this way provide molecu-
lar electronic energies which separate naturally into sums
of atomic and pairwise-atomic interaction-energy com-
ponents upon removal of so-called unphysical non-Pauli
eigenstates from the development [71–76].

Molecular (Born-Oppenheimer) Hamiltonian matrices
take particularly simple forms in atomic spectral-product
representations as sums over universal atomic and pair-
interaction Hamiltonian matrices which can be calcu-
lated once and for all and retained for repeated appli-
cations [71–76]. The corresponding total molecular ener-
gies are seen to also take the form of sums over atomic
and pairwise-atomic interaction energies, expressed in
terms of products of the universal atomic and interaction
Hamiltonian matrices and the calculated molecular eigen-
vectors. Atomic state distributions obtained in this way
describe the extent to which individual atoms are excited
or de-excited and their electrons apportioned to atomic
bonding partners over the molecular volume, whereas the
pairwise-atomic terms provide corresponding interaction
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energies between constituent atoms.
The theoretical development employing spectral-

product representations in definitions of atomic and
pairwise-atomic interaction energies is reported in Sec-
tion II, methods for computational implementation and
applications are described in Section III, and illustrative
calculations on selected diatomic and triatomic molecules
reported in Section IV. Prospects for measurements of
interaction energy profiles and corresponding promotion
energies employing ultra-fast two- and three-atom dis-
sociation techniques are indicated, and potentially mea-
sureable multi-atom entanglements in coherent dissocia-
tion of excited electronic states in diatomic and triatomic
hydrogen molecules are described.
Concluding remarks in Section V provide additional

physical interpretation of the atomic promotion and in-
teraction energies as derived from the spectral product
formalism, and on possible measurements of the entan-
gled atoms produced upon coherent dissociations of di-
atomic and triatomic hydrogen molecules. Finally, Sup-
plemental Material provides an analysis of the early
aforementioned atoms-in-molecules methods which iden-
tifies the origin of difficulties encountered in their applica-
tions [63–65], includes a comprehensive list of these pub-
lications as a convenience to the interested reader, and
distinguishes these approaches from the spectral theory
formalism employed here [71–76].

II. THEORETICAL DEVELOPMENT

Atomic spectral-product representations for molecules
are described in Subsection A, and the particular
electron-nuclei assignments made in Subsection B are
employed in partitioning the molecular Hamiltonian op-
erator into corresponding atomic and atomic-interaction
terms. These terms are evaluated as matrix representa-
tives in Subsection C, and total molecular electronic en-
ergies obtained from Hamiltonian matrix diagonalization
are expressed in terms of atomic and interaction ener-
gies in Subsection D. Additional technical aspects of the
atomic spectral theory are described elsewhere [71–76].

A. Spectral-product representations

Following Eisenschitz and London [70, 71], the or-

thonormal atomic spectral-product representations em-
ployed here are of the “van der Waals” form [77]

Φ(r : R) ≡

{

Φ
(1)(1 : R1)⊗Φ

(2)(2 : R2)⊗ · · ·Φ(N)(n : RN )
}

o

,

(1)

where the atomic row vectors Φ
(α)(i : Rα) for the

atoms α (= 1, 2, . . .N) located at positions Rα formally

contains all their totally antisymmetric electronic eigen-
states, with all electrons (nα) on atoms α designated by
the vector i of space and spin coordinates. The vectors
r (= 1,2, . . .n) and R (= R1,R2, . . .Rn) refer collec-
tively to the coordinates of the entire set of molecular
electrons (nt) and to the positions of the atomic nuclei
(N), respectively, whereas the subscript o refers to the
choice of an “odometer” ordering of the sequence of N -
atom product states obtained from the indicated tensor
products (⊗) of individual atomic-state row vectors [71–
76].
The absence of explicit inter-atomic antisymmetriza-

tion insures that the molecular basis of Eq. (1) is or-
thonormal. Moreover, the basis is complete as written
in the limit of closure for descriptions of totally antisym-
metric solutions of the Schrödinger equation, in spite of
the absence of term-by-term inter-atomic electron anti-
symmetry in the aggregate spectral products [70]. Fur-
thermore, the basis of Eq. (1) has been shown to con-
tain the totally antisymmetric representation of molecu-
lar electrons only once, but to also span other irreducible
representations of the symmetric group Snt

[73]. Since
the spectral-product basis transforms under the atomic-
product subgroup (Sn1 ⊗ Sn2 ⊗ · · · SnN

) of Snt
[72], as-

signments of particular electrons to specific nuclei, made
in accordance with the electron assignments of Eq. (1),
can be regarded as essentially fixed, as further demon-
strated in the sequel.

B. Partitioned molecular Hamiltonian operator

The many-electron Coulomb Hamiltonian operator is
written in accordance with the electron assignments of
Eq. (1) in the partitioned form [71–76]

Ĥ(r : R) =

N
∑

α=1

Ĥ(α)(i) +

N−1
∑

α=1

N
∑

β=α+1

V̂ (α,β)(i; j : Rαβ), (2)

where the atomic Hamiltonian operator for atom α [78]

Ĥ(α)(i) =

nα
∑

i

{

−
~
2

2m
∇2

i −
Zαe

2

riα
+

nα
∑

i′=i+1

e2

rii′

}

(3)

is symmetric in electron coordinates i assigned to atom
α, and the interaction term [78]

V̂ (α,β)(i; j : Rαβ) =

ZαZβe
2

Rαβ

−

nα
∑

i

Zβe
2

riβ
−

nβ
∑

j

Zαe
2

rjα
+

nα
∑

i

nβ
∑

j

e2

rij

≡ Ĥ(α,β)(i, j : Rαβ)− Ĥ(α,β)(i, j : Rαβ → ∞) (4)
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is written and evaluated in the form of the difference of
self-adjoint atomic-pair operators [71–74]

Ĥ(α,β)(i, j : Rαβ) ≡

Ĥ(α)(i) + Ĥ(β)(j) + V̂ (α,β)(i; j : Rαβ), (5)

which are symmetric in electron coordinates i ⊕ j, with
Rαβ ≡ Rβ −Rα defining the atomic-position separation
vectors. Since all electron coordinates (1,2, . . .n) are
assigned in accordance with the spectral-product repre-
sentation of Eq. (1), the atomic Ĥ(α)(i) and atomic-

pair Ĥ(α,β)(i, j : Rαβ) fragment Hamiltonian operators
of Eqs. (3) to (5) commute with all permutations in the
aforementioned atomic-product subgroup of Snt

, proving
quantum-mechanical definitions of essentially self-adjoint
atomic operators in the support of Eq. (1) [78].

C. Evaluating the molecular Hamiltonian matrix

The matrix representatives of the molecular Hamilto-
nian operators of Eqs. (2) to (5) are obtained in the
spectral-product basis in the form [71–73]

H(R) ≡ 〈Φ(r : R)|Ĥ(r : R)|Φ(r : R)〉

=

N
∑

α=1

H(α) +

N−1
∑

α=1

N
∑

β=α+1

V (α,β)(Rαβ), (6)

where the atomic Hamiltonian matrices are

H(α) =
{

I(1) ⊗ I(2) ⊗ · · · ǫ(α) ⊗ · · · I(N)
}

o

(7)

and the pairwise-atomic interaction Hamiltonian matri-
ces are

V (α,β)(Rαβ) =

{

I(1) ⊗ I(2) ⊗ · · ·v(α,β)(Rαβ)⊗ · · · I(N)
}

o

. (8)

The unit matrices I(α) in Eqs. (7) and (8) arise from
the orthonormality of the “bystander” atomic eigenstates
in the integrals over the spectral-product representation
in Eq. (6), whereas the smaller-dimensioned atomic and
atomic-pair matrices in Eqs. (7) and (8),

ǫ(α) ≡ 〈Φ(α)(i : Rα)|Ĥ
(α)(i)|Φ(α)(i : Rα)〉 (9)

v(α,β)(Rαβ) ≡ (10)

〈Φ(α,β)(i, j : Rαβ)|V̂
(α,β)(i, j : Rαβ)|Φ

(α,β)(i, j : Rαβ)〉,

require for their evaluation only the atomic Φ
(α)(i : Rα)

and atomic-pair product functions Φ
(α,β)(i, j : Rαβ) ≡

{Φ(α)(i : Rα) ⊗ Φ
(β)(j : Rβ)}, respectively, and the

self-adjoint operators of Eqs. (3) to (5) in these smaller
atomic and diatomic representations. Faithful matrix
representatives [78], which are universal computational
invariants of the corresponding atomic and interaction-
energy operators of Subsection B, are obtained in this
way, where the ordering symbol in Eqs. (7) and (8) in-
dicates these larger matrices must be brought into the
canonical ordering of Eq. (1) prior to their summation
in Eq. (6) [71].

D. Partitioned molecular energy expression

The molecular energies and Schrödinger eigenstates
corresponding to the Hamiltonian matrix of Eq. (6) are
obtained from the expression [76]

E(R) ≡ UH
†(R) ·H(R) ·UH(R)

=

N
∑

α=1

E(α)(R) +

N−1
∑

α=1

N
∑

β=α+1

E(α,β)(R), (11)

where the columns of UH (R) contain the eigenvectors
which provide the molecular eigenstates in the spectral-
product basis; Ψ(r : R) ≡ Φ(r : R) · UH(R) [72], and
the indicated decomposition of the total energy follows
employing Eq. (6). That is, in Eq. (11)

E(α)(R) ≡ UH
†(R) ·H(α) ·UH(R) (12)

is the atomic energy matrix for an atom (α) within a
molecule, and

E(α,β)(R) ≡ UH
†(R) · V (α,β)(Rαβ) ·UH(R) (13)

is the pairwise-atomic interaction-energy matrix for
atoms (α, β) in a molecule.
In the limit of closure [78],

Ĥ(r : R)Φ(r : R) → Φ(r : R) ·H(R), (14)

the molecular Hamiltonian matrix of Eq. (6) can be
blocked into separate non-interacting physical and un-
physical contributions [73]. In this limit, Eq. (11) pro-
vides separate Hamiltonian matrices and individual ex-
pressions for the physical and unphysical energies, as well
as corresponding Schrödinger eigenstates in the basis of
Eq. (1).
Since the molecular energy matrix of Eq. (11) is diag-

onal by construction, the sums of the diagonal terms of
the atomic and atomic-pair interaction-energy matrices
of Eqs. (12) and (13) automatically provide a decomposi-
tion of the total energies of the molecular states. The in-
dividual atomic and interaction energies on the diagonals
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of these matrices are weighted averages of the universal

atomic H(α) and atomic-pair V (α,β)(Rαβ) Hamiltonian
matrices over distributions of atomic-state and atomic-
pair-state virtual excitations, respectively, as determined
by the eigenvector columns of the matrix UH(R).
Accordingly, the diagonal elements of the atomic- and

interaction-energy matrices of Eqs. (12) and (13) provide
candidates for quantum-mechanical definitions of atomic
and pairwise-atomic interaction energies in a molecule at
arbitrary molecular configurations R. The off-diagonal
terms of the matrices of Eqs. (12) and (13) refer to eval-
uations of individual atomic and interaction-energy oper-
ators between different molecular eigenstates. The sums
of these off-diagonal terms vanish identically, in accor-
dance with Eq. (11), although the individual off-diagonal
atomic and interaction-energy terms generally need not
vanish at finite values of interatomic separation [79].

III. COMPUTATIONAL IMPLEMENTATION

Methods are described in Subsection A for the removal
of unphysical contributions to the formal development
of Section II. Expressions for practical calculations of
molecular energies and of atomic and interaction energies
of atoms in molecules in finite subspace spectral-product
representations are reported in Subsection B, and poten-
tially divergent terms appearing in these expressions are
identified and removed analytically in definitions of con-
vegent atomic and pairwise-atomic interaction energies
reported in Subsection C.

A. Finite-subspace spectral-product

representations

Computational implementation of the foregoing formal
development must overcome the presence of unphysical
contributions to the spectrum of the Hamiltonian ma-
trix in the spectral-product representation, and insure
the exact enforcement of antisymmetry in finite-subspace
versions of Eq. (1) [80]. Methods have been developed
for such purposes in finite atomic spectral-product repre-
sentations [72–76, 81–83], including a factored exact pair
version of the general development which is particularly
well suited for calculations of the fragment molecular en-
ergies of focus here [74–76, 83]. This approach provides
a Hamiltonian matrix identical in appearance to Eq. (6),
atomic Hamiltonian matrices in the form of those in Eq.
(7), and interaction Hamiltonian matrices that depend
only on the separation vectors of the individual atomic
pairs, as in Eq. (8).
The origins of the expressions reported here can be

understood by noting that the isolation of the totally
antisymmetric subspace of any spectral product repre-
sentation of the form of Eq. (1) can be carried out in a
numbers of ways, including, in particular, unitary trans-
formation of Hamiltonian matrices proving factored sub-

space spectral-product representations, or, equivalently,
by the use of explicitly antisymmetrized representations
transformed to spectral-product forms [73].
The isolation of the totally antisymmetric subspace of

Eq. (1) in the factored exact pair development is per-
formed in a two-step fashion in which the individual di-
atomic representations employed in Eq. (10) are first
transformed to antisymmetric forms, followed by isola-
tion of the totally antisymmetric subspace of the aggre-
gate basis of Eq. (1) [74–76, 83]. When the antisym-
metrized form of the chosen finite subspace of Eq. (1) is
made linearly independent, the second or aggregate step
of the symmetric group symmetry isolation process takes
the form of an overall unitary transformation of the ag-
gregate Hamiltonian matrix constructed in the first step
[83]. Consequently, calculations of total aggregate elec-
tronic energies in such cases are obtained from aggregate
Hamiltonian matrices in forms similar to those of Eqs.
(11) to (13), but employing different expressions for the
required Hamiltonian matrices of Eqs. (8) and (10).
Following the factored exact pair development [74–76,

83], the Hamiltonian matrix in the chosen finite subspace

Φ̃(r : R) of Eq. (1) takes the form [cf., Eqs. (6) to (10)]

H̃(R) ≡ 〈Φ̃(r : R)|Ĥ(r : R)|Φ̃(r : R)〉

=

N
∑

α=1

H̃
(α)

+

N−1
∑

α=1

N
∑

β=α+1

Ṽ
(α,β)

(Rαβ), (15)

where the atomic and interaction Hamiltonian matri-
ces are finite-dimensioned versions of Eqs. (7) and (8).
Although Eqs. (7) and (9) are otherwise unchanged,
v(α,β)(Rαβ) in Eq. (8) is given in the factored exact
pair form by the finite-subspace expression [cf., Eq.(4)]

ṽ(α,β)(Rαβ) ≡

ũ(α,β)
s

(Rαβ) · h̃
(α,β)

s
(Rαβ) · ũ

(α,β)
s

(Rαβ)
† − (ǫ(α) + ǫ(β))

(16)
in place of Eq. (10), where

h̃
(α,β)

s (Rαβ) ≡

〈Φ̃
(α,β)

s (i, j : Rαβ)|Ĥ
(α,β)(i, j : Rαβ)|Φ̃

(α,β)

s (i, j : Rαβ)〉
(17)

is the (α, β) atomic-pair Hamiltonian matrix, evalu-
ated employing an explicitly antisymmetrized orthonor-

mal finite-subspace diatomic representation Φ̃
(α,β)

s (i, j :
Rαβ) [74–76, 83]. The second term in Eq. (16) is as in

Eq. (4), whereas the unitary matrix ũ(α,β)
s (Rαβ) there

is obtained from the metric matrix s̃
(α,β)(Rαβ) of the

non-orthogonal antisymmetrized pair representation [84].
This transformation is employed to both construct the
explicitly antisymmetrized orthonormal finite-subspace
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diatomic representation and to recover the corresponding
orthonormal finite-subspace spectral-product representa-
tion Φ̃(r : R) of the interaction energy matrix of Eq. (8)
in closure [83].
In the more general variants of the two-step antisym-

metrization development [74–76, 83], the form of Eq. (15)
is retained but the atomic- and interaction-energy matri-
ces there become functions of the position coordinates
(R) of all the atoms in the molecule, consequent of the
dressing of atomic pair matrices by the aggregate anti-
symmetry enforcement. Since the condition for validity
of Eqs. (15) to (17) for calculations of aggregate energies
requires only the familiar linear independence of the to-
tally antisymmetrized form of the finite spectral-product
representation employed [74–76, 83], the calculated en-

ergies reported here are identical with those obtained
from the aforementioned more general computational ap-
proaches, but avoid the additional complications entailed
therein [76].

B. Partitioned molecular energies in finite

subspaces

Energy expressions corresponding to those of Eqs. (11)
to (13) are obtained employing the finite-subspace matri-

ces of Eqs. (16) and (17) and the unitary matrix ŨH(R)
that diagonalizes the corresponding total Hamiltonian
matrix of Eq. (15). The total electronic energy Ẽi(R) of
a particular molecular eigenstate (i) obtained in this way
takes the form of a sum of atomic energies for the con-
stituent atoms and an atomic-pairwise sum of interaction
energies [cf., Eq.(11)]

Ẽi(R) =

N
∑

α=1

Ẽ
(α)
i (R) +

N−1
∑

α=1

N
∑

β=α+1

Ẽ
(α,β)
i (R). (18)

The individual energy term Ẽ
(α)
i (R) for atom α in a

particular molecular eigenstate i is provided by the diag-

onal entry of the finite-subspace versions Ẽ
(α)

(R) of the
atomic energy matrices of Eq. (12) in the form

Ẽ
(α)
i (R) ≡ {Ẽ

(α)
(R)}ii =

Nsp
∑

k=1

{H̃
(α)

}kk |{ŨH(R)}ki|
2

=

N(α)
∑

k=1

ǫ̃
(α)
k |{ũ

(α)
H

(R)}ki|
2, (19)

where Nsp is the dimension of the aggregate finite

spectral-product representation, N (α) is the dimension

of the atomic representation Φ̃
(α)

(i : Rα), and ũ
(α)
H

(R)
is the reduced “one-atom” density matrix derived from
the unitary spectral-product solution matrix ŨH(R) [71]
for atom α, employing Eq. (7) in the last line.

Similarly, the diagonal term Ẽ
(α,β)
i (R) of the finite-

subspace version Ẽ
(α,β)

(R) of the interaction-energy ma-
trix of Eq. (13) for atoms α and β takes the form

Ẽ
(α,β)
i (R) ≡ {Ẽ

(α,β)
(R)}ii =

Nsp
∑

k=1

Nsp
∑

l=1

{ŨH(R)†}ik{Ṽ
(α,β)

(Rαβ)}kl · {ŨH(R)}li =

N(α)
∑

k=1

N(β)
∑

l=1

{ũ
(α,β)
H

(R)†}ik{ṽ
(α,β)(Rαβ)}kl · {ũ

(α,β)
H

(R)}li,

(20)

where ũH
(α,β)(R) is the reduced “two-atom” density

matrix for the atoms α and β derived from the matrix
ŨH(R) [71], and the sums in the last line are over the
individual product states describing the atomic-pairwise
interaction Hamiltonian matrix of Eqs. (16) and (17).
Further reduction of the expression of Eq. (20) can be

made by diagonalizing the atomic-pairwise Hamiltonian

matrix h̃
(α,β)

s (Rαβ) appearing in Eqs. (16) and (17),
and redefining the two-atom density matrix to include
this additional unitary matrix. In this way, an energy
expression is obtained involving a weighted sum of scalar
atomic-pairwise interaction-energy curves in a form sim-
ilar to the weighted sum of atomic energies of Eq. (19).

C. Quantum-mechanical definition of atomic

promotion and atomic pairwise interaction energies

in molecules

Although the preceeding analysis is satisfactory in its
essential features, the atomic energy terms of Eq. (19)
and the interaction-energy terms of Eq. (20) do not in-
dividually converge to finite values, in spite of the fact
that the total molecular energies of Eq. (18) converge
to variationally correct values in a suitable closure limit
[78]. It is easily established, both computationally and
analytically, that these divergences arise from continuum
atomic contributions to Eqs. (19) and (20), such terms
cancelling exactly in the total energy sum of Eq. (18)
[86]. Moreover, it is clear on physical grounds that only
bound atomic states are sensibly included in the defini-
tion of atomic promotion in any event, with continuum
contributions referring to ionized molecular states [10–
16].
When these diverging terms are eliminated analyti-

cally from the expression of Eq. (18), the finite pro-
motion energies for individual atoms are still given by
the expression of Eq. (19) but the atomic Hamiltonian
matrix therein is replaced by its discrete-state portion

only H̃
(α)

→ H̃d

(α)
[86]. Similarly, the atomic-pairwise

Hamiltonian matrix retains the form of Eq. (20) but
is now finite when the diverging terms in the matrix
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FIG. 1: Convergence of the total electronic energy of the
X

1Σ+
g ground state in molecular hydrogen (H2), calculated

employing increasing numbers (196 to 7,396) of products of
k = 1 to 9 sets of (s,p,d)k exact hydrogenic and eigenorbitals
constructed in even-tempered Slater basis sets [87, 88].

Ṽ
(α,β)

(Rαβ) are cancelled analytically by correspond-

ing atomic terms; Ṽ
(α,β)

(Rαβ) → Ṽint

(α,β)
(Rαβ) and

ṽ
(α,β)(Rαβ) → ṽint

(α,β)(Rαβ) [86].
Accordingly, the total molecular Hamiltonian matrix

retains the form of Eq. (18) but the promotion energy of
an atom α in a molecular state i is [cf., Eq (19)]

Ẽ
(α)
i (R) =

N
(α)
d
∑

k=1

ǫ̃
(α)
k |{ũ

(α)
H

(R)}ki|
2, (21)

with N
(α)
d

the number of bound atomic states for the
atom α, and the interaction energy is [cf., Eq. (20)]

Ẽ
(α,β)
i (R) ≡ (22)

N(α)
∑

k=1

N(β)
∑

l=1

{ũ
(α,β)
H

(R)†}ik·{ṽint
(α,β)(Rαβ)}kl·{ũ

(α,β)
H

(R)}li

where ṽint
(α,β)(Rαβ) excludes divergent terms [86].

It should be noted that extraction of the singular terms
in Eqs. (19) and (20) leave the total electronic energies
given by Eq. (18) invariant to this procedure.
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FIG. 2: Convergence of the total electronic energy of the a3Σ+
u

first excited state in molecular hydrogen (H2), calculated em-
ploying increasing numbers (196 to 7,396) of products of k
= 1 to 9 sets of (s,p,d)k exact hydrogenic and eigenorbitals
constructed in even-tempered Slater basis sets [87, 88].

IV. ILLUSTRATIVE APPLICATIONS

Calculations with the present formalism are reported of
total electronic energies and of the atomic-promotion and
pairwise interaction energies in diatomic and triatomic
hydrogen molecules. Accurate representations of selected
electronic states are obtained in providing quantitative
illustrations of the theoretical development in these pro-
totypically important cases.

A. Total electronic, atomic promotion, and

interaction energies in diatomic hydrogen molecules

Calculations are reported in the classic cases of the
homopolar bond in the ground singlet X1Σ+

g electronic

state and of the antibond in the triplet a3Σ+
u state of

moleculer hydrogen H2. Monotonic convergence is ob-
tained to values of the total electronic energies (Figures
1 and 2), atomic-promotion energies (Figures 3 and 4),
and chemical-interaction energies (Figures 5 and 6) in
these familiar attractive and repulsive states employing
large numbers of atomic-product molecular basis func-
tions. These are chosen in the form of atomic hydrogen
eigenorbitals constructed in unrestricted products of k
= 1 to 9 sets of (s,p,d)k atomic basis orbitals on the
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FIG. 3: Convergence of the atomic promotion energy of hy-
drogen atoms within the X

1Σ+
g state in molecular hydrogen,

calculated employing increasing numbers (196 to 7,396) of
products of k=1 to 9 sets of (s,p,d)k exact hydrogenic and
eigenorbitals constructed in even-tempered Slater basis sets
[87, 88].

two nuclear centers. The first set (k=1) of orbitals are
the lowest-lying fourteen exact hydrogen atom orbitals
(1s,2s,2p,3s,3p,3d), providing 196 orbital-product states,
whereas the additional (s,p,d)k basis orbital sets each
contain nine (1s(1),3p(3),3d(5)) even-tempered Slater or-
bitals having exponents αk = α0β

(k−2), for k = 2 to
9, where β = 1.7 and α = 0.001 [87, 88]. This com-
bined set of Slater orbitals spans 86 individual hydro-
gen eigenorbitals on each center, providing up to 7,396
atomic-product molecular hydrogen basis states.

In Figures 1 and 2 are shown calculated total elec-
tronic energy curves, including the 1/R nuclear repulsion
term, of the X1Σ+

g and a3Σ+
u states in H2 as functions

of nuclear separation. These curves converge monotoni-
cally from above with increasing basis set (k = 1 to 9)
to values in exact agreement with results obtained from
conventional valence-bond variational calculations in the
same basis sets [89]. In the present development the elec-
tronic energy curves of Eq. (18) in Figures 1 and 2 are
further partitioned in the calculations into atomic promo-
tion energies for the two atoms [Eq. (21)] and chemical
interaction energies between the atoms [Eq.(22)] in the
absence of additional auxiliary conditions.

In Figures 3 and 4 are shown atomic promotion energy
curves of hydrogen atoms within diatomic hydrogen in
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FIG. 4: Convergence of atomic promotion energy of hydrogen
atoms within the a

3Σ+
u state in molecular hydrogen, calcu-

lated employing increasing numbers (196 to 7,396) of products
of k=1 to 9 sets of (s,p,d)k exact hydrogenic and eigenorbitals
constructed in even-tempered Slater basis sets [87, 88].

the X1Σ+
g and a3Σ+

u states as functions of nuclear sep-
aration, obtained from Eq. (21). These curves are seen
to converge from below with increasing basis set to limit-
ing values which provide quantitative representations of
the contributions of the two atoms to the total molecular
electronic energy. It is easily understood from Eq. (21)
that the lower limit of the promotion energy of an atom
in a molecule from its ground electronic state is zero,
whereas an upper limit is provided by the first ionization
potential of the atom.

Evidently, the hydrogen atom promotion energy in the
ground electronic state of Figure 3 is a small fraction (≤
17%) of the maximum allowed value (13.6 eV), and de-
creases at both larger and smaller R values, whereas in
the repulsive state of Figure 4 the promotion energy rises
to a larger fraction (≤ 45%) of the maximum allowed, and
also lowers at larger and smaller separations (not shown).
The R → 0 behaviors are related to the electronic ener-
gies of the two molecular states in the united-atom (He)
limits, with the ground (1s2)1S atomic He state limit of
the X1Σ+

g molecular curve at -79.0 eV lying significantly

below the excited (1s2p)3P state -55.5 eV united atom
limit of the a3Σ+

u curve, both states lying well below
the energy of two ground-state hydrogen atoms (-27.2
eV) [90]. The atomic basis sets employed here do not
provide optimal representations of the atomic orbitals in
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FIG. 5: Convergence of mutual interaction energy between
hydrogen atoms in the X

1Σ+
g state of molecular hydrogen,

calculated employing increasing numbers (196 to 7,396) of
products of k=1 to 9 sets of (s,p,d)k exact hydrogenic and
eigenorbitals constructed in even-tempered Slater basis sets
[87, 88].

He. Nevertheless, the total electronic energies of Fig-
ures 1 and 2 and the atomic energies of Figures 3 and
4 obtained in the R → 0 limit show energy lowerings in
accord with these well known atomic values [90].

In Figures 5 and 6 are shown interaction energies be-
tween the two atoms in the X1Σ+

g ground state and the

first excited a3Σ+
u state of molecular hydrogen as func-

tions of atomic separation, calculated employing Eq. (22)
and the atomic-product molecular basis states described
above. These curves evidently exhibit monotonic con-
vergence from above to results that differ quantitatively
and qualitatively from the corresponding total electronic
energy curves of Figures 1 and 2.

The converged minimum interaction energy in the
ground molecular state of Figure 5 is seen to be signifi-
cantly lower than the adiabatic bond energy of the poten-
tial curve of Figure 1 (-8.2 eV vs. -4.7 eV), compensating
for the positive atomic promotion energy of Figure 3 for
this state in providing the correct total energy curve in
accordance with Eq. (18). Additionally, the interaction
energy curve is significantly broader than the total energy
curve, in accordance with the atomic promotion energy
curve extending over a similarly broad spatial extent.

In contrast to the adiabatic total energy curve of Fig-
ure 2, the interaction-energy curve of Figure 6 for the “re-
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FIG. 6: Convergence of mutual interaction energy between
hydrogen atoms in the a

3Σ+
u state of molecular hydrogen,

calculated employing increasing numbers (196 to 7,396) of
products of k=1 to 9 sets of (s,p,d)k exact hydrogenic and
eigenorbitals constructed in even-tempered Slater basis sets
[87, 88].

pulsive” triplet state shows a suprisingly deep and broad
well. This behavior compensates for the large promotion
energies of the two atoms shown in Figure 4 in providing
the total electronic energy of Figure 2. This interaction
energy curve also extends over a significant range of R
values, in accord with the corresponding range of the
atomic promotion energies in Figure 4. These accommo-
dating behavoirs for both singlet and triplet states verify
the numerical accuracy of the calculations, insuring that
the separate contributions from promotion and interac-
tion energies sum correctly to the total energy curves.

The interaction energy curves of Figure 5 and 6 pro-
vide new information complementary to that of the total
energy curves of Figures 1 and 2, which refer to the fa-
miliar adiabatic work required to dissociate H2 from a
separation R into two ground-state (1s) hydrogen atoms.
By contrast, in spite of being calculated under adiabatic
quantum-mechanical conditions, the curves of Figure 5
and 6 provide approximations to the work required or
released upon the “sudden” dissociation of H2 into the
promoted atomic states associated with Figures 3 and
4, in the absence of atomic electronic relaxation. The
curves of Figures 5 and 6 include in the dissociation pro-
cess the additional work associated with atomic promo-
tion over and above that depicted in Figures 1 and 2.
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FIG. 7: Upper Panel: Total electronic energy curves for
the EF1Σ+

g , GK1Σ+
g , HH̄

1Σ+
g , and P1Σ+

g electronic states
in diatomic molecular hydrogen (H2). Lower Panel: To-
tal energy curves for the B1Σ+

u , B’
1Σ+

u , B”B̄
1Σ+

u , and 4f1Σ+
u

electronic states of diatomic molecular hydrogen (H2), all cal-
culated as described in the text.

That is, while the adiabatic curves refer to a range of
atomic valence states traversed in the course of adiabatic
dissociation, the curves of Figures 5 and 6 refer to spe-
cific atomic valence states frozen in the course of sudden
dissociations. In principle, suitably designed very-short-
timescale photodissociation measurements could be per-
formed to reveal such sudden dissociation energies.

B. Atomic entanglements in the excited states of

molecular hydrogen

In the limit of large R, the dissociation products of
the two molecular hydrogen states considered above ul-
timately approach pairs of 1s atomic hydrogen atoms in
singlet and triplet spin coupling, as seen in Figures 1 and
2. In contrast, excited states of diatomic molecules can
dissociate to mixed ground and excited atomic states or
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FIG. 8: Upper Panel: Atomic promotion energy curves for
excited diatomic hydrogen molecule states of gerade summe-
try. Lower Panel: Atomic-pair interaction energy curves for
excited diatomic hydrogen molecule states of gerade summe-
try, all calculated as described in the text

pairs of possibly degenerate atomic states. These can
exhibit aspects of entanglements upon coherent dissoci-
ation [92–97], issues discussed previously in various con-
nections, including dissociations of diatomic hydrogen
molecules [98–103].
Detailed calculations of atomic entanglement phenom-

ena are reported here in the cases of electroncally ex-
cited states of diatomic hydrogen molecules having sin-
glet gerade and ungerade symmetries, including in par-
ticular the EF1Σ+

g , GK1Σ+
g , HH̄1Σ+

g , and P1Σ+
g ger-

ade states, and the B1Σ+
u , B’

1Σ+
u , B”B̄

1Σ+
u , and 4f1Σ+

u

ungerade states [104–108]. The EF1Σ+
g , HH̄

1Σ+
g , B’

1Σ+
u ,

and B”B̄1Σ+
u states are commonly termed “ionic” conse-

quent of the corresponding wide potential wells and the
contribution of H+ + H− charge-transfer configurations
in model quantum chemical calculations. By contrast,
representations of the form of Eq. (1) include only prod-
ucts of neutral atomic states in providing support for ac-
curate quantum mechanical calculations, which, however,
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also describe charge transfer phenomena [71–77, 83]. Ex-
plict charge-transfer configurations, when employed with

atomic product representations which already include
such terms [70, 71], lead to linear dependence, confirming
therebye the well-known physical equivalence of the two
apparently disparate forms of representation [70–75, 83].

In Figure 7 are shown the total energy curves of these
gerade and ungerade excited diatomic hydrogen states,
calculated employing the atomic hydrogen orbital rep-
resentations described in the ground-state calculations
reported in Figure 1 to 6 above. The atomic spectral-
product representations employed in the calculations of
Figure 7 comprise totals of 4,624 eigenorbital products
in each symmetry, ensuring convergence of the curves
shown to values in good agreement with previously re-
ported highly accurate results [106–108].

In Figures 8 and 9 are shown the atomic promotion and
atomic-pair interaction energies corresponding to the two
sets of total energy curves of Figure 7. The former fig-
ures are aligned to emphasize the interplay between pro-
motion and interaction energy terms in Eq. (18). Specif-
ically, it is seen from Figures 8 and 9 that variations in
the atomic promotion energies of the gerade and unger-
ade states considered are accompanied by corresponding
variations in the interaction energies in determining the
forms of the total electroniuc energy curves of Figure 7.

Of particular interest in Figure 8 are the rather large
variations in the atomic promotion energies, which are
comparable to those of the interaction energies, particu-
larly in the EF and GK states, indicating that the double-
well structures of the corresponding total energy curves
are consequences of both atomic promotions and bonding
intreractions. Similar remarks also apply to the atomic
promotion and interaction energy curves of Figure 9, par-
ticularly for the lowest lying ungerade state, having a
deep well.

The effects of the avoided curve crossing between the
two highest lying ungerade electronic energy curves of
Figure 7 are quite apparent in the corresponding atomic
promotion and interaction energy curves of Figure 9. Al-
though the total energy curves appear to actually cross
in Figure 7, detailed examination of the R ≈ 6.0 Bohr
region of the Lower Panel of Figure 7 shows an avoid-
ance of approximately 0.04 eV between the two curves.
The curves of Figure 9 clearly indicate the effects of the
avoidance present at ≈ 6 Bohr in the total energy curves,
confirming the diagonostic power of the energy partition-
ing of Eq. (18) in this case.

The features evident in the calculated total, atomic
promotion, and interaction energy curves of Figures 7, 8,
and 9 for the excited H2 states considered are in contrast
to those of Figure 1 to 6 for the lowest lying singlet and
triplet states in H2, which depict largely smooth unstruc-
tured variations with bond separation.
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FIG. 9: Upper Panel: Atomic promotion energy curves for
excited diatomic hydrogen molecule states of ungerade sum-
metry. Lower Panel: Atomic-pair interaction energy curves
for excited diatomic hydrogen molecule states of ungerade
summetry, all calculated as described in the text.

C. Atomic state promotion probabilities in

diatomic hydrogen molecules

Reduced “one-atom” and “two-atom” density matri-
ces [71], employed in Section III B, Eqs. (19) and (20),
provide quantitive measures of the contributions of the
various basis states of a given atom to its atomic and
atomic-pair populations in a particular molecular eigen-
state, and of the extent of consequent overall charge reap-
portionment within the molecule. The fomer attribute is
provided by the extent of atomic excitation into bound
hydrogen orbitals contributing to the atomic promotion
energy, whereas the latter is provided by the aggregate of
these and of contributions from bound Rydberg orbitals
and unbound continuum atomic states. This information
provides objective quantitative diagnostic descriptions of
the effects of chemical interactions on the distributions
of states of individual atoms in a molecule, and on the
nature of the chemical bonds between them.
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FIG. 10: Upper Panel: Atomic hydrogen orbital popula-
tions in the ground X

1Σ+
g state of molecular H2. A scale

change (X10) has been employed for the excited orbital popu-
lations. Lower Panel: Atomic hydrogen orbital populations
in the a

3Σ+
u excited state of molecular H2. A scale change

(X5) has been employed for excited orbital populations ex-
cept for the 2p state, which is scaled by the factor (X2).

In Figure 10 are shown atomic hydrogen state popula-
tions in the X1Σ+

g ground state and in the first excited

a3Σ+
u state of molecular hydrogen as functions of atomic

separation, calculated employing the one-atom density
matrices and the even-tempered atomic-product molecu-
lar basis states described in Subsection IV A. The curves
for the excited atomic populations in the Upper Panel
of Figure 10 are enhanced by the scaling factor (X10)
for better visualization, whereas the excited atomic pop-
ulations in the Lower Panel of Figure 10 are enhanced
by the scaling factor (X5), with the exception of the 2p
contribution, which is scaled by (X2). A color coding
is employed in both Panels of Figure 10 to identify the
symmetries of orbital promotions present (s-orbitals are
black, p-orbitals are red, d-orbitals are green)

There are evident similarities and differences in the
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FIG. 11: Upper Panel: Atomic hydrogen orbital popula-
tions in the EF1Σ+

g excited state in diatomic molecular hy-
drogen. Lower Panel: Atomic hydrogen orbital populations
in the GK1Σ+

g excited state in diatomic molecular hydrogen.
The color codeing employed in identifying the atomic hydro-
gen eigenorbitals is as in Figure 10.

curves reported in the Upper and Lower Panels of Figure
10 for the two molecular states. In the case of the sin-
glet ground state the 1s orbital is seen to be at least 80%
occupied at all atomic separations, whereas the 1s popu-
lation drops to ≈ 45% in the triplet state at smaller in-
teratomic separations, accommodating relatively large 2p
promotions in both cases. These behaviors are in accor-
dance with the corresponding atomic promotion energies
of Figures 3 and 4. Of course, the variations in atomic
populations depicted in Figure 10 ultimately underlie the
different behaviors of the atomic promotion energies and
interaction energy curves of Figures 3 to 6.

The significant 2p atomic hydrogen orbital populations
exhibited in both Panels of Figure 10, second only to that
of the dominant 1s orbital, largely determine the nature
of bonding in each case. In the singlet state, this 2p con-
tribution becomes smaller at smaller interatomic separa-
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tion, whereas in the triplet state the 2p orbital population
is still increasing at smaller R values. These behaviors
are clearly in accord with the united-atom limits of the
singlet and triplet states discussed in the preceeding Sub-
section IV-A, with the triplet state attaining an energy
well above that of the singlet state in this limit [90].

A number of the atomic population curves for bound
excited atomic hydrogen p and d states in Figure 10 are
seen to exhibit maxima in the general vicinity of the
extended bonding region in the X1Σ+

g state, as well as
small recurrences at larger R values, with excited atomic
s states apparently contributing in lesser amount. In con-
trast, the bonding in the triplet state shown in the Lower
Panel of Figure 10 is seen to be dominated by a 1s-2p ad-
mixture of atomic hydrogen orbitals, with significantly
smaller admixtures of other excited hydrogen orbitals.

The individual hydrogen state populations in both
Panels of Figure 10 also indicate rather small continuum
contributions in molecular hydrogen, reflecting only mod-
est charge transfer contributions to the two lowest-lying
molecular states in this homopolar compound [83]. The
relatively larger discrete atomic state contributions are
quite different for the two molecular states in the 1 to 6
Bohr region, associated with the different bonding char-
acteristics of the states, whereas the population curves
exhibit considerable qualitative similarity in the larger
R region associated with weak van der Waals attraction
[91].

In Figure 11 are shown as examples atomic hydrogen
orbital populations in the electronically excited EF1Σ+

g

and GK1Σ+
g states, which are seen from Figure 7 to

both exhibit double well structures. The origins of these
features have been discuss qualitatively for some while
[104, 105], issues which are here made more quantitative.
Specifically, the double well structure in the EF1Σ+

g to-
tal energy curve shown in the Upper Panel of Figure 7
can be attributed to the 2s to 2p population interchange
in the 2 to 4 Bohr interval depicted in the Upper Panel
of Figure 11, whereas the abrupt decay in the 3d or-
bital population in the 2 to 3 Bohr interval depicted in
the Lower Panel of Figure 11 seemingly accounts for the
double well structure in the GK1Σ+

g total energy curve
also shown in the Upper Panel of Figure 11. These quan-
titative results provide further clarification of the more
qualitative earlier discussions of the nature of the dou-
ble well excited electronic states of diatomic Hydrogen
molecules [104, 105].

Finally, it is seen from the Upper Panel of Figure 8 and
both Panels of Figure 11 that the EF1Σ+

g and GK1Σ+
g

states both approach admixtures of 1s (50%), 2s(25%),
and 2p(25%) atomic hydrogen orbitals at large values of
atomic separation. Accordingly, coherent dissociations of
these two states can provide entangled atoms in the orig-
inal Schrödinger meaning of the word (verschränkung),
largely consequent of the exact principle quantum num-
ber Coulombic degeneracy in this case. That is, upon
dissociation the two hydrogen atoms are regarded as sep-
arted non-interacting “subsystems” which are neverthe-
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FIG. 12: Electronic energies in symmetric collinear H3 (Ha-
Hb-Hc) (solid lines), in comparison with valence-bond results
(circles), calculated employing spectral products of hydrogen
spin orbitals on each center, as described in the text.

less still in comunication through the coherent nature
of the quantum mechanical description of intially com-
bined subsystems which undergo coherent dissociation.
Of course, results reported here in Figures 7 to 11 on ba-
sis of atomic spectral representations also provide quan-
titative descriptions of the atomic “subsystems” of di-
atomic hydrogen molecules at all geometries examined,
not just in coherent dissociation or verschränkung limits.
In particular, the preparation of the atomic subsystems is
made fully quantitative over the entire course of dissocia-
tion on basis of the atomic spectral product methodology
reported here.

D. Total electronic, atomic promotion, and

interaction energies in triatomic hydrogen molecules

Calculations are reported of total electronic energies,
atomic promotion energies, and interaction energies for
selected low-lying states of the H3 molecule in symmet-
ric collinear arrangements (Ha-Hb-Hc). The calculations
employ a (1s,2s,3s,2p,3p,3d) basis of fourteen exact hy-
drogen orbitals on each atom, supplemented with up to
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FIG. 13: Interaction energies between adjacent atoms (a-b
and b-c) in symmetric collinear H3 (Ha-Hb-Hc), calculated in
the basis sets employed for the total electronic energy calcu-
lations shown in Figure 12.

72 of the even-tempered Slater orbitals employed in the
H2 calculations of Figures 1 to 11 to achieve convergence
of all quantities for H3 reported. The particular focus
of this illustration is on the complex behaviors of the
atomic promotion and interaction energies of the cen-
tral and two outer atoms as functions of adjacent atom
separation (R=Rab=Rbc) in the H3 eigenstates consid-
ered. These include multiple entanglements among dif-
ferent atoms predicted in the limit of coherent three-body
molecular dissociation.

In Figure 12 are shown calculated low-lying total elec-
tronic energy curves in comparison with conventional
valence-bond values in this basis [89]. The present curves
are seen to be in excellent agreement with the valence-
bond results, and are also in good accord with other ac-
curate conventional calculations of selected doublet and
quartet states [116, 117]. The curves dissociating to three
ground-state hydrogen atoms include the X2Σ+

u , A
2Σ+

g ,

and a4Σ+
u states, whereas the three higher-lying states of

B2Σ+
g , b

4Σ+
u , and C2Σ+

u symmetry dissociate to a limit
that includes the promotion energy (10.2 eV) of a singly
excited hydrogen atom (1s → 2s or 2p). These curves
are judged to be converged at all R values shown, and

reproduce exactly the correct atomic dissociation limits.
The atomic-pairwise interaction energy curves for ad-

jacent atoms (a-b and b-c) shown in Figure 13 display
clearly the consequences of the avoidance between the
A2Σ+

g and B 2Σ+
g states evident in Figure 12, as well as

the consequences of a weak avoidance between the a4Σ+
u

and b4Σ+
u states, which is not particularly apparent in

the total energy curves. Specifically, the electronic in-
teraction energy curves between the adjacent atoms in
the A2Σ+

g and B 2Σ+
g states depicted in Figure 13 in-

clude abrupt changes as the avoidance region between the
two states is traversed in Figure 12 (R = 1.5-2.0 Bohr),
with simlar but less pronounced behaviors evident also
for the weakly avoiding a4Σ+

u and b4Σ+
u states (R= 1.0-

1.5 Bohr).
The interaction energy curves for the adjacent atoms in

the X2Σ+
u and C2Σ+

u states evidently are less structured,
although the latter curve shows a noticable deflection
and structure in the 3 to 4 Bohr interval, consequent of
interaction with a higher lying 2Σ+

u curve not shown [83].
The much weaker interaction energy curves between the
two outer atoms (Ha-Hc) in collinear H3 exhibit related
weak structures at smaller R values (not shown).
The Upper and Lower Panels in Figure 14 show the

variations of the atomic promotion energies of the outer
(a and c) and central (b) atoms, respectively, which com-
plement the interaction-energy curves of Figure 13. Their
depiction on a wide range of separations shows both
the extent of structures present in the curves over a 25
Bohr interval as well as the asymptotic energy values
approached in the limit of three-body molecular dissoci-
ation. The many structures shown, particularly for the
excited states of Figure 12, are consequent of a sharing
of the total promotion energy (10.2 eV) among the three
interacting atoms, as well as interactions between states
of idential symmetries.
The shapes of the promotion energy curves of all three

atoms in the ground X2Σ+
u state are seen from the two

Panels of Figure 14 to be in general accordance with
the smooth variation for diatomic H2 depicted in Fig-
ure 3. By contrast, the central and two outer atoms
in the avoiding A2Σ+

g and B 2Σ+
g states in Figure 14

show abrupt energy variations as the avoided crossing
region (1.5-2.0 Bohr) in Figure 12 is traversed adiabat-
ically. Also evident over the entire range of separations
depicted are compensating complementary variations be-
tween the central and outer atomic energies in the three
curves, B 2Σ+

g , C
2Σ+

u , and b 4Σ+
u , dissociating to excited

atomic states.
The central atom promotion energies of the B 2Σ+

g and

C 2Σ+
u states depicted in Figure 14 are seen to approach

unphysical ≈ 5.0 eV values associated with entangled
ground and excited atomic states in the limit of coherent
molecular dissociation, whereas the outer atoms in these
molecular states approach unphysical ≈ 2.7 eV values in
Figure 14. These results indicate that repeated ensemble
measurements of internal atomic energies in the dissocia-
tion limits of these two molecular states will give absolute
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FIG. 14: Upper Panel: Atomic promotion energies for the
equivalent outer atoms (a and c) in symmetric collinear H3

calculated in the basis set employed for the total energy curves
of Figure 12. Lower Panel: Atomic promotion energies for
the central atom (b) in symmetric collinear H3 (Ha-Hb-Hc)
calculated in the basis set employed for the total energy curves
of Figure 12.

ground (n=1; -13.6 eV) or excited state (n=2; -3.40 eV)
hydrogen atom energies with probabilities proportional
to the atomic-state populations in the dissociated B 2Σ+

g

and C 2Σ+
u molecular states.

The origins of these interesting large R behaviors are
found ultimately in the atomic compositions of the molec-
ular states involved. Specifically, all three atoms in the
B2Σ+

g and the C2Σ+
u states are found to exhibit mixed

populations of ground 1s and excited 2s or 2p atomic hy-
drogen orbitals in large R limits, a consequence relating
to the necessity of having any two of the three atoms re-
maining in their ground states along these singly excited
molecular energy curves. In contrast, the outer and cen-

tral atoms in the X2Σ+
u , A

2Σ+
g , a

4Σ+
u molecular curves

are seen from Figure 14 to all approach absolute ground
(-13.6 eV) state energies, whereas the b4Σ+

u molecular
state approaches an excited (-3.40 eV) atomic energy at
large R, in the absence of entanglements in the dissocia-
tion processes in these four states.
Although the ground state of triatomic molecular hy-

drogen is not a chemically stable compound, its three-
body photodissociation has been well studied employ-
ing stable H+

3 ions in conjunction with electron pick-up
methodolgies [117–121]. Accordingly, the present pre-
dictions, reporting atomic-state entanglements having
potentially measureable consequences in a simple well-
studied triatomic molecule, would seem to provide an
opportunity for corresponding experimental studies.
Additional calculation of atomic promotion and inter-

action energies in low-lying triatomic hydrogen states
not reported here, which include three-body dissociation
pathways relevant to Dalitz plot geometries conveniently
accessible to experimental observations [117–121], have
been reported separately elsewhere [91]. These calcula-
tions include in particular symmetric C3v triatomic disso-
ciations particularly well-suited for experimental obser-
vation in view of the corresponding equilibrium stucture
of the precursor H+

3 ion.

V. DISCUSSION AND CONCLUDING

REMARKS

Conventional quantum-chemical calculations of the
electronic structures and other attributes of molecules
and atomic clusters, performed primarily in the fixed-
nuclei Born-Oppenheimer approximation, have evolved
to a remarkable degree of sophistication and abundance
[22–25], enabled largely but not entirely by continuing
improvements in the computational hardware and soft-
ware available for this purpose. Considerable attention
has also been directed at plausible but arguably subjec-
tive physical interpretations of the many molecular elec-
tronic wave functions, charge density distributions, total
electronic energies, and other properties calculated em-
ploying such methods [60, 61].
Conceptual advances in these particular connections

have seemingly been much less in evidence, with the con-
tinuing absence of satisfactory and generally agreed upon
a priori quantum-mechanical definitions of the properties
of atoms in molecules and of the chemical bonds between
them, even in the Born-Oppenheimer approximation, re-
sulting in their relegation by knowledgeable theorists to
the status of observationally unknowable constructions
[3–7]. That is, it has apparently long been assumed that
the laws of quantum theory [8, 9], by themselves, do not
provide unique definitions of such “fragment” molecular
properties in the absence of other considerations [6], in
spite of early indications to the contrary [122].
In an extension of early work of Eisenschitz and

London [70], and of Longuet-Higgen [66], a previously
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described universal atomic-eigenstate-based methodol-
ogy for molecular calculations [70–76, 81–83] has been
adopted here to address these fundamental conceptual is-
sues. So-called atomic spectral-product representations
of a “van der Waals” subgroup of the molecular sym-
metric group provide universal Hermitian matrix rep-
resentatives of the commonly accepted forms of atomic
and atomic-interaction operators, and also span totally
antisymmetric Schrödinger eigenstates in the absence of
term-by-term basis antisymmetry.

In this way, a natural partitioning of the total elec-
tronic Hamiltonian matrix of a molecule is obtained in
terms of universal one-atom atomic and two-atom inter-
action energy matrices. Correspondingly, these atomic
and pairwise atomic fragment Hamiltonian matrices, in
combination with calculated molecular eigenstates and
identification and removal of surious cancelling diver-
gences, provide a total molecular energy expression in the
form of sums of well-defined atomic and atomic pairwise
bonding contributions, providing an attractive universal
a priori energy partitioning that follows from the laws of
quantummechanics alone. A conceptual basis is provided
therebye for quantitive estimates of atomic “promotion”
energies and “net” bonding energies, long made on ba-
sis of simple wave function expressions in the absence of
more general specific quantum-mechanical prescriptions
or definitions of the underlying operators and matrix rep-
resentatives required for these purposes [10–21].

The wide-spread adoption of many-electron basis sets
in term-by-term antisymmetric or essentially equivalent
forms commonly employed in the evaluation of molecular
Hamiltonian matrices has arguably complicated physi-
cal understanding and definitions of atomic operators,
their matrix representatives, and their expectation val-
ues within molecules. Moreover, such representations
apparently do not lead in a simple way to the energy
partitioning obtained from an atomic spectral-product
representation. It is the case, however, that totally an-
tisymmetric wave functions, no matter how represented,
can provide Hermitian fragment atomic and interaction
matrices and energies identical with those constructed
explicitly in equivalent spectral-product representations
[85], emphasizing that the present definitions follow from
only the laws of quantum theory and proper representa-
tions of self-adjoint atomic operators and their spectral
and matrix representatives.

Calculations of the familar electron-pair bonding and
anti-bonding states in diatomic hydrogen demonstrate
the bounded convergence of the total, atomic, and
atomic-interaction electronic energies obtained from the
formalism, as well as the seamless partitioning of the
total energy into its components in this case. Atomic-
state hybridization is accommodated automatically, ap-
portionment of electronic charge among the atoms sim-
ilarly takes place over the molecular volume via virtual
atomic excitations, and the atomic pairwise interaction
energy is balanced against the atomic promotion energy
in determining the total molecular electronic energy. Ad-

ditionally, charge-transfer effects important in selected
excited states of H2 have been shown previously to be
represented by the diffuse neutral atomic state products
automatically included in spectral-product representa-
tions, in the absence of explict H−+H+ charge-transfer
configurations [83].
The significant variations of atomic promotion and in-

teraction energies with molecular geometry reported here
for the ground and selected excited electronic states of
the symmetric collinear H3 molecule reveal a more nu-
anced picture of chemical bonding than conventional elec-
tronic energy surfaces alone provide. Entangled atomic
eigenstates are predicted by the expectation values of
individual atomic Hamiltonian operators in the coher-
ent adiabatic dissociation limits of molecular eigenstates.
Such results, even in the absence of curve crossings in
the simple case of symmetric collinear triatomic hydro-
gen reported here, are seen to be significantly more com-
plex than the better-known cases of the entangled limits
of homo-nuclear diatomic systems [92–103]. Since such
three-body dissociations can be achieved experimentally
in various ways under appropriate conditions [117–121],
an ensemble of measurements of the internal electronic
energies of entangled atomic fragments produced by co-
herent dissociation of polyatomic molecules can poten-
tially report such atomic state distributions for compar-
isons with theoretical predictions made on basis of the
present or other valid computational approaches.
Finally, it should be noted that the atomic spectral

product basis employed here, when regarded as a func-
tion of both electron and nuclear coordinates, provides a
representation suitable for addressing the so-called chem-
ical structure dilemma and its possible resolution [7].
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eza, and M. Reiher, Quantum entanglement in carbon-
carbon, carbon-prosphorous, and silicon-silicon bonds,
Phys. Chem. Chem. Phys. 16, 8872 (2014).

[38] J.C. Slater, The virial and molecular structure, J.
Chem. Phys. 1, 687 (1933).

[39] H. Hellmann, Einfhrung in die Quantenchemie (Leipzig:
Franz Deuticke, 1937) p. 285

[40] R.P. Feynman, Forces in molecules, Phys. Rev. 56 (4),
340 (1939).
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