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In quantum algorithms discovered so far for simulating scattering processes in quantum

field theories, state preparation is the slowest step. We present a new algorithm for preparing

particle states to use in simulation of Fermionic Quantum Field Theory (QFT) on a quantum

computer, which is based on the matrix product state ansatz. We apply this to the massive

Gross-Neveu model in one spatial dimension to illustrate the algorithm, but we believe

the same algorithm with slight modifications can be used to simulate any one-dimensional

massive Fermionic QFT. In the case where the number of particle species is one, our algorithm

can prepare particle states using O
(

ǫ−3.23...
)

gates, which is much faster than previous known

results, namely O
(

ǫ−8−o(1)
)

. Furthermore, unlike previous methods which were based on

adiabatic state preparation, the method given here should be able to simulate quantum

phases unconnected to the free theory.



I. INTRODUCTION

Here we analyze the simulation of fermionic quantum field theory models on a quantum com-

puter. We use massive Gross-Neveu model to illustrate the procedure. However, the procedures are

quite general and can be used to simulate other fermionic systems too. The simulation consists of

initializing the incoming particle states on our quantum computer, simulating unitary time evolution

according to the lattice quantum field theory Hamiltonian, and then measuring appropriate observ-

ables to extract scattering cross sections. Here we focus exclusively on the state preparation step

of the algorithm, because it’s been the bottleneck of previous quantum algorithms for simulating

scattering in quantum field theories [13–15].

The original Gross-Neveu model is a relativistic and renormalizable quantum field theory of N

species of fermions in 1+1 space-time dimensions. It’s a rich theory and shares many interesting

features with QCD, e.g. asymptotic freedom and dimensional transmutation [8].

Our algorithm simulates scattering of fermionic particles in the Gross-Neveu quantum field theory

with a mass term. The mass term ensures that the theory is gapped, i.e. that there is a nonzero

energy difference between the ground state and first excited state in the infinite volume limit. This

allows us to construct the vacuum (ground state) efficiently by classically computing a Matrix

Product State (MPS) description of the vacuum state and then compiling that description directly

into a quantum circuit for preparing that state. We then use Rabi oscillations to efficiently excite

single-particle wavepackets. This completes the state preparation phase of the simulation, after

which the scattering of the particles off each other can be simulated using high order Suzuki-Trotter

formulae exactly as in [14] or using newer results for lattice hamiltonian simulation as in [9]. Relative

to previous state of the art [14] our new state preparation method has better asymptotic complexity

in the limit of high precision and is able to simulate the symmetry-broken phase of the Gross-Neveu

model, which was inaccessible to prior state preparation methods, which simulated an adiabatic

process starting from the free theory.
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II. OVERVIEW

A. Gross Neveu Model

The original Gross-Neveu theory was a QFT describing fermions in (1 + 1) space-time dimen-

sions, introduced by David Gross and André Neveu in 1974 as a toy model for quantum chromody-

namics (QCD). The theory has many interesting features; e.g. similar to QCD, it has asymptotic

freedom [8]. Here, as in [14], we consider a variant of the Gross-Neveu model in which the Lagrangian

density includes an explicit mass term. Specifically,

L =

N
∑

j=1

ψ̄j (i∂/−m0)ψ
j +

g2

2N





N
∑

j=1

ψ̄jψ
j





2

, (1)

where each field ψj (x) is a 2-component spinor, ∂/ =
∑

µ γ
µ∂µ where γµ are the 2D Dirac matrices,

m0 is the bare mass of the model, g is the coupling constant, and ψ̄ = ψ†γ0. Outside of high energy

physics, this model also has been used in different branches of condensed matter physics, such as

conducting polymers and systems of strongly correlated electrons [16, 29, 30].

One can verify that Eq. (1) is invariant under Lorentz transformations. Assuming m0 > 0, the

theory has a gap between vacuum and a single particle state. Lorentz-invariance will guarantee the

spectrum to be continuous above the first excitation. However, this symmetry and therefore the

continuous spectrum are violated when the theory is discretized. Despite this, as discussed in [14],

one can achieve any desired accuracy by using a sufficiently fine lattice spacing.

Another effect of discretizing the space-time and putting our system on a lattice would be

doubling of species of Dirac fermions, or the so called “Fermion doubling” problem [19]. For theories

with chiral symmetry, such as the massless Gross-Neveu model, there is no way to keep the action

real, local and free on a lattice and preserve translational invariance without getting the extra

fermions [18]. However, the mass term breaks chiral symmetry and we can therefore safely solve

the Fermion doubling problem in the massive case by adding a term to the Hamiltonian, known as

the Wilson term, which decouples the extra fermions by giving them large mass [34].
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B. Performance

In order to simulate the scattering process on a digital quantum computer, we first put our

system on a spatial lattice of length L and lattice spacing a with periodic boundary conditions.

We then start the algorithm by preparing the ground state of the resulting lattice quantum field

theory described by the discretized version of Eq. (1). There are efficient classical algorithms for

finding the ground state of one dimensional gapped Hamiltonians as an MPS. There are rigorous

upper bounds for the performance of classical algorithms to find the MPS [1, 11], which are not

necessarily applicable to our case (because the norms of individual local terms in the Hamiltonian

grow indefinitely as you shrink the lattice spacing a). For the purpose of this paper we use classical

numerical heuristics such as Density Matrix Renormalization Group (DMRG), that in practice run

in linear time in the number of sites. Specifically the runtime of DMRG in practice is O
(

nχ3
)

; where

χ is the bond dimension of the matrix product state [22, 23, 33]. Physical arguments show [20, 28]

that it should suffice to take bond dimension

χ = keS1/2 , (2)

where S1/2 is the entanglement entropy between the two half-spaces of the state being prepared,

and errors decrease superpolynomially as we increase k beyond unity. For the Gross-Neveu model

we can first consider the non-interacting (g = 0) case, in which the theory splits into N copies of a

Dirac quantum field theory. We thus have for the Gross-Neveu entropy SGN(g):

SGN
1/2 (g = 0) = NSDirac

1/2 . (3)

We are interested in asymptotically high precision. This is the limit where the correlation length

1/m is much longer than the lattice spacing a. In this limit we obtain the entropy from the conformal

field theory describing the massless fermion in one spatial dimension, namely [3, 7, 20, 21, 28]

SDirac
1/2 ≃ c

6
log

(

1

ma

)

(ma≪ 1) (4)

where c = 1 is the central charge. (In the possibly more familiar case of a line segment rather than

a half-space one would have twice the entanglement entropy: c
3 log

(

1
ma

)

.) Thus, we have

χ = ke
NSDirac

1/2 (5)

= k

(

1

ma

)N/6

. (6)
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The analysis of [14] shows that the discretization errors scale as ǫ ∼ a. Thus,

χ ∼ kǫ−N/6. (7)

The relationship between k and error can be understood using the results of [28]. Consider Lorentz-

invariant 1+1 dimensional quantum field theory discretized onto a lattice of spacing a. Let λ1 ≥
λ2 ≥ λ3 . . . be the eigenvalues of the reduced density matrix if we divide the vacuum into two halves.

In other words, λ1, λ2, . . . are the Schmidt coefficients in order of decreasing magnitude if we do a

Schmidt decomposition of the vacuum state. Then, as shown in [28],

f(χ) ≡
∞
∑

j=χ+1

λj ∼ exp

[

−
(lnχ− S1/2)

2

2S1/2

]

(8)

for χ large (i.e. χ > eS1/2). The magnitude of the error, as measured by trace distance, that we

incur by truncating the Schmidt decomposition to some finite bond dimension χ is captured by

f(χ). From Eq. (8) one sees that f(χ) = ǫ is achieved by choosing χ = keS1/2 with

k = exp
[√

2S1/2 ln(1/ǫ)
]

(9)

= exp

[
√

N

3
ln

(

1

ma

)

ln

(

1

ǫ

)

]

(10)

∼ ǫ−
√
N/3. (11)

where the last line follows from a ∼ ǫ. Combining Eq. (7) and Eq. (9) thus yields

χ = O(ǫ−N/6−
√
N/3). (12)

The classical pre-computation step using DMRG takes time of order nχ3, where n is the number

of lattice sites. Therefore, the complexity of this step is:

CDMRG = O
(

nǫ−N/2−
√
3N
)

(13)

= O
(

ǫ−N/2−1−
√
3N
)

, (14)

where the last line follows from n = L/a and a ∼ ǫ. As shown in subsequent sections, the quan-

tum state preparation circuit uses O(ǫ−3−o(1)) gates. Thus, the classical preprocessing step is the

dominant cost. In particular, for N = 1 the cost is O(ǫ−3.23...).

An MPS can be compiled into a quantum algorithm for preparing it using Singular Value De-

composition (SVD). The idea is to bring the MPS into a standard form, where each matrix is an
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isometry that maps the left virtual index to the right virtual index and the physical index. The

corresponding quantum circuit applies these isometries one by one on the qubits, until you have

the full MPS state. The overall classical subroutine for SVD on the matrices of our system runs

in a polynomial time less than nχ3. Applying these quantum isometries on our system would

need at most O
(

nχ2
)

gates, therefore, this step is not going to be the leading term in the overall

performance of the algorithm [24, 25].

After preparing the vacuum, the next step is to excite particle states. By introducing sinusoidal

source terms in the Hamiltonian, we induce Rabi oscillations to excite two particle wavepackets

with desired energy and momenta with success probabilities close to 1. Specifically in section IV,

we show that we can prepare a particle state of the interacting theory in time π
λ , with probability

P = 1−O

(

λ

δ
−
(

λ

ω

)2
)

, (15)

where λ indicates the strength of the source term, δ is the minimum detuning to higher excited

states, and ω is the energy of the particle compared to the vacuum. According to Eq. (15), λ
δ is

proportional to 1 − P , the chance of failure. We set this to ǫ, which is sufficient to achieve order

ǫ relative error in estimates of scattering cross sections, as defined below in Eq. (17). After the

particles are prepared we turn off the source term and let them interact under the Hamiltonian for

a desired time. The simulation of the Hamiltonians can be done using a high order Suzuki-Trotter

expansion.

Detailed analysis [9, 14] shows that by doing a high order Suzuki-Trotter expansion the simulation

of our Hamiltonian would require number of gates scaling as:

G = O

(

(

TL

a2

)1+o(1)

ǫ−o(1)
)

, (16)

where T is the total time we want to simulate and ǫ represents the desired precision of the calculated

scattering amplitude; i.e. if the discretized algorithm outputs scattering amplitude σ′ while the

actual cross section amplitude of the scattering is σ, then:

(1− ǫ)σ ≤ σ′ ≤ (1 + ǫ) σ . (17)

So, if the time required to excite a particle is π
λ , then the number of gates required to prepare the

initial particles would scale as:

Gprep = O
(

(

L
a2λ

)1+o(1)
ǫ−o(1)

)

(18)
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For high precision results we need a to be proportional to ǫ, so the overall cost of state preparation

would scale as:

Gprep = O
(

ǫ−3−o(1)
)

. (19)

This is asymptotically smaller than the complexity of the classical DMRG preprocessing step. There-

fore, the overall performance of this algorithm is limited by the classical part of it, O
(

ǫ−3.23...
)

. This

is much better than the previous result in [14], O
(

ǫ−8−o(1)). To simulate the interaction, we now

turn off the source term in the Hamiltonian and use a similar Suzuki-Trotter expansion to simulate

it. The performance of this part of the algorithm is also given by Eq. (16). After we simulate

the scattering of the particles we can read the outcome by the phase estimation algorithm, that is

explained in [14].

III. PREPARING MATRIX PRODUCT STATE OF THE GROUND STATE OF THE

INTERACTING HAMILTONIAN

We can use Jordan-Wigner transformation to map our fermionic system to spins [12]. Then we

can see if our spin Hamiltonian is local. We also know that there exists a mass gap for the theory.

If the (1 + 1)D Hamiltonian is local and gapped, then we know the ground state obeys an area

law[10, 31]. This in turn guarantees existence of a matrix product state representation with low

bond dimension [32].

To simulate the system on a quantum computer we discretize space onto a one-dimensional lattice

of spacing a. Including the Wilson term the resulting discretized version of the massive Gross-Neveu

model is given by the following Hamiltonian.

H = H0 +Hg +HW , (20)

where

H0 =
∑

x∈Ω
a

N
∑

j=1

∑

α∈{0,1}
ψ̄j,α(x)

[

−iγ1ψj,α(x+ a)− ψj,α(x− a)

2a
+m0ψj,α(x)

]

, (21)

Hg = −g
2
0

2

∑

x∈Ω
a

( N
∑

j=1

∑

α∈{0,1}
ψ̄j,α(x)ψj,α(x)

)2

, (22)

HW =
∑

x∈Ω
a

N
∑

j=1

∑

α∈{0,1}

[

− r

2a
ψ̄j,α(x) (ψj,α(x+ a)− 2ψj,α(x) + ψj,α(x− a))

]

. (23)
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Here, Hg is the interaction term, and HW is the Wilson term, 1 ≤ j ≤ N indicates the Fermion

species and 0 < r ≤ 1 is called the Wilson parameter. H is spatially local in the sense that it

consists only of single-site and nearest-neighbor terms on the lattice.

All of these Hamiltonian terms consist of pairs of ψ̄ψ terms, and as shown in Appendix A, the

Jordan-Wigner transformation yields local spin terms. Also, the massive Gross-Neveu model is

gapped, therefore the ground state of this theory obeys area law [10]. Therefore, as discussed in II B

we can find an MPS representation of the ground state in polynomial runtime. However, if we are

willing to repeat the simulation to reduce the statistical uncertainty, finding the MPS representation

would be a one-time cost and we don’t have to repeat it every time we run the quantum part of the

simulation. On the other hand, if we change any of the parameters, e.g. even the lattice spacing,

we will have to repeat this procedure [11].

IV. EXCITING THE STATE USING RABI OSCILLATIONS

After preparing the vacuum state using Matrix Product States, the next step is to prepare initial

wavepackets. We propose doing this by simulating the application of an oscillating perturbation to

the Hamiltonian which is on resonance for the creation of a single particle. We do this in two widely

separated locations to prepare a pair of wavepackets representing particles of high momentum on a

collision course. In broad terms, this is the same procedure proposed in the prior algorithm of [14].

However, our analysis here is nonperturbative and consequently achieves tighter error bounds as a

function of the strength of the driving term. We can thus improve the complexity of the algorithm

by driving the transition more rapidly while maintaining good upper bounds on error.

In more detail, we propose simulating the dynamics induced by

H(t) = H0 + λ cos(ωt)W (24)

where

W =

∫

dx
(

f(x)ψi,α(x) + f∗(x)ψ†
i,α(x)

)

(25)

and H0 is the unperturbed Gross-Neveu Hamiltonian. Here, i, α are chosen according to the de-

sired type of particle and f(x) is an envelope function that selects the wavepacket’s location and

momentum. For example, f(x) could be taken to be a gaussian: f(x) ∝ eipx−x
2/σ2 . As explained
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in [14], choosing an appropriate form of this envelope function f selects wavepacket states with the

desired momentum.

The driving frequency ω is taken to be on-resonance with the desired transition. If the wavepacket

is sufficiently broad spatially, and hence narrow in momentum space, then it has a relatively sharply

defined energy of
√

p2 +m2, which we use as our driving frequency ω. Our choice of f(x) ensures

that the matrix elements of W coupling to momenta outside the momentum space support of the

wavepacket are exponentially suppressed. Thus, the main source of error is the possibility of creating

the wrong number of particles. The operator W has zero matrix element to create states with even

numbers of particles. Thus, the nearest-to-resonance state that can be excited by W is the state of

three particles each with momentum p/3. The energy of this state is 3
√

(p/3)2 +m2, which in the

ultrarelativistic limit (p≫ m) exceeds the energy of the desired state (
√

p2 +m2) by 4m2/p. The

theory of Rabi oscillations shows that if we choose the strength of our driving term λ sufficiently

small compared to the strength of this detuning δ = 4m2/p the probability of exciting this three-

particle state can be arbitrarily suppressed. In the following subsections,IV A and IV B, we make

this quantitative. The end result is that the success probability obeys

P = 1−O
(

λ/δ + λ2t/δ + λ2/ω2
)

. (26)

The Rabi rotation from the vacuum to the desired one-particle state takes time t = π/λ. Thus,

P = 1−O
(

λ/δ + λ2/ω2
)

. (27)

To achieve success probability P = 1 − ǫ by simulating this state preparation process using high

order Suzuki-Trotter formulae yields a total complexity of O(ǫ−3−o(1)) as discussed in section II B.

In the next two subsections,IV A and IV B we bound the error we make when we prepare our

particles with this algorithm, and show that we can prepare particles with probabilities close to 1.

There are two ingredients to this proof, first in IV A we bound the error we make when we assume

our system to be a 2-level system. Then in subsection IV B, we analyze the resulting 2-level system

using Floquet’s Theorem to calculate the probability of successfully exciting one particle.

As explained in [14], there are two type of failures for the state preparation algorithm. If either

or both of the incoming particles are not created, this can be detected by the final measurements

of the simulation. The probabilities of exciting zero or more than one particles are suppressed and
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the following theorems put bounds on them. The latter contributes to the overall precision of the

algorithm, ǫ, and it can be controlled by tuning λ.

We note that our analysis is not fully rigorous in the following sense. To avoid extra technical

complexity in sections IV A and IV B we make two simplifying assumptions. First, we consider the

creation of eigenstates rather than wavepackets. This can be justified by choosing wavepackets whose

energy uncertainty is small compared to the inverse duration of the excitation process. Second, in

section IV B we make the simplifying assumption that the energy levels that we drive a transition

between are each nondegenerate and furthermore that the driving operator is purely off-diagonal.

In actuality, the excited state we are targeting at momentum p is degenerate with a momentum −p
state. However, our choice of envelope function f ensures that matrix elements of the perturbation

which couple to the momentum −p state can be exponentially suppressed. Thus, we believe the

additional complications associated with a fully realistic treatment do not change the overall scaling.

Granting the simplifying assumptions as given, our analysis of the resulting simplified model is fully

rigorous.

A. Few-level Approximation

In order to estimate and bound the probability to successfully excite a single particle state, we

use two approximations. First in this section we look into what is known as the few-level or 2-level

approximation and bound the error occurring from this approximation. In the next subsection we

look into the rotating wave approximation by using an analytical approximate solution to the 2-level

driven system. To avoid inconvenience associated with tracking irrelevant global phases we work

with density matrices rather than state vectors. However, the dynamics is closed-system and all

states remain pure.

Theorem 1. Assume we have a Hamiltonian H0 + λ cos (ωt)W with ‖W‖ = 1. Let ρ(t) be the

projector onto the state obtained at time t starting with the ground state of H0 at t = 0. Let ρ(−)

be the projector onto the state at time t obtained by projecting H0 + λ cos (ωt)W onto the span of

the lowest ν eigenstates of H0 and solving the resulting Schrodinger equation in this ν-dimensional

Hilbert space. Then:

∣

∣

∣Tr

[

ρ(−) (t) ρ (t)
]∣

∣

∣ ≥ 1−
(

2νλ+ 3νλ2t
) 1

δ
, (28)
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where δ is the minimum detuning from one of the other excited states ( i.e. minimum energy distance

between {E0 + ω, . . . , Eν−1 + ω} and the rest of the spectrum of H0).

From Eq. (28) it is evident that smaller values of ν and larger values of δ mean a better

approximation. For the purpose of this paper ν is degeneracy of the ground state in the rotating

frame, or in other words the number of states that are on-resonance with it. For an anharmonic

system with mirror symmetry between right-going and left-going particles we would have ν = 3.

However, with our choice of the envelope function in Eq. (25), we can effectively break this reflection

symmetry of the Hamiltonian and get ν = 2. A proof for this theorem is given in Appendix B.

B. Floquet’s Theorem applied to Rabi Oscillations

In the last subsection we bounded the error incurred by treating the system as a 2-level system.

Within the 2-level approximation we analyze the dynamics using Floquet theory, following the

treatment of Deng et al. [5]. We thus obtain an upper bound on the probability of remaining in

the ground state of the 2-level system. By adding these two sources of error we obtain a bound on

total error.

The main ingredient in Deng et al. analysis is Floquet’s Theorem, which states that if you have a

periodic Hamiltonian in time, there exists a simple change of basis so the eigenstates have the same

periodicity [6]. Floquet’s theorem is well studied and is used in a variety of contexts. For example

see [2, 4, 17] and references therein. Using Floquet’s theorem we prove the following error bound.

Theorem 2. Assume we have a 2-level Hamiltonian:

H = −∆

2
Z+ λ cos(ωt)X , (29)

where X and Z are Pauli matrices and ∆ > 0 is a real number. We initialize our state at time t = 0

to be |0〉 in the standard basis. For λ≪ ω, after time t = π
λ ,

∣

∣

∣

〈

1
∣

∣

∣ψ
(π

λ

)〉∣

∣

∣ ≥ 1− 1√
3

(

λ

ω

)2

−O

(

(

λ

ω

)4
)

. (30)

A proof for this theorem is presented in Appendix C.
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C. Total Error

Theorem 1 shows that the squared inner product between the exact state produced and the

state calculated in the 2-level approximation is at least 1 − 2ǫ1, where 2ǫ1 = 4λ + 6λ2t/δ. Hence,

up to higher order corrections, the inner product between the exact state produced and the state

calculated in the 2-level approximation is 1− ǫ1. Theorem 2 shows that the inner product between

the state predicted within the 2-level approximation and the desired final state is at least 1 − ǫ2,

where (neglecting higher order corrections) ǫ2 = 1√
3
λ2/ω2. Therefore, the inner product between

the exact state produced and the desired state is at least 1 − ǫ1 − ǫ2 − 2
√
ǫ1ǫ2. We can simplify

this expression by noting that
√
ǫ1ǫ2 ≤ max{ǫ1, ǫ2}. So, the inner product between the exact state

obtained and the desired state is 1−O(ǫ1 + ǫ2), and the probability of success, which is the square

of this inner product is also 1−O(ǫ1 + ǫ2). This yields Eq. (26) and Eq. and Eq. (15).

V. ENERGY AND MOMENTUM

After preparing the vacuum of the interacting theory using MPS, we follow a procedure explained

in [14]; only a short summary of this procedure is included here. By using sinusoidal source terms in

the Hamiltonian, we drive our system to excite a specific energy and momentum. Non-momentum

preserving excitations can be neglected because our choice of envelope function f ensures that they

have exponentially suppressed matrix elements [14].

The renormalized mass m is no longer equal to the bare mass m0 in the interacting theory; it’s

a nontrivial function of bare mass m0, interaction strength g0 and lattice spacing a. To know what

frequency, ω, to use to excite particles it is necessary to know the renormalized mass m . Despite

its nontrivial form, in many instances it can be calculated using perturbation theory (as has been

done in [14, 15]). The other approach would be to try and excite a single particle using guess values

of m in the same order of m0; then one can use phase estimation algorithms to check whether they

succeeded in exciting a particle and what is the actual mass of it. For a specific setup of initial

conditions and lattice spacing this would be a one-time cost. In particular, if one intends to run the

algorithm many times for statistical precision, this cost is incurred only once.
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VI. CONCLUSION

By introducing our state preparation algorithm, we have significantly improved the performance

of quantum algorithms for simulation of Fermionic QFT. Furthermore, unlike adiabatic state prepa-

ration, MPS-based state preparation should be applicable to the phases of the theory which are

unconnected to the free theory. In particular, starting from the free theory, as one increases the

coupling constant while keeping the bare mass fixed, the Gross-Neveu model exhibits a quantum

phase transition at which the eigenvalue gap (i.e. physical mass) vanishes. On the other side of this

transition the ψ → −ψ symmetry is spontaneously broken. Because of the vanishing gap (at least

in the infinite volume limit) adiabatic state preparation may have problems producing the vacuum

of the symmetry-broken phase. However, an MPS-based method should be able to access this phase

directly without having to cross a phase transition.

Although we only used Gross-Neveu to illustrate our new state preparation method, it should

be applicable to other Fermionic models in one spatial dimension. Extending the techniques to two

spatial dimensions, such as through the uses of Projected Entangled Pair States (PEPS) [26, 27] is

an interesting avenue for future research.
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Appendix A: Locality Of The Equivalent Spin Hamiltonian

Here we will use Jordan-Wigner transformation and derive the mapped Hamiltonian terms ex-

plicitly. Fermionic systems obey anti-commutation relations that cause the states to be non-local.

{

ψj,α (x) , ψ
†
k,β (y)

}

= a−1δj,kδα,βδx,yI, (A1)

{

ψ†
j,α (x) , ψ

†
k,β (y)

}

= {ψj,α (x) , ψk,β (y)} = 0, (A2)

where δm,n is the Kronecker Delta function, j and k represent different Fermion species and α and

β indicate matter and antimatter particles. The Jordan-Wigner transformation is defined as:

ψj,0 (ηa) →
1√
a

η−1
⊗

κ=1





N
⊗

ξ=1

(

Z
(κ)
(j,0) ⊗ Z

(κ)
(j,1)

)



⊗
j−1
⊗

ξ=1

(

Z
(η)
(j,0) ⊗ Z

(η)
(j,1)

)

⊗





0 0

−1 0





(η)

(j,0)

⊗ I
(η)
(j,1) , (A3)

ψj,1 (ηa) →
1√
a

η−1
⊗

κ=1





N
⊗

ξ=1

(

Z
(κ)
(j,0) ⊗ Z

(κ)
(j,1)

)



⊗
j−1
⊗

ξ=1

(

Z
(η)
(j,0) ⊗ Z

(η)
(j,1)

)

⊗ Z
(η)
(j,0) ⊗





0 0

−1 0





(η)

(j,1)

, (A4)

⇒ ψ†
j,0 (ηa) →

1√
a

η−1
⊗

κ=1





N
⊗

ξ=1

(

Z
(κ)
(j,0) ⊗ Z

(κ)
(j,1)

)



⊗
j−1
⊗

ξ=1

(

Z
(η)
(j,0) ⊗ Z

(η)
(j,1)

)

⊗





0 −1

0 0





(η)

(j,0)

⊗ I
(η)
(j,1) , (A5)

⇒ ψ†
j,1 (ηa) →

1√
a

η−1
⊗

κ=1





N
⊗

ξ=1

(

Z
(κ)
(j,0) ⊗ Z

(κ)
(j,1)

)



⊗
j−1
⊗

ξ=1

(

Z
(η)
(j,0) ⊗ Z

(η)
(j,1)

)

⊗ Z
(η)
(j,0) ⊗





0 −1

0 0





(η)

(j,1)

, (A6)

⇒ ψ̄j,0 (ηa) →
1√
a

η−1
⊗

κ=1





N
⊗

ξ=1

(

Z
(κ)
(j,0) ⊗ Z

(κ)
(j,1)

)



⊗
j−1
⊗

ξ=1

(

Z
(η)
(j,0) ⊗ Z

(η)
(j,1)

)

⊗ Z
(η)
(j,0) ⊗





0 −i
0 0





(η)

(j,1)

, (A7)

⇒ ψ̄j,1 (ηa) →
1√
a

η−1
⊗

κ=1





N
⊗

ξ=1

(

Z
(κ)
(j,0) ⊗ Z

(κ)
(j,1)

)



⊗
j−1
⊗

ξ=1

(

Z
(η)
(j,0) ⊗ Z

(η)
(j,1)

)

⊗





0 i

0 0





(η)

(j,0)

⊗ I
(η)
(j,1) . (A8)
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As one can easily verify, the long tails of Z tensor products cancel out and we are left with local

Hamiltonian terms. The Hamiltonian terms are explicitly mapped to:

H0 →
N
∑

j=1

∑

ηa∈Ω

1

a







i

2











0 1

0 0





(η)

(j,1)

⊗ Z
⊗2N−1 ⊗





0 −1

0 0





(η+1)

(j,1)

−





0 1

0 0





(η)

(j,0)

⊗ Z
⊗2N ⊗





0 −1

0 0





(η+1)

j







− im0a





0 0

1 0





(η)

(j,0)

⊗





0 −1

0 0





(η)

(j,1)

+ h.c.






, (A9)

Hg → −g20
2a

∑

ηa∈Ω






i

N
∑

j=1











0 0

1 0





(η)

(j,0)

⊗





0 −1

0 0





(η)

(j,1)

−





0 1

0 0





(η)

(j,0)

⊗





0 0

−1 0





(η)

(j,1)













2

, (A10)

Hw →
∑

ηa∈Ω

−r
2a

N
∑

j=1











0 i

0 0





(η)

(j,1)

⊗ Z
⊗2N−2 ⊗





0 0

−1 0





(η+1)

(j,0)

+





0 0

1 0





(η)

(j,0)

⊗ Z
⊗2N ⊗





0 −i
0 0





(η+1)

(j,1)

− 2





0 0

1 0





(η)

(j,0)

⊗





0 −i
0 0





(η)

(j,1)

+ h.c.






. (A11)

And as we were expecting, all of these Hamiltonian terms are indeed local.

Appendix B: Bounds On The Error Incurred From Few-level Approximation

Here we present the proof of Theorem 1:

Proof. Starting with the same Hamiltonian as Eq. (24) we have:

H = H0 + λ cos (ωt)W , (B1)

H0|ψj〉 = Ej|ψj〉 . (B2)

Let’s define ωij as:

ωij = Ei − Ej . (B3)

Now, let’s go to the interaction picture. That is, for any operator O let OI = eiH0tOe−iH0t. In

particular, we will solve for the dynamics of

ρI = eiH0tρe−iH0t. (B4)
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The interaction picture is convenient for treating the time-dependent perturbation terms in the

Hamiltonian. For the evolution equation we have:

i
d

dt
ρI = λ cos (ωt) [WI , ρI ] , (B5)

where:

WI (t) = eiH0tWe−iH0t . (B6)

Note that our states are pure and we can switch between density matrix and state representation

for convenience. Now let’s decompose the Hilbert space into H =H(+) ⊕H(−) where:

H(−) = span {|ψ0〉, |ψ1〉, · · · , |ψν−1〉} , (B7)

H(+) = span {|ψν〉, |ψν+1〉, · · · } . (B8)

We are going to consider the more general few-level approximation; the few-level approximation

is more applicable than the 2-level approximation when one’s dealing with a system which has

degeneracies. In this section we are trying to bound the error that incurs by limiting our Hilbert

space to H(−).

Let P (A) be the projector onto H(A) for A ∈ {+,−} and

W
(AB)
I = P (A)WIP

(B) . (B9)

The initial state is the ground state of the theory:

ρI (0) = |ψ0 〉〈ψ0| . (B10)

The few-level approximation is defined as:

ρI (t) ≃ ρ
(−)
I (t) , (B11)

where ρ
(−)
I (t) is defined by:

ρ
(−)
I (0) = ρI (0) = |ψ0 〉〈ψ0| , (B12)

i
d

dt
ρ
(−)
I = λ cos (ωt) [W

(−−)
I , ρ

(−)
I ] . (B13)
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Note that ρ
(−)
I 6= P (−)ρIP

(−). For simplicity, let’s restrict our attention to the case that W has no

diagonal terms, i.e.

〈ψj |W |ψj〉 = 0 , ∀j ∈ N . (B14)

Furthermore we assume the system is on resonance, ω10 = ω. We use the trace, Tr
[

ρ
(−)
I (t) ρI (t)

]

,

to quantify the error. We have:

i ddtTr
[

ρ
(−)
I (t) ρI (t)

]

= iTr
[

d
dt

(

ρ
(−)
I (t) ρI (t)

)]

= Tr

[

λ cos (ωt)
[

W
(−−)
I , ρ

(−)
I

]

ρI + λ cos (ωt) ρ
(−)
I [WI , ρI ]

]

= λ cos (ωt)Tr
[(

W
(−−)
I −WI

) [

ρ
(−)
I , ρI

]]

= λ cos (ωt)Tr
[

W
(−+)
I (t) ρI (t) ρ

(−)
I (t)−W

(+−)
I (t) ρ

(−)
I (t) ρI (t)

]

.

(B15)

The integral form of this equation becomes:

Tr

[

ρ
(−)
I (t) ρI (t)

]

= 1− iλ

∫ t

0
dτ cos (ωt)Tr

[

W
(−+)
I (t) ρI (t) ρ

(−)
I (t)−W

(+−)
I (t) ρ

(−)
I (t) ρI (t)

]

.

(B16)

Now, if we expand the cosine function as the sum of two exponentials, we can write:

∣

∣

∣Tr

[

ρ
(−)
I (t) ρI (t)

]∣

∣

∣ ≥ 1−K1 −K2 − L1 − L2 , (B17)

where

Kk =
λ

2

∣

∣

∣

∣

∫ t

0
dτe(−1)kiωτ

Tr

[

W
(−+)
I (t) ρI (t) ρ

(−)
I (t)

]

∣

∣

∣

∣

, (B18)

Lk =
λ

2

∣

∣

∣

∣

∫ t

0
dτe(−1)kiωτ

Tr

[

W
(+−)
I (t) ρ

(−)
I (t) ρI (t)

]

∣

∣

∣

∣

. (B19)

Using Eq. (B6) we can rewrite Kk as:

Kk = λ
2

∣

∣

∣

∣

∫ t
0 dτe

(−1)kiωτ
∑

µ,η

〈

ψ
(−)
I (τ)

∣

∣

∣µW
(−+)
I (τ)µη

∣

∣

∣
ψI (τ)

〉

η

〈

ψI (τ)
∣

∣

∣
ψ
(−)
I (τ)

〉

∣

∣

∣

∣

= λ
2

∣

∣

∣

∣

∫ t
0 dτe

(−1)kiωτ
∑ν−1

µ=0

∑

η≥m

〈

ψ
(−)
I (τ)

∣

∣

∣µŴµηe
iωµητ

∣

∣

∣
ψI (τ)

〉

η

〈

ψI (τ)
∣

∣

∣
ψ
(−)
I (τ)

〉

∣

∣

∣

∣

= λ
2

∣

∣

∣

∣

∑ν−1
µ=0

∑

η≥ν
∫ t
0 dτe

(−1)kiωτ+iωµητ
〈

ψ
(−)
I (τ)

∣

∣

∣µŴµη

∣

∣

∣ψI (τ)
〉

η

〈

ψI (τ)
∣

∣

∣ψ
(−)
I (τ)

〉

∣

∣

∣

∣

.

(B20)
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We calculate this integral using integration by parts:

Ikµη ≡
∫ t
0 dτe

(−1)kiωτ+iωµητ
〈

ψ
(−)
I (τ)

∣

∣

∣µŴµη

∣

∣

∣ψI (τ)
〉

η

〈

ψI (τ)
∣

∣

∣ψ
(−)
I (τ)

〉

,

dukµη ≡ dτe(−1)kiωτ+iωµητ ,

vµη ≡
〈

ψ
(−)
I (τ)

∣

∣

∣µŴµη

∣

∣

∣ψI (τ)
〉

η

〈

ψI (τ)
∣

∣

∣ψ
(−)
I (τ)

〉

.

(B21)

⇒











ukµη = e[(−1)kω+ωµη]iτ

i[(−1)kω+ωµη]

dvµη = dτ λ cos(ωτ)i Tr

[

−W (+−)
I ρ

(−)
I ŴµηρI +

(

Ŵµη

(

W
(++)
I +W

(+−)
I

)

−W
(−−)
I Ŵµη

)

ρIρ
(−)
I

]
.

(B22)

So Ikµη becomes:

Ikµη = 1
iTr

[

ρ
(−)
I (t) R̂kµηρI (t)

]∣

∣

∣

t

τ=0

+
∫ t
0 dτλ cos (ωτ)Tr

[

−W (+−)
I ρ

(−)
I R̂kµηρI +

(

R̂kµη

(

W
(++)
I +W

(+−)
I

)

−W
(−−)
I R̂kµη

)

ρIρ
(−)
I

]

,

(B23)

where R̂kµη (τ) is defined as:

R̂kµη (τ) =
e[(−1)kω+ωµη]iτ
[

(−1)k ω + ωµη

]Wµη |ψµ〉 〈ψη | . (B24)

Now putting this back into Eq. (B20) we get:

Kk = λ
2

∣

∣

∣

1
i

〈

ψ
(−)
I (t) |Rk (t)|ψI (t)

〉〈

ψI (t) |ψ(−)
I

〉

− 1
i 〈ψI (0) |Rk (0)|ψI (0)〉

+
∫ t
0 dτλ cos (ωτ)

(〈

ψI

∣

∣

∣
−W (+−)

I ρ
(−)
I Rk + ρ

(−)
I

(

Rk

(

W
(++)
I +W

(+−)
I

)

−W
(−−)
I Rk

)∣

∣

∣
ψI

〉)∣

∣

∣
,

(B25)

where from Eq. (B24):

Rk =

ν−1
∑

µ=0

∑

η≥ν

e[(−1)kω+ωµη]iτ
[

(−1)k ω + ωµη

]Wµη |ψµ〉 〈ψη | . (B26)

Hence, by the triangle inequality and submultiplicativity of the operator norm:

Kk ≤ λ
2 (‖Rk (t)‖+ ‖Rk (0)‖)

+λ2t
2 max0≤τ≤t

((∥

∥

∥
W

(++)
I (τ) +W

(+−)
I (τ)

∥

∥

∥
+
∥

∥

∥
W

(−+)
I (τ)

∥

∥

∥
+
∥

∥

∥
W

(−−)
I (τ)

∥

∥

∥

)

‖Rk (τ)‖
)

≤ λ
2 (‖Rk (t)‖+ ‖Rk (0)‖+ 3λtmax0≤τ≤t (‖WI (τ)‖ ‖Rk (τ)‖))

≤ λ
2 (‖Rk (t)‖+ ‖Rk (0)‖+ 3λt ‖W‖max0≤τ≤t (‖Rk (τ)‖)) .

(B27)
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Note that ‖WI (τ)‖ = ‖W‖ = 1 for all τ . We can decompose Rk (τ) as the sum over the first index

as:

Rk (τ) =
ν−1
∑

µ=0

Rµk (τ) , (B28)

where

Rµk (τ) =
∑

η≥ν

e[(−1)kω+ωµη]iτ
[

(−1)k ω + ωµη

]Wµη |ψµ〉 〈ψη | µ = 0, 1, · · · , ν − 1 . (B29)

So

‖Rk (τ)‖ ≤
∥

∥R0
k (τ)

∥

∥+
∥

∥R1
k (τ)

∥

∥+ · · ·+
∥

∥Rν−1
k (τ)

∥

∥ (B30)

and

Rµk (τ) = PµWDµ
kU

µ
k (τ) , (B31)

where

Pµ = |ψµ〉 〈ψµ | µ = 0, 1, · · · , ν − 1 ,

Dµ
k =

∑

η≥ν
|ψη〉〈ψη |

[(−1)kω+ωµη]
,

Uµk (τ) =
∑∞

η=0 e
[(−1)kω+ωµη]iτ |ψη〉 〈ψη | .

(B32)

One sees that Uµk (τ) is unitary. So

∥

∥Rµk (τ)
∥

∥ ≤ ‖Pµ‖ · ‖W‖ ·
∥

∥Dµ
k

∥

∥ . (B33)

Pµ is a projector so ‖Pµ‖ = 1.
∥

∥Dµ
k

∥

∥ is diagonal so it’s easy to read its spectral norm:

∥

∥Dµ
k

∥

∥ =
1

δµk
, (B34)

where

δµk = min
η>ν

∣

∣

∣
(−1)k ω + ωµη

∣

∣

∣
. (B35)

Thus Eq. (B33) yields

∥

∥Rµk (τ)
∥

∥ ≤ 1

δµk
. (B36)
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Stitching equations (B36), (B30) and (B27) together one gets:

Kk ≤
λ

2

ν−1
∑

µ=0

(

2

δµk
+ 3λt

1

δµk

)

. (B37)

Following the same procedure for Lk, one gets the same bound:

Lk ≤
λ

2

ν−1
∑

µ=0

(

2

δµk
+ 3λt

1

δµk

)

. (B38)

Hence Eq. (B17) yields

∣

∣

∣Tr

[

ρ
(−)
I (t) ρI (t)

]∣

∣

∣ ≥ 1−
(

λ+
3λ2t

2

) ν−1
∑

µ=0

2
∑

k=1

1

δµk
. (B39)

One sees that

ν−1
∑

µ=0

2
∑

k=1

1

δµk
≤ 2ν

δ
, (B40)

where

δ = min
{

δµk |µ ∈ {0, 1, · · · , ν − 1} , k ∈ {1, 2}
}

. (B41)

In other words, δ is the detuning to the nearest off-resonant transition from the first ν states. So

the error caused by the ν-level approximation can be bounded:

∣

∣

∣
Tr

[

ρ
(−)
I (t) ρI (t)

]∣

∣

∣
=
∣

∣

∣
Tr

[

ρ(−) (t) ρ (t)
]∣

∣

∣
≥ 1−

(

2νλ+ 3νλ2t
) 1

δ
. (B42)

Appendix C: Bounds On The Error Incurred From Rabi Oscillations

Here we present a proof for Theorem 2:

Proof. After a π
2 rotation around the y-axis, we’ll get:

Hr = −∆

2
X− λ cos(ωt)Z . (C1)

As it is explained in [5], an approximate solution to this Hamiltonian, which is valid for both weak

and strong coupling is given by:

|ψ (t)〉r = α0e
−iǫ0t|u0 (t)〉r + α1e

−iǫ1t|u1 (t)〉r , (C2)

20



where:


















ǫ0 = 1
2

(

−ω −
√

[

ω −∆J0
(

2λ
ω

)]2
+∆2J2

1

(

2λ
ω

)

)

ǫ1 = 1
2

(

−ω +

√

[

ω −∆J0
(

2λ
ω

)]2
+∆2J2

1

(

2λ
ω

)

)

(C3)

and

|uj (t)〉r =
∞
∑

n=−∞
einωt|uj,n〉r for j = 0, 1 , (C4)

where J0 and J1 are Bessel functions of the first kind and:











































|u0,n〉r = 1√
2







cos
(

θ
2

)

Jn+1

(

λ
ω

)

+ sin
(

θ
2

)

Jn
(

λ
ω

)

− cos
(

θ
2

)

Jn+1

(

− λ
ω

)

+ sin
(

θ
2

)

Jn
(

− λ
ω

)







|u1,n〉r = 1√
2







− sin
(

θ
2

)

Jn+1

(

λ
ω

)

+ cos
(

θ
2

)

Jn
(

λ
ω

)

sin
(

θ
2

)

Jn+1

(

− λ
ω

)

+ cos
(

θ
2

)

Jn
(

− λ
ω

)







, (C5)

where:

tan (θ) =
∆J1

(

2λ
ω

)

ω −∆J0
(

2λ
ω

) . (C6)

For the rest of this section, we assume exact resonance conditions, i.e. ∆ = ω:

tan (θ) =
J1
(

2λ
ω

)

1− J0
(

2λ
ω

) . (C7)

Because we start in the ground state of our non-rotated Hamiltonian, Eq. (29), we need to rotate

our system again to get:











































|u0,n〉 = 1√
2







1 1

−1 1






|u0,n〉r

|u1,n〉 = 1√
2







1 1

−1 1






|u1,n〉r

. (C8)

The time dependent state of the system is:

|ψ (t)〉 = β0e
−iǫ0t

∞
∑

n=−∞
einωt|u0,n〉+ β1e

−iǫ1t
∞
∑

n=−∞
einωt|u1,n〉 . (C9)
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After setting the initial condition to:

|ψ (0)〉 =





1

0



 , (C10)

and using the Bessel function identity:

∞
∑

n=−∞
Jn (x) = 1 , (C11)

we’ll find the coefficients β0 and β1 to be:











β0 = sin
(

θ
2

)

β1 = cos
(

θ
2

)

(C12)

After a bit of simplification one can write the state of the system explicitly as:

|ψ (t)〉

=







∑∞
k=−∞ e2ikωt

(

sin θ
2 J2k+1

(

λ
ω

) (

e−iǫ0t − e−iǫ1t
)

+ J2k
(

λ
ω

) (

sin2
(

θ
2

)

e−iǫ0t + cos2
(

θ
2

)

e−iǫ1t
))

∑∞
k=−∞ e(2k−1)iωt

(

sin θ
2 J2k

(

λ
ω

) (

e−iǫ1t − e−iǫ0t
)

− J2k−1

(

λ
ω

) (

sin2
(

θ
2

)

e−iǫ0t + cos2
(

θ
2

)

e−iǫ1t
))






.

(C13)

From the ordinary RWA, we expect the maximum transition to the excited state to happen around

t ≃ π
λ .

Using Jacobi-Anger expansion, one can prove:















∑∞
n=−∞ e(2n)iφJ2n (x) = cos (x sin (φ))

∑∞
n=−∞ e(2n−1)iφJ2n−1 (x) = i sin (x sin (φ))

. (C14)

We can use these to take care of the summations in Eq. (C13):

∣

∣

〈

1|ψ
(

π
λ

)〉∣

∣ =
∣

∣

sin θ
2 e−iπω/λ

(

e−iπǫ1/λ − e−iπǫ0/λ
)

cos
(

λ
ω sin

(

πω
λ

))

−i
(

sin2
(

θ
2

)

e−iπǫ0/λ + cos2
(

θ
2

)

e−iπǫ1/λ
)

sin
(

λ
ω sin

(

πω
λ

))∣

∣ .
(C15)

In order to be able to express the last equation as a series in powers of
(

λ
ω

)

, let’s define κ ≡ sin
(

πω
λ

)

.

κ is highly sensitive to the ratio ω
λ , but its value is bounded between:

− 1 ≤ κ ≤ 1 (C16)
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Up to the first nonzero order we get:

∣

∣

∣

〈

1
∣

∣

∣
ψ
(π

λ

)〉∣

∣

∣
∼
∣

∣

∣

∣

∣

1−
(

1 + κ2

2
+ iκe

iπω/λ

)(

λ

ω

)2

+O

(

(

λ

ω

)4
)∣

∣

∣

∣

∣

, (C17)

⇒ 1−
∣

∣

∣

〈

1
∣

∣

∣ψ
(π

λ

)〉∣

∣

∣ ∼
∣

∣

∣

∣

∣

(

cos2
(

πω
λ

)

2
+ i sin

(πω

λ

)

cos
(πω

λ

)

)∣

∣

∣

∣

∣

(

λ

ω

)2

+O

(

(

λ

ω

)4
)

. (C18)

Maximizing the r.h.s. expression over its valid range of arguments and ignoring the higher order

terms, one finds:

1−
∣

∣

∣

〈

1
∣

∣

∣
ψ
(π

λ

)〉∣

∣

∣
≤ 1√

3

(

λ

ω

)2

. (C19)

This is good enough for our purposes, but if one can do the experiment with high precision and

high control over ω and λ; by choosing ω =
(

n+ 1
2

)

λ, this can in principle be improved to:

π

48

(

λ

ω

)4

+O

(

(

λ

ω

)5
)

≤ 1−
∣

∣

∣

〈

1|ψ
(π

λ

)〉∣

∣

∣
≤ 1√

3

(

λ

ω

)2

+O

(

(

λ

ω

)4
)

. (C20)

Bibliography

[1] Itai Arad, Zeph Landau, Umesh Vazirani, and Thomas Vidick. Rigorous RG algorithms and area laws

for low energy eigenstates in 1D. arXiv:1602.08828, 2016.

[2] P. M. Blekher, H. R. Jauslin, and J. L. Lebowitz. Floquet spectrum for two-level systems in quasiperiodic

time-dependent fields. Journal of Statistical Physics, 68(1-2):271–310, 1992.

[3] H. Casini and M. Huerta. Entanglement entropy in free quantum field theory. Journal of Physics A,

42:504007, 2009. arXiv:0905.2562.

[4] José M. Cerveró and Juan D. Lejarreta. The Floquet analysis and noninteger higher harmonics gener-

ation. Journal of Mathematical Physics, 40(1738), 1999.

[5] Chunqing Deng, Feiruo Shen, Sahel Ashhab, and Adrian Lupascu. Dynamics of a two-level system

under strong driving: quantum gate optimization based on floquet theory. Physical Review A - Atomic,

Molecular, and Optical Physics, 94(3), 2016.

23



[6] G Floquet. Sur les équations différentielles linéaires à coefficients périodiques. Annales scientifiques de

l’École Normale Supérieure, 12:47–88, 1883.

[7] Paul Ginsparg. Applied conformal field theory. In E. BRézin and J. Zinn-Justin, editors, Les Houches,

Session XLIX,Fields STrings and Critical Phenomena. 1989. arXiv:hep-th/9108028.

[8] David J. Gross and André Neveu. Dynamical symmetry breaking in asymptotically free field theories.

Physical Review D, 10(10):3235–3253, 1974.

[9] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. Quantum algorithm for

simulating real time evolution of lattice Hamiltonians. arXiv:1801.03922, 2018.

[10] Matthew B. Hastings. An Area Law for One Dimensional Quantum Systems. Journal of Statistical

Mechanics: Theory and Experiment, 08024(2):9, 2007.

[11] Yichen Huang. A polynomial-time algorithm for the ground state of one-dimensional gapped Hamilto-

nians. arXiv:1406.6355, 2014.

[12] P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik A Hadrons and

Nuclei, 47(9-10):631–651, 1928.

[13] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum Algorithms for Quantum Field

Theories. Science, 336(6085):1130–3, 2012.

[14] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum Algorithms for Fermionic Quantum

Field Theories. arXiv:1404.7115, 2014.

[15] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum Computation of Scattering

in Scalar Quantum Field Theories. Quantum Information and Computation, 14:1014–1080, 2014.

arXiv:1112.4833.

[16] Hsiu-Hau Lin, Leon Balents, and Matthew P. A. Fisher. Exact SO(8) symmetry in the weakly-

interacting two-leg ladder. Physical Review B, 58(4):1794–1825, 1998.

[17] A. Micheli, G. Pupillo, H. P. Büchler, and P. Zoller. Cold polar molecules in two-dimensional traps:

Tailoring interactions with external fields for novel quantum phases. Physical Review A, 76(4):043604,

2007.

[18] H. B. Nielsen and M. Ninomiya. A no-go theorem for regularizing chiral fermions. Physics Letters B,

105(2-3):219–223, 1981.

[19] H.B. Nielsen and M. Ninomiya. Absence of neutrinos on a lattice. Nuclear Physics B, 185(1):20–40,

1981.

[20] Kouichi Okunishi, Yasuhiro Hieida, and Yasuhiro Akutsu. Universal asymptotic eigenvalue distribution

of density matrices and corner transfer matrices in the thermodynamic limit. Physical Review E,

59(6):R6227–R6230, 1999.

[21] Joshua D. Qualls. Lectures on conformal field theory. arXiv:1511.04074, 2015.

24



[22] U. Schollwöck. The density-matrix renormalization group. Reviews of Modern Physics, 77(1):259–315,

2005.

[23] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states.

Annals of Physics, 326(1):96–192, 2011.

[24] C. Schön, K. Hammerer, M. M. Wolf, J. I. Cirac, and E. Solano. Sequential generation of matrix-product

states in cavity QED. Physical Review A - Atomic, Molecular, and Optical Physics, 75(3):1–10, 2007.

[25] C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf. Sequential Generation of Entangled

Multiqubit States. Physical Review Letters, 95(11):1–4, 2005.

[26] Martin Schwarz, Toby S. Cubitt, Kristan Temme, Frank Verstraete, and David Perez-Garcia. Preparing

topological Projected Entangled Pair States on a quantum computer. Physical Review A, 88(3):032321,

2013. arXiv:1211.4050.

[27] Martin Schwarz, Kristan Temme, and Frank Verstraete. Preparing projected entangled pair states on

a quantum computer. Physical Review Letters, 108:110502, 2012. arXiv:1104.1410.

[28] Brian Swingle. Structure of entanglement in regulated Lorentz invariant field theories. arXiv:1304.6402,

2013.

[29] Michael Thies and Konrad Urlichs. Baryons in massive Gross-Neveu models. Physical Review D,

71(10):105008, 2005.

[30] Michael Thies and Konrad Urlichs. From nondegenerate conducting polymers to dense matter in the

massive Gross-Neveu model. Physical Review D - Particles, Fields, Gravitation and Cosmology, 72(10),

2005.

[31] Karel Van Acoleyen, Michaël Mariën, and Frank Verstraete. Entanglement Rates and Area Laws.

Physical Review Letters, 111(17):170501, 2013.

[32] Guifre Vidal. Efficient simulation of one-dimensional quantum many-body systems. Physical Review

Letter, 93(4):040502, 2004. arXiv:quant-ph/0310089.

[33] Steven R. White. Density matrix formulation for quantum renormalization groups. Physical Review

Letters, 69(19):2863–2866, 1992.

[34] Kenneth G. Wilson. Confinement of quarks. Physical Review D, 10(8):2445–2459, 1974.

25


	Faster quantum algorithm to simulate Fermionic quantum field theory
	Abstract
	Introduction
	Overview
	Gross Neveu Model
	Performance

	Preparing Matrix Product State of the Ground State of the Interacting Hamiltonian
	Exciting the state using Rabi oscillations
	Few-level Approximation
	Floquet's Theorem applied to Rabi Oscillations
	Total Error

	Energy and Momentum
	Conclusion
	Acknowledgements
	Locality Of The Equivalent Spin Hamiltonian
	Bounds On The Error Incurred From Few-level Approximation 
	Bounds On The Error Incurred From Rabi Oscillations 
	References


