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Spectral lines of radiating atoms are broadened by perturbations due to the surrounding plasma
environment. In line-broadening calculations, the statistical average of the perturbation is weighted
by the density matrix, which—in thermal equilibrium—contains correlations between the radiator
and plasma. These correlations, however, have been neglected by all line-broadening theories except
for the kinetic theory. The relaxation theory of line broadening is a mathematically exact deriva-
tion containing only one physical approximation: neglect of density-matrix correlations. We revisit
this derivation and improve it by including the correlations. The line-broadening operator derived
with the updated relaxation theory differs from that derived from the kinetic theory, though both
derivations are considered to be exact. The kinetic theory derivation predicts that density-matrix
correlations result a strong static shift of spectral lines. Our derivation, on the other hand, predicts
that the correlations are a frequency-dependent effect that affects the line wings, and there is not
shift of the line due to correlations. In addition, we predict that changes in the line shape due to
correlations are only noticeable at extremely high densities. To distinguish the more appropriate
model, we compare the shifts calculated with the relaxation and kinetic theory with data. The com-
parison shows support for the relaxation theory and casts into doubt the accuracy of the derivation
of the kinetic theory of line broadening.

I. INTRODUCTION

The broadening of spectral lines is important for many
applications, including diagnostics of laboratory and as-
trophysical plasmas [1, 2] and modeling opacities [3–6].
Atomic lines are broadened because the radiating atom
is perturbed by the charged particles (such as electrons
and ions) in the surrounding plasma.

There are three primary methods for calculating elec-
tron broadening: the impact theory [7, 8], the relaxation
theory [9], and the kinetic theory [10]; the different meth-
ods all give slightly different functional forms for the
electron-broadening operator. We will not discuss the im-
pact theory further since it contains a number of simpli-
fying assumptions. Since both the relaxation and kinetic
theories are more mathematically rigorous, we will focus
on the differences between them. There are two fun-
damental differences between the kinetic and relaxation
theories: how the broadening is related to the electron-
collision amplitude, and the treatment of the density ma-
trix. Here, we will focus on the differences in the density
matrix treatment.1

The electron-broadening operator is closely related
to the thermally averaged collision amplitude, which
is weighted by the density matrix [25]. The time-
dependence of the density matrix is governed by the time

∗ thogome@sandia.gov
1 The density matrix is an important tool in calculating kinetics

of quantum systems. Methods for solving for the time evolu-
tion of the density matrix vary, which include—but not limited
to—projection-operator techniques [11–15], solving BBGKY hi-
erarchy of differential equations [16–19], and Green’s function
methods [20–24].

evolution of the total atom plus plasma-electron system.

ρ(t) = e−iHtρ0e
iHt, (1)

where ρ0 ≡ ρ(t = 0) is the density matrix at a given ini-
tial time [9, 25], and H is the Hamiltonian of the total
system, consisting of radiator and plasma Hamiltonians
(Ha

0 and Hp
0 , respectively), and the interaction (V rp) be-

tween the radiator and plasma,

H = Hr
0 +Hp

0 + V rp, (2)

where the superscripts r and p denote radiator of interest
and perturbing plasma, respectively. The expected form
of ρ0 is that it is a thermal distribution of the total atom-
plasma system,

ρ0 = e−βH/Tr{e−βH}
= e−β(H

r
0+H

p
0+V

rp)/Tr{e−β(Hr
0+H

p
0+V

rp)}, (3)

where β = 1/kBT . The presence of V rp in the density
matrix creates correlations between the radiator and the
plasma. The kinetic theory is the only derivation that
uses this form. The relaxation theory neglect V rp in ρ0
and the density matrix becomes the populations of the
individual systems,

ρ0,relax ≈ ρr,uρp,u, (4)

thus ignoring the correlations in ρ0 between the atom and
plasma; this is a common approximation when calculat-
ing the time evolution of the density matrix [7, 11–14].

This is not to say that the omitting correlations in ρ0
neglects correlations entirely. According to Eq (1), cor-
relations will build up in ρ(t) as the plasma and radia-
tor evolve in time and several collisions have taken place
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[7, 9, 11–15]. In other words, the relaxation theory [9]
only neglects correlations at the initial time, t = 0, and
the correlations for t� 0 will be dominated by the colli-
sions. In this picture, the correlations in ρ0 will only be
important for early time evolution of ρ(t), and for the ap-
plication of spectral line broadening, this should only be
important for the wings of the line (where ∆ω is large).
Both Baranger [7] and Fano [9] have predicted that the
effect of the correlations in ρ0 should only be important
for plasma conditions where the coupling is high.

The kinetic-theory-based formalism that accounts
for initial density-matrix correlations predicts a large
frequency-independent shift of spectral lines [26].
Frequency-independent shifts imply that the correlations
in ρ(t) are always influenced by ρ0 regardless of how much
time has passed and how many collisions have occurred.
This seems to contradict the above prediction of Fano [9]
and Baranger [7] that the correlations in ρ0 affect only
the initial time evolution of ρ(t).

In this paper, we investigate the prediction of the ki-
netic theory in two ways. First, we check it theoreti-
cally by including density-matrix correlations in another
line-shape theory. Second, we check predictions of both
the relaxation and kinetic theories against measured line
shifts. In order to accomplish our first goal, we revisit
the relaxation theory of line broadening, which is math-
ematically exact and the only physical approximation is
the Eq (4). We do this with a straight-forward step in-
volving a specific definition of the identity operator. The
corrections to the line shape in the formalism presented
here differ from what is predicted in the kinetic theory
of line broadening [10]. In the derivation here, the ini-
tial correlations have a frequency-dependent effect on the
line shape, with the strongest changes in the wings, and
the smallest in the core; the overall change in the line
shape due to initial correlations is a minor asymmetry.
We then compare calculations using the relaxation and
kinetic theory formulae with experiment [27], and show
that the kinetic theory formulae over-predicts the line
shifts by several hundred percent. The differences in
derivation and the comparison with experiment cast the
kinetic theory results [10, 26, 28–30] into question.

The paper is organized as follows: we first show the
reader Fano’s derivation of the relaxation theory; second,
we update the relaxation theory to include a more general
density matrix; third, we perform a second-order evalua-
tion of the line shape operator and identify the new parts
due to correlations; we then provide a means of evaluat-
ing these new correlation terms; lastly, we compare our
results with the kinetic theory and experiment.

II. FANO’S RELAXATION THEORY

The line shape is given by the real part of the Fourier
transform of the dipole-dipole autocorrelation function

[15, 31],

I(ω) =
1

π
Re

∫ ∞
0

dteiωtTr{ ~D · ~D(t)ρ0}, (5)

where the trace is performed over all plasma and radiator
states; the time evolution of the dipole moment is given
in the Heisenberg picture,

~D(t) = eiHt ~De−iHt,

where H is the Hamiltonian of total radiator-plasma sys-
tem (given in Eq 2); and ρ0 is the density matrix. In the
Heisenberg picture ρ0 does not evolve in time, a cyclic
permutation of the operators can include ρ0 in the time
evolution,

I(ω) =
1

π
Re

∫ ∞
0

dteiωtTr{D ·
[
e−iHtρ0De

iHt
]
}

= Re

∫ ∞
0

dteiωtTr{D · e−iLt(ρ0D)} (6)

where the only difference between this and Eq (1) is that

the density matrix is multiplied by ~D. In Eq (6), we have
used the Liouville notation as a shorthand,

L(ρ0 ~D) = [H, (ρ0 ~D)] = H(ρ0 ~D)− (ρ0 ~D)H;

see Fano [9] or Zwanzig [15] for more details on Liouville
formalism. The line shape formalism can be written as a
function of frequency by moving the time integral inside
the trace and performing the integral,

I(ω) =
−1

π
ImTr

{
D

1

ω − L (ρ0D)

}
. (7)

The total system can be separated into the radiator and
the perturbing plasma coordinates, where we can split
the trace accordingly,

I(ω) =
−1

π
Im Trr

[
D Trp

{
1

ω − Lρ0
}
D

]
. (8)

The Liouville operator can be separated into the unper-
turbed and interaction Liouvilles, analogous to Eq (2),

L = Lr0 + Lp0 + LI . (9)

where

Lr0ρ0 = [Hr
0 , ρ0] (9a)

Lp0ρ0 = [Hp
0 , ρ0] (9b)

LIρ0 = [V r,p, ρ0] (9c)

For simplicity in the derivation, we will contain all non-
interacting Liouvilles into one operator, L0 = Lr0 + Lp0.
In order to evaluate the effect of the perturbers on the
radiator’s time evolution, it is convenient to isolate LI .
Fano rewrote the quantity inside the curly bracket of Eq
(8) as follows:

1

ω − L0 − LI
ρ0 =

1

ω − L0

[
1 + T (ω)

1

ω − L0

]
ρ0, (10)
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where

T (ω) = LI + LI(ω − L0)−1T (ω) (11a)

=
1

1− LI(ω − L0)−1
LI . (11b)

Here, T (ω) is the Liouville-generalized scattering “T”-
matrix (or collision amplitude) and contains the
frequency-dependent interaction between the radiator
and the perturbers. This is a particularly convenient
form since the interaction between the radiator and
plasma is isolated in T (ω) and is now linearized, so that a
density matrix expansion can be performed, as Fano did
in the original publication. The density expansion per-
mits everything to be written in terms of two- or three-
particle interactions.

Up to this point, Fano has not introduced any approx-
imation, and thus the expression is exact; Eq (10) will
be our starting point when we include a more general
density matrix.

Fano introduced the approximation that the density
matrix could be approximated as

ρ0 ≈ ρr,uρp,u, (12)

ρr,u = e−βH
r
0 /Tr{e−βHr

0 } (12a)

ρp,u = e−βH
p
0 /Tr{e−βHp

0 } (12b)

where ρr,u is the density matrix of the isolated radia-
tor, and ρp,u is the density matrix of the perturbers; the
additional subscript, u denotes uncorrelated density ma-
trices, which is to distinguish these from the more general
definition,

ρr = Trp{ρ0}, (13)

which contains the correlations. This assumes that cor-
relations between the radiator and plasma are negligible.
Equation (12) has the property that it commutes with
(ω − L0)−1. The perturber density matrix was moved
to the other side of (ω − L0)−1 so it is adjacent to the
“T”-matrix,

1

ω − Lρr,uρp,u =
1

ω − L0

[
ρp,u + T (ω)ρp,u

1

ω − L0

]
ρr,u.

Then the trace in Eq (8) can be re-written as follows:

Trp

{
1

ω − Lρr,uρp
}

=
1

ω − Lr0

[
1 + 〈T (ω)〉p

1

ω − Lr0

]
ρr,u,

(14)
where

〈T (ω)〉p = Trp{T (ω)ρp,u}. (15)

The average T (ω) contains all the effects of the interac-
tion of the radiator with the plasma.

It is desirable to connect Eq (14) to more commonly-
used expression for the line-shape function [7, 31, 32]:

I(ω) =
−1

π
Im Trr

[
D

1

ω − Lr0 −H(ω)
ρr,uD

]
, (16)

where H(ω) is the line-broadening operator and governs
the time evolution of the radiator due to the average
perturbation from the plasma. In other words, we need
to find a functional form for H(ω) that satisfies

1

ω − Lr0 −H(ω)
=

1

ω − Lr0

[
1 + 〈T (ω)〉p

1

ω − Lr0

]
,

where the expression for H(ω) that satisfies this equation
is

H(ω) =
1

1 + 〈T (ω)〉p (ω − Lr0)−1
〈T (ω)〉p . (17)

This is Fano’s final expression for the electron-broadening
operator, and is valid for conditions when density matrix
correlations are not important.

III. INCLUDING OFF-DIAGONAL DENSITY
MATRIX TERMS

We now want to derive a line-broadening function that
contains a density matrix that includes correlations; our
starting point is Eq (10). We need to manipulate Eq
(10) so that when we perform the trace, it becomes a
form similar to Eq (14),

Trp

{
1

ω − L0

[
1 + T (ω)

1

ω − L0

]
ρ0

}
=

1

ω − Lr0

[
1 + 〈T(ω)〉p

1

ω − Lr0

]
ρr, (18)

where the unknown function T(ω) contains all of the
radiator-perturber interactions (including the density
matrix) and would replace T (ω) in evaluating the
electron-broadening operator in Eq (17); here, ρr is de-
fined according to Eq (13).

When the trace is performed on the first term on the
left-hand side of Eq (18), it is similar in form to Eq (14),

Trp{(ω − L0)−1ρ0} = (ω − Lr0)−1ρr.

To put the second term (on the left-hand side of Eq 18)
in the desired form, we multiply on the right by the unit
operator

I = ρ−1r (ω − Lr0)
1

ω − Lr0
ρr, (19)

so that

1

ω − L0
T (ω)

1

ω − L0
ρ0 = (20)

=
1

ω − L0
T (ω)

1

ω − L0
ρ0ρ
−1
r (ω − Lr0)

1

ω − Lr0
ρr

=
1

ω − L0
T(ω)

1

ω − Lr0
ρr

T(ω) = T (ω)
1

ω − L0
ρ0ρ
−1
r (ω − Lr0). (21)



4

When we perform the trace over the plasma coordinates,
this becomes the right-hand side of Eq (18). Now the
electron-broadening operator is defined as

H(ω) =
1

1 + 〈T(ω)〉 (ω − Lr0)−1
〈T(ω)〉 (22)

T(ω) = LI
1

1− (ω − L0)−1LI

1

ω − L0
ρ0ρ
−1
r (ω − Lr0).

(23)

Use of Eq (19) is required because ρ0 no longer com-
mutes with L0. One property of Eq (23) is that if ρ0 is
defined as in Fano [9], then T(ω) reduces back to T (ω).
We note that we have made no approximations about the
structure of ρ0, therefore this formula can be applied to
a system with arbitrary initial conditions.

IV. SECOND-ORDER DENSITY MATRIX
CORRELATION CORRECTION

Calculations of the full N-body line-broadening prob-
lem are extremely difficult and would require a large
amount of computing time; computer simulations can
do this numerically [33–36], but these line-broadening
simulations are currently limited to classical particles.
Some simplifying approximations for semi-analytic eval-
uation include Taylor expanding the electron-broadening
operator (and T(ω)) to second order and collecting all
terms that are second-order in LI . In addition, the line-
broadening problem is often reduced to a binary-collision
result [7, 8], where the interactions between plasma par-
ticles are approximated with a screening factor [37–39];
these approximations are used by every semi-analytic cal-
culation. The second-order binary-collision result for the
electron broadening is [9, 40]

H(ω) ≈H(1) + H(2)(ω)−H(1)(ω)
1

ω − Lr0
H(1)(ω) (24)

H(1)(ω) = Trp{LIG(ω)ρ0}ρ−1r (ω − Lr0) (24a)

H(2)(ω) = Trp{LIG(ω)LIG(ω)ρ0}ρ−1r (ω − Lr0) (24b)

where N is the number of particles in the volume con-
sidered in the plasma, and G(ω) is a Green’s function,
defined to be

G(ω) =
1

ω − L0
.

In order to properly evaluate the density matrix, we
need to define the Hamiltonian as explicit sums over the
N plasma particles,

Hp
0 =

N∑
i

Hi
0 +

N∑
i

∑
j<i

V ij

V rp =

N∑
i

V r,i

and insert this into Eq (2) to get a total Hamiltonian,

H = Hr
0 +

N∑
i

Hi
0 +

N∑
i

∑
j<i

V ij +

N∑
i

V ri. (25)

We can write the density matrix in a slightly simplified
form,

ρ0 ∝ exp

{
−β
(
Hr

0 +

N∑
i=1

Hi
0 +

N∑
i=1

V ri

)}
, (26)

by assuming that we can account for the V ij terms by
screening V ri [10, 28, 41]. Trying to solve for this density
matrix explicitly is impractical, and a simpler method is
required.

One of the goals of this section is to clearly show how the density matrix correlations affect the line shape. We
therefore use an integral expansion [7, 15, 26, 29, 42] of Eq (26),

e−β(H
r
0+

∑
iH

i
0+

∑
i V

ri) = e−βH
r
0 e−β

∑
iH

i
0 − e−βHr

0 e−β
∑

iH
i
0

∫ β

0

dτeτ(H
r
0+

∑
j H

j
0)
∑
k

V rke−τ(H
r
0+

∑
j′ H

j′
0 +

∑
k′ V

rk′
),

(27)
so that the first term is the same uncorrelated density matrix that Fano [9] used. We define the uncorrelated and
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correlated density matrices as

ρ0 = [ρ̂r,uρ̂p,u + ρ̂c]/Tr{ρ̂r,uρ̂p,u + ρ̂c} (28)

ρ̂r,u = e−βH
r
0 (28a)

ρ̂p,u = e−β
∑

iH
i
0 (28b)

ρ̂c = −e−βHr
0 e−β

∑
iH

i
0

∫ β

0

dτeτ(H
r
0+

∑
j H

j
0)
∑
k

V rke−τ(H
r
0+

∑
j′ H

j′
0 +

∑
k′ V

rk′
). (28c)

where the density matrix with hats denote unnormalized density matrices.
Since our goal is to calculate H(ω) to second order in the interaction potential, we do not consider any density-

matrix-correlations for terms in Eq (24) that are already second-order in LI ; for these we will simply replace ρ0
with ρr,uρp,u and they will become the original Fano [9] results. Therefore, the only second-order contribution from

correlations will come from H(1)(ω). Using Eq (28) to create “uncorrelated” and “correlated” terms, H(1)(ω) becomes

H(1)(ω) = Trp
{
LI(ω − L0)−1ρ0

}
ρ−1r (ω − Lr0)

=
[
Trp{LI ρ̂p,uρ̂r,u}(ω − Lr0)−1ρ−1r (ω − Lr0) + Trp{LI(ω − L0)−1ρ̂c}ρ−1r (ω − Lr0)

]
/Tr{ρ̂r,uρ̂p,u + ρ̂c},(29)

where commutation of [L0, ρr,uρp,u] = 0 has been used for the first term on the right-hand side; no further simpli-
fications can be made to this equation without approximation. We desire to connect this first term to the original
derivation of Fano, we therefore will approximate—though not entirely accurate—the inverse radiator density matrix
as uncorrelated [10, 26]

ρ−1r ≈ ρ−1r,u.

This simplification allows us to take advantage of commutation relationships and remove the frequency-dependence
of this term; we will use this approximation for the rest of the paper. The uncorrelated line-broadening term approx-
imately becomes the static shift as originally derived by Fano,

Trp{LI ρ̂p,uρ̂r,u(ω − Lr0)−1}ρ−1r (ω − Lr0)/Tr{ρ̂r,uρ̂p,u + ρ̂c} ≈ Trp{LI ρ̂p}/Tr{ρ̂r,uρ̂p,u + ρ̂c}, (30)

The second term then becomes the lowest-order correction for the density matrix correlations,

Trp{LI(ω − L0)−1ρ̂c}ρ−1r (ω − Lr0)/Tr{ρ̂r,uρ̂p,u + ρ̂c}. (31)

V. EVALUATION OF THE CORRELATION CORRECTION

To properly evaluate the correction, we first need to find the proper normalization factor for ρ0, which requires
evaluating the trace of the total density matrix [9, 25]. The largest contribution to Tr{ρ0} is ρ̂r,uρ̂p,u (see appendix
A), we therefore approximate the trace as

Trrp{e−βH} ≈
[∑

r

e−βEr

](
V

λ3D

)N
; (32)

this will be accurate for the neutral hydrogen cases we explore here. The lowest-order correlated broadening term
(Eq 31) becomes

Tr{LI(ω − L0)−1ρc}ρ−1r (ω − Lr0) ≈

− Tr
{∑

i

∑
k

LriI (ω − L0)−1
(
λ3D
V

)N
e−β

∑
j H

j
0e−βH

r
0

∫ β

0

dτeτ(H
r
0+H

k
0 )V rke−τ(H

r
0+H

k
0 )

}
eβH

r
0 (ω − Lr0). (33)

The resulting interaction will have single-perturber (i = k) and two-perturber interactions (i 6= k), with the former

of order N , and the latter of order N2. In addition, exp(−β∑j H
j
0) will give a factor of V/λ3D for every term where

j 6= k or j 6= i. Using u and k to denote radiator and free-perturber states, the lowest-order density-matrix-correlation
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correction to the line broadening is (upper-state broadening only)

LI(ω − L0)−1ρcρ
−1
r (ω − Lr0) ≈

−n2eλ6D
∫ ∞
0

d3~k1e
−β 1

2k
2
1

〈
u~k1

∣∣V r1∣∣u′′~k1〉 (ω−Eu′′+El)
−1
∫ ∞
0

d3~k2e
−β 1

2k
2
2

〈
u′′~k2

∣∣V r2∣∣u′~k2〉 1− e−β(Eu′′−E′
u)

Eu′′ − Eu′
(ω−Eu′+El)

− neλ3D
∫ ∞
0

d3~k1

∫ ∞
0

d3~k′1

〈
u~k1

∣∣V r1∣∣u′′~k′1〉(ω − Eu′′ + El −
1

2
k′21 +

1

2
k21

)−1 〈
u′′~k′1

∣∣V r1∣∣u′~k1〉 e−β 1
2k

2
1×

1− e−β(Eu′′−Eu′+ 1
2k

′2
1 − 1

2k
2
1)

Eu′′ − Eu′ + 1
2k
′2
1 − 1

2k
2
1

(ω − Eu′ + El), (34)

where the superscripts on V denote on which particle
the operator is acting. This formula can be reduced to
radial integrals by performing a partial wave expansion
and using Wigner 3j and 6j symbols [29, 43–46], which is
done in detail in appendix B.

The inverse, (ω−L0)−1, can be solved in the same way
as in previous calculations where it is separated into its
real and imaginary parts [9, 43],

(ω − L0)−1 =
PV

ω − L0
− iπδ(ω − L0)

where PV is the principal value, and δ is the Dirac delta
function. There are multiple ways of evaluating these
terms, such as the method in O’Brien and Hooper [43]
and we will not discuss them further. Unfortunately,
there is no simplification for the real part in Eq (34),
but there is considerable simplification for the imaginary
part. The imaginary part of Eq (34) can be evaluated in
the same way as [29, 43, 45], but with a correction factor
(showing only upper-state broadening),

Im Trp{L1(ω − L0)−1ρcρ
−1
r (ω − Lr0)} ≈

− Im Trk1e
−β 1

2k
2
1
〈
uk1

∣∣V (ω − L0)−1V
∣∣u′k1〉×[

1− e−β(ω−Eu′+El)
]
. (35)

This term does nothing to the center of the line, since the
correction factor is zero when ∆ωu′l = ω−Eu′ +El = 0.
If ∆ωu′l becomes appreciable compared to β, the blue
part of the wings of the line will become depressed due
to the reduction in the broadening, and the red wing on
the other hand will become enhanced due to the increase
of the broadening. In addition, the real part will also be
zero at the line center due to the presence of (ω − L0),
but as the detuning becomes large, both the red and the
blue sides of the profile exhibit a redshift, meaning that
the depression of the blue wing, and the enhancement
of the red wing will become stronger. The overall effect
therefore, is to skew the wings of the profile toward the
red, rather than being symmetric about the line center.

The effects of the density matrix are going to be most
pronounced when the temperatures are small and the line
shapes are wide. For typical laboratory conditions, such
as those found in the Wiese et al. [27] experiment, the
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FIG. 1. Comparison of line profile with and without inclusion
of the correlated density-matrix correction (the second term
in Eq (29)). The example here is hte Lyβ transition of neutral
hydrogen at Te = 1eV and ne = 3.2 × 1018e/cm3. The effect
of the correlations is to slighlty skew the wings of the profile.

changes are not noticeable. Therefore, to illustrate how
the density matrix correlations change the line shape, we
chose to compare line shapes at extremely high density.
Figure 1 shows the line shape of Lyβ neutral hydrogen
with and without the density matrix correlations (the de-
tails of the electron broadening are in [47] and repeated in
appendix B). As discussed above, the correlations skew
the wings so that the red wing is enhanced, and the blue
wing is depressed. We can therefore conclude that except
for highly-coupled plasmas, the correlations in the initial
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density matrix are not important.

VI. COMPARISON WITH THE KINETIC
THEORY

First and foremost, we want to say that our derivation
does not match the results of Hussey et al. [10]. The
easiest way to see this is to write both results in the
Lippmann-Schwinger [48] expansion. Hussey’s electron
broadening operator (Eq 4.3 in [10]) is

Hkin(ω) = Trp{Ĥkin(ω)ρ0}ρ−1r (36)

where

Ĥkin(ω)ρ0 = LIρ0 + Ĥkin(ω)ρ0Gkin(ω)LI (37)

Gkin(ω) =
1

ω − Lr0 − Lp0 − Cr,p(ω)
(38)

where LI is a screened interaction, Cr,b(ω) contains
mean-field operators. The generalized relaxation theory
results, which were derived in appendix C, are

Hrelax(ω) = Trp

{
Ĥrelax(ω)ρ0

}
ρ−1r (ω − Lr0)

(39)

where

Ĥ(ω)ρ = LI(ω − Lr0 − Lp0)−1ρ0

+ LI(ω − Lr0 − Lp0)−1[1− P ]Ĥ(ω)ρ0, (40)

where P is a projection operator [11],

PAρ0 = ρ0ρ
−1
r Trp{Aρ0};

this form is fundamentally different than the kinetic the-
ory in two principle ways: how the density matrix affects
the broadening, and the presence of the projection oper-
ator.

The presence of the projection operator is unique to the
relaxation theory of line-broadening2. Hussey et al. [10]
shows that (after using Crp(ω) to screen LI in frequency-
dependent terms of H(ω)) that his derivation is formally
identical with the unified theory of Smith et al. [38]. We
point out that even though the final form of the uni-
fied theory does not contain a projection operator, it is
formally present in the derivation and is thrown out—a
point of criticism by Lee [49]. Therefore, because a pro-
jection operator is formally present in both the relaxation
and unified theories of line broadening, the lack of one in
the kinetic theory raises concerns. However, this is not
the proper place to discuss or justify the presence of the

2 Projection operators have never been included to calculate a line
shape; they have always been ignored.

projection operator in H(ω); this will be further exam-
ined in a later publication. The rest of this section is de-
voted to comparing how the density-matrix correlations
change the line broadening according to each prediction
(kinetic or relaxation theory).

Both our work and the Hussey et al. [10] deriva-
tion established that the lowest-order corrections due to
density-matrix correlations are in the first term of H(ω),
which we denote as H(1)(ω). Splitting the density matrix
into its uncorrelated and correlated terms, ρ0 = ρpρr+ρc,

the H(1)(ω) for the relaxation and kinetic theories are

H
(1)
kin(ω) = Trb{LIρp,u}+

Trp{LIρc}ρ−1r,u, (41)

H
(1)
rel(ω) = Trb{LIρp,u}+

Trp{LI(ω − L0)−1ρc}ρ−1r,u(ω − Lr0). (42)

Both theories have the same uncorrelated shift term. But
the correlated-density-matrix correction is different: ki-
netic theory is static (i.e. frequency independent), relax-
ation theory is frequency-dependent.

Hussey et al. [10] predicts a static shift (meaning the
whole line is shifted by this amount) that is second-order
in V (since both LI and ρc contain a factor of V ), which
makes this term dipole allowed. For near-neutral one-
electron atoms, dipole-allowed interactions are typically
the strongest interactions, which means that this shift
term can be quite large, and similar in magnitude to the
electron broadening. Interestingly, the first implementa-
tion of the Hussey et al. [10] results do not include the
static shift [28], though it is implemented in later calcu-
lations [26, 29, 30].

In our derivation, the density-matrix correlations are a
frequency-dependent effect. The far wings of the line are
shifted by the amount predicted by [10] and [26], which is
achieved by evaluating Eq (42) at the limit where ω →∞.
The line core, on the other hand, does not have this shift;
the presence of (ω−Lr0) in Eq (42) results in zero shift at
the line core, and a slight asymmetry of the spectral lines.
This asymmetry will enhance the red wing of the profile
and a depress the blue wing of the profile (as shown in
the previous section).

There is experimental evidence that questions the ac-
curacy of the kinetic-theory shift (Eq 41). The experi-
ment by Wiese et al. [27] measured high-density hydrogen
at temperatures of ∼ 1 eV and electron densities between
1016 − 1017e/cm3; the scatter of the measured shifts for
Hβ are less than 0.1Å. We computed H(ω) according to
the relaxation and kinetic theory formulae for Hβ, the
n = 4 → n = 2 transition; we use an expanded basis3

to ensure the accuracy of our calculation. The shifts are
compared in figure 2. At the highest-density conditions

3 We include the n = 5 states in addition to the n = 2 and n = 4
states; see Stambulchik et al. [50], Gomez et al. [36], or Kilcrease
et al. [51] for a discussion of basis set accuracy.
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FIG. 2. Predictions of shifts for the Relaxation theory and
the Kinetic theory compared to the measured shifts by Wiese
et al. [27]. The shifts from the relaxation theory, while not
perfect, agrees fairly well with the measured values. The shifts
from the kinetic theory, on the other hand, is several times
larger than the measured value.

(ne = 1017e/cm3), the shift from Eq (41) over predicts
the measured value by 675%, while the relaxation theory
under-predicts by 35%.

VII. CONCLUSION

Most line-broadening calculations assume that the
density matrix which describes the radiator-plasma sys-
tem is uncorrelated, meaning off-diagonal terms are ne-
glected. Only the kinetic theory [10] of spectral line
broadening has included these off-diagonal terms of the
density matrix in its derivation. We have updated the
mathematically rigorous relaxation theory of Fano [9]
to include the off-diagonal terms of the density matrix.
However, the line-broadening formulae we derive are dif-
ferent from that of Hussey’s [10] kinetic theory. The
largest difference between our work and the kinetic the-
ory is the appearance of a line shift in the latter. Compar-
ison with experiment shows that the kinetic theory for-
malism over-predicts the shifts. This work questions the
accuracy of the kinetic theory line-broadening derivation
of [10], and closer inspection of the derivation is needed.
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Appendix A: Normalizing the Correlated Density
Matrix

The density matrix, by definition, needs to be normal-
ized to unity [25],

Tr{ρ0} = 1. (A1)

Thus, whatever form the density matrix takes, needs to
be divided by the trace. In the discussion above, we
have separated the density matrix into its correlated and
uncorrelated parts:

ρ0 = ρr,uρp,u + ρc

and the trace is evaluated as the sum of both the uncor-
related and correlated parts of the density matrix. The
trace of the uncorrelated density matrix has been previ-
ously evaluated by Smith and Hooper [40] and O’Brien
and Hooper [43],

Trr{ρr,u} =
∑
i

e−βE
r
i (A2)

Trp{ρp,u} =

(
V

λ3D

)N
, (A3)

where V is the volume, λD is the thermal deBroglie wave-
length, and N is the number of particles inside of the
volume. We use this section to evaluate the trace of the
density matrix that includes correlations.

In the expansion of the density matrix given in Eq (27),
we obtain a first-order correction,

Tr{ρc} ≈ Tr
{
e−βE

r
i e−β

∑
lH

l
0×

∫ β

0

dτeτ(H
r
0+

∑
j H

j
0)
∑
i

V rie−τ(H
r
0−

∑
kH

k
0 )

}
(A4)
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Because of the trace, and the properties of the single-
particle operators in the matrix exponentials, the expo-
nentials in the integral will vanish, so that the trace re-
duces to

Tr{ρc} ≈
(

V

λ3D

)N−1
Tr

{
e−βE

r
i e−βH

1
0NV r1β

}
. (A5)

We can factor out volume and de Broglie wavelength terms out of Tr{ρc} to make it proportional to Tr{ρr,uρr,p},
Tr{ρ0} = Tr{ρr,uρp,u}+ Tr{ρc}

≈
∑
i

e−βE
r
i

(
V

λ3D

)N
−
∑
i

e−βE
r
i

(
V

λ3D

)N
λ3D

N

V
Tr

{
e−βE

r
i e−βH

i
0V riβ

}[∑
i

e−βE
r
i

]−1
, (A6)

so that we can write the trace of the total density matrix as

Tr{ρ0} ≈ Tr{ρr,uρp,u}
[

1− λ3D
N

V
Tr

{
e−βE

r
i e−βH

1
0V r1β

}(∑
i

e−βE
r
i

)−1 ]
. (A7)

In most cases, the density is small compared to unity,
meaning that the term in square brackets can almost al-
ways be approximated as unity,

Tr{ρ} = Tr{ρr,uρp,u}+ Tr{ρc}
≈ Tr{ρr,uρp,u}, (A8)

which is what we use as the normalization in section V.

Appendix B: Line-Broadening Details

This is an outline of the electron-broadening treatment
that we use for calculation of the profiles in figure 1 and
the shifts in figure 2. This was a code developed in Gomez
[47], and we repeat the details here for the reader’s conve-
nience. Our electron-broadening calculation treats both
the atomic and plasma electrons quantum mechanically.
This was modeled after the quantum-mechanical treat-
ments of Junkel et al. [29] and Woltz and Hooper [45],
but differ in that we include exchange effects in our cal-
culation. Since calculations of electron exchange in line
broadening are not documented for a second-order line
broadening theory (in the same way that direct-only cal-
culations are documented in [29, 45]), we show the work

here. The point here is not to open a discussion about
exchange; this will be given strict attention in a later pa-
per. Rather, this is to inform the reader of our electron-
broadening calculation.

For our electron-broadening treatment, we evaluate
H(ω) to second-order in LI , repeated from appendix C,

H(ω) = 〈LIG(ω)ρ0〉 ρ−1r (ω − Lr0)

+ 〈LIG(ω)LIG(ω)ρ0〉 ρ−1r (ω − Lr0)

−〈LIG(ω)ρ0〉 ρ−1r 〈LIG(ω)ρ0〉 ρ−1r (ω − Lr0)
In the main text, we reduce this to a binary-collision
approximation and we keep everything second order in
the interaction, including terms with the density matrix
correlations. The resulting approximation for H(ω) is

H(ω) = N 〈LIρp〉+N 〈LIG(ω)ρc〉 ρ−1r (ω − Lr0)

+N 〈LIG(ω)LIG(ω)ρp〉 ; (B1)

we are not currently evaluating the third term. The
reason for this is that N 〈LIρp〉 for neutral hydrogen is
so small that the third term is negligible compared to
N 〈LIG(ω)LIG(ω)ρp〉.

To calculate line shapes with the above, we use the
same full-Coulomb treatment as Junkel et al. [29], where
the individual terms are (showing only the upper-state
broadening term)

Hu,u′(ω) =neλ
3
D

∫ ∞
0

e−β
1
2k

2
1

〈
u~k1 |V |u′~k1

〉
d3~k1 + neλ

3
D

∫ ∞
0

e−β
1
2k

2
1

∫ ∞
0

〈
u~k1 |V |u′′~k2

〉
G(ω)

〈
u′′~k2 |ρc|u′~k1

〉
d3~k1

+neλ
3
D

∫
e−β

1
2k

2
1

∫ 〈
u~k1 |V |u′′~k2

〉
G(ω)

〈
u′′~k2 |V |u′~k1

〉
d3~k1, (B2)

where u denotes a set of atomic states and ~k denote a set of free-electron states. Here, we have neglected the two-
electron term in Eq (34), and all k subscripts denote the different states of only one electron (in the main text,
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the different subscripts were used to distinguish between electrons, but that is unnecessary here and the distinction
between states becomes clearer).

As in Junkel et al. [29] and Woltz and Hooper [45], our interaction potential, V is a Coulomb interaction, and
contain nuclear potential terms,

V (r1, r2) =

[
1

|~r1 − ~r2|
− 1

r1

]
,

1

|~r1 − ~r2|
=
∑
k

∑
q

rk<
rk+1
>

4π

2k + 1
Y ∗kq(r̂1)Ykq(r̂2), (B3)

where the electron-electron repulsion is Taylor expanded for easy evaluation, and r< and r> are the minimum and
maximum, respectively, of r1 and r2. To more simply evaluate the Coulomb matrix elements, we perform a partial-
wave expansion of the free-electron states, and assume that the atomic wavefunction can also be separable in radial
and angular components [29, 44, 45, 52]:

〈r|~k1〉 =
2

π

∑
l1m1

il
1

k1r
Fl1(k1, r)Y

∗
l1m1

(k̂1)Yl1m1
(r̂), 〈r|u〉 =

1

r
RuYlm(r̂), (B4)

where the radial wavefunctions Fl(k, r) are Coulomb waves (or plane waves for the case of neutral atoms). To evaluate
the Coulomb matrix elements, it becomes convenient to couple the angular momentum together to a total angular
momentum, L, with magnetic quantum number M . Coulomb matrix elements are independent of M , and depend on
m1 only through a Clepsch-Gordan coupling Coefficient [44]. We can evaluate the M and m1 averaged interaction
via a 3j-symbol sum rule,〈
uk1l

∣∣∣ ˆH(ω)
∣∣∣u′k1l〉 =

∑
L

〈
ul1k1L

∣∣∣ ˆH(ω)
∣∣∣u′lk1L〉 (2L+1)

∑
m1,M

(
lu l1 L
mu m1 −M

)2

=
∑
L

〈
ul1k1L

∣∣∣ ˆH(ω)
∣∣∣u′lk1L〉 (2L+ 1)

2lu + 1

After inserting this into Eq (B2), coupling the angular momentum of the atom and plasma electron, then performing
the sum over the magnetic quantum numbers, the electron-broadening operator becomes,

Hu,u′(ω) =
∑
L,S

(2L+ 1)(2S + 1)

(2lu + 1)(2s+ 1)
ne
λ3D
2

{∫ ∞
0

e−β
1
2k

2
1Au,u′(k1)dk1 +

∫ ∞
0

e−β
1
2k

2
1

∫ ∞
0

dk2dk1Bu,u′′,u′(k1, k2)×

[
1− e−β(Eu′′−Eu′+ 1

2k
2
2− 1

2k
2
1)

Eu′′ − Eu′ + 1
2k

2
2 − 1

2k
2
1

(ω − Eu′ + El) + 1

] [
PV

ω − Eu′′ + El − 1
2k

2
2 + 1

2k
2
1

− iπδ
(
ω − Eu′′ + El −

1

2
k22 +

1

2
k21

)]}
where the additional factor of 1/2 is from the density matrix now including plasma-electron spin, and s is the spin of
the atomic electron. In addition, we have used the following for shorthand [46]

Au,u′(k1) =
2

π
δlulu′

∑
l1

[∑
k

〈
ul1k1LS

∥∥Dk
∥∥u′l1k1LS〉+

〈
ul1k1LS

∥∥Ek∥∥u′l1k1LS〉 ] (B5)

Bu,u′′,u′(k1, k2) =
4

π2
δlu,lu′′

1

2

∑
l1,l2

[∑
k

〈
ul1k1LS

∥∥Dk
∥∥u′′l2k2LS〉+

〈
ul1k1LS

∥∥Ek∥∥u′′l2k2LS〉 ]×[∑
k

〈
u′′l2k2LS

∥∥Dk
∥∥u′l1k1LS〉+

〈
u′′l2k2LS

∥∥Ek∥∥u′l1k1LS〉 ] (B6)

〈
ul1k1LS

∥∥Dk
∥∥u′′l2k2LS〉 = (−1)L+lu+lu′′

(
lu k lu′′

0 0 0

)(
l1 k′ l2
0 0 0

){
lu l1 L
l2 lu′′ k

}
×∫ ∞

0

∫ ∞
0

dr2dr1Fl(k1, r2)Ru(r1)

[
rk>
rk+1
<

− δk,0
r1

]
Ru′(r1)Fl(k1, r2)

〈
ul1k1LS

∥∥Ek∥∥u′′l2k2LS〉 = (−1)S+lu+lu′′

(
lu k l2
0 0 0

)(
l1 k′ lu′′

0 0 0

){
lu l1 L
lu′′ l2 k

}
×∫ ∞

0

∫ ∞
0

dr2dr1Fl(k1, r2)Ru(r1)

[
rk>
rk+1
<

− δk,0
r1

]
Fl(k1, r1)Ru′(r2)

where we have labeled D for direct interaction and E for exchange interaction, and we have used the 3j and 6j
symbols [44] to perform the angular integrals. The factor of 1/2 in B is due to the anti-symmetrization operator and
the structure of the scattering “T”-matrix for hydrgeon-like systems [53–56].
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FIG. 3. Comparison of line profile calculated with the electron-broadening model here vs the Xenomorph code [36]. For this
comparison, the ion dynamics have been turned off in Xenomorph [36]. The two calculations use the same ion microfields so
that the only difference between the codes is the electron-broadening.

We want to present some level of validation of the electron-broadening model presented here. This code has
compared well with other validated codes in Alexiou et al. [57]. In addition, we compare this calculation with Gomez
et al. [36] (which has compared well with the Wiese et al. [27] experiment), which we show in figure 3 for typical
laboratory conditions. To do a proper comparison, the two methods have the same static-ion broadening so that the
only difference between this work and Xenomorph [36] is the electron broadening. And, as shown, in figure 3, the two
calculations give near identical results.

Appendix C: Derivation of the Lippmann-SchwingerRecursion Relationship for the Electron-Broadening
Operator

For purposes of comparison with the kinetic theory, and to link this work back to the Lippmann-Schwinger [48]
“T”-matrix form, we want to write the electron-broadening operator in a recursion-relationship form The electron-
broadening operator, H(ω) is given as a function of T(ω), and both can be Taylor expanded,

H(ω) =
1

1 + 〈T(ω)〉 (ω − Lr0)−1
〈T(ω)〉

= 〈T(ω)〉
∞∑
k=0

[
−(ω − Lr0)−1 〈T(ω)〉

]k
T(ω) = LI

1

1− (ω − L0)−1LI

1

ω − L0
ρ0ρ
−1
r (ω − Lr0).

= LI

∞∑
k=0

[
(ω − L0)−1LI

]k 1

ω − L0
ρ0ρ
−1
r (ω − Lr0).

If we insert the Taylor-expanded definition for T(ω) into the Taylor-expanded definition for H(ω) and collect all of
the terms of the same LI , the resulting equation for line-broadneing is (out to third order),

H(ω) = 〈LIG(ω)ρ0〉 ρ−1r (ω − Lr0)

+ 〈LIG(ω)LIG(ω)ρ0〉 ρ−1r (ω − Lr0)− 〈LIG(ω)ρ0〉 ρ−1r 〈LIG(ω)ρ0〉 ρ−1r (ω − Lr0)

+ 〈LIG(ω)LIG(ω)LIG(ω)ρ0〉 ρ−1r (ω − Lr0)− 〈LIG(ω)ρ0〉 ρ−1r 〈LIG(ω)LIG(ω)ρ0〉 ρ−1r (ω − Lr0)

−〈LIG(ω)LIG(ω)ρ0〉 ρ−1r 〈LIG(ω)ρ0〉 ρ−1r (ω − Lr0) + 〈LIG(ω)ρ0〉 ρ−1r 〈LIG(ω)ρ0〉 ρ−1r 〈LIG(ω)ρ0〉 ρ−1r (ω − Lr0),

(C1)

where G(ω) = (ω − L0)−1. There is a common factor of ρ−1r (ω − Lr0) on the right-hand side of all the terms; this
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can be factored out, and we can seek a function Ĥ(ω)
where

H(ω) = Trb{Ĥ(ω)}ρ−1r (ω − Lr0) (C2)

Based on Eq (C1), we can write

Ĥ(ω) = LI(ω−L0)−1ρ0+LI(ω−L0)−1[1−P ]Ĥ(ω) (C3)

where P is a projection operator that performs a trace

over the perturber coordinates,

PAρ0 = ρ0ρ
−1
r Trp{Aρ0}. (C4)

This projection operator has slightly different properties
than the one presented in Fano [9] or Smith and Hooper
[40]. Because of the lack of correlations, the projection
operators there commuted with (ω − L0)−1—ours does
not.
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