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Quantum information processing in a modular architecture requires the distribution, stabilization
and distillation of entanglement in a qubit network. We present autonomous entanglement stabi-
lization protocols between two superconducting qubits that are coupled to distant cavities. The
coupling between cavities is mediated and controlled via a three-wave mixing device that generates
either a two-mode squeezed state or a delocalized mode between the remote cavities depending on
the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain
the system to the desired qubit Bell state. Most spectacularly, even a weakly-squeezed state can
stabilize a maximally entangled Bell state of two distant qubits through an autonomous entangle-
ment concentration process. Moreover, we show that such reservoir-engineering based protocols can
stabilize entanglement in presence of qubit-cavity asymmetries and losses.

I. INTRODUCTION

A promising architecture for scaling up quantum ma-
chines is modular quantum computing [1, 2]. An elemen-
tary task for this architecture is to entangle distant mod-
ules [3-5]. More precisely, entangled states of remote,
non-interacting qubits need to be prepared and protected
against decoherence, in order that they may be available
when required for quantum state transfer or gates be-
tween modules. While entangled states of remote qubits
have been prepared in various quantum information plat-
forms (e.g. [6]), an essential but significantly harder chal-
lenge is remote entanglement stabilization. Stabilization,
in this context, implies the preparation and protection of
a desired quantum state, which requires continuous cor-
rection of decoherence-induced errors. Such correction is
usually achieved by some kind of feedback mechanism.

Reservoir engineering [7, 8] is one such feedback mech-
anism, where the entropy produced by errors is au-
tonomously evacuated through an engineered interaction
of the system with a cold bath. Recently, reservoir engi-
neering has been used to stabilize entanglement between
two trapped ion [9] and superconducting qubits [10, 11].
In these schemes, the entangled qubits share a common
dissipative mode consisting of a motional degree of free-
dom or a common resonant cavity, respectively. In order
to extend these schemes from local to distant modules,
nonlocal correlations need to be generated between the
two modules containing the qubits. Moreover, these cor-
relations must be generated in a manner that is amenable
to scaling up to multiple modules connected through a
quantum router [1].

In this paper we propose two reservoir engineering
protocols for stabilizing entanglement between distant
qubits. Both protocols use a three-wave mixer (TWM) to
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couple distant cavity modes that contain the qubits. We
specialize to the case of superconducting quantum cir-
cuits where three-wave mixing is realized with a Joseph-
son Parametric Converter [12], a device routinely used
in experiments. This device controls the interaction be-
tween a pair of field modes by pumping a third one; the
nature and strength of the coupling is set by the pump
frequency and amplitude, respectively. The TWM is a
versatile device, that can switch an interaction with an
on/off ratio in excess of 10%. Moreover, it can perform
two operations — amplification with a two-mode squeez-
ing interaction [13, 14], or frequency conversion with a
beam-splitter interaction [15, 16]. There are furthermore
two kinds of connection between the distant cavites and
the TWM, unidirectional coupling via circulators or bidi-
rectional coupling via long transmission lines [17], as de-
picted in Fig. 1. The two remote entanglement stabi-
lization schemes we describe in this paper correspond to
two different combinations of operation and connection
between the cavities and the TWM.

The first scheme for entanglement stabilization can
be understood as an autonomous entanglement concen-
tration protocol [18, 19]. It uses a two-mode squeez-
ing interaction, generated by the TWM for a pump
at the frequency sum of the two other TWM modes,
which are assumed to be resonant with the distant cav-
ities. The interaction continuously injects an entangled
two-mode squeezed state into the distant cavities, as in
Fig. 1 (a). Drives at qubit transitions together with
cavity dissipation continuously concentrate the entangle-
ment of this two-mode squeezed state into a non-local
qubit Bell state. In the absence of losses, our scheme
achieves 100 % fidelity even with weak squeezing. This
property makes it fundamentally different from a previ-
ous proposal [20], that requires squeezing in resonance
with the qubit frequencies and reaches high fidelity only
with strong squeezing. While Ref. [20] illustrates entan-
glement transfer between flying field modes and qubits,
our protocol uses cavities as ancillary stationary field
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FIG. 1. Autonomous remote entanglement stabilization pro-
tocols with three-wave mixers. (a) For a directional cou-
pling in the amplification mode, the TWM is a source of
two-mode squeezed light that steers the cavities to two-mode
squeezed vacuum for the odd qubit subspace and to a two-
mode squeezed thermal state for the even qubit subspace
(dashed red arrows). Qubit drives couple the two subspaces
(plain purple arrows). A coupling between the Bell state |¢4)
and |¢_) is activated by the fluctuations of the photon num-
ber imbalance present in the two-mode squeezed thermal state
(light blue double-line arrow). Entanglement accumulation
leads to the stabilization of the Bell state |¢—) in two-mode
squeezed vacuum with 100 % fidelity. The different notations
of the figure are defined in Section II. (b) For a bidirectional
coupling in the conversion mode, the TWM generates delocal-
ized modes between the two distant cavities. These delocal-
ized modes are displaced by the cavity drives for even qubit
states (light blue double-line arrows). Qubit drives couple the
even and odd subspaces (plain purple arrows). Cavity dissipa-
tion steers the cavities to vacuum for the odd qubit subspace
(dashed red arrow). For large enough coupling the physics
becomes effectively single mode and the protocol of Ref. 10
can be applied. Notations are defined in Section III. B.

modes, and concentrates their entanglement to stabilize
a maximally entangled state of the qubits. Moreover, in
contrast to [19], our protocol is based on concrete disper-
sive interaction Hamiltonians that are routinely used in
various physical platforms such as superconducting cir-
cuits.

Our second entanglement stabilization scheme general-
izes the protocol of Ref. [10] to the case of distant qubits.
It employs a beam-splitter interaction, which is obtained
when the TWM pump frequency is at the frequency dif-
ference of the two other TWM modes. When the distant
cavities are coupled to the TWM through long transmis-

sion lines, as in Fig. 1 (b), we show that they act ef-
fectively as a single delocalized mode. The stabilization
protocol of Ref. [10] can then be applied to this delocal-
ized mode to stabilize a nonlocal qubit Bell state. Inter-
estingly, the crucial dispersive shift symmetry of the two
qubits required in the local protocol [10] is lifted by tun-
ing the TWM pump detuning. This feature distinguishes
our protocol from [11, 21] that requires a symmetry on
the qubits and the cavities combined with close enough
cavities to get strong tunnel coupling. Furthermore, the
bidirectional nature of the coupling offers better protec-
tion against transmission losses [22, 23], akin to popu-
lation transfer in optomechanics using dark modes [24].
We describe both protocols in detail in the following and
discuss their robustness against imperfections.

II. AUTONOMOUS ENTANGLEMENT
CONCENTRATION

The TWM couples the three modes ¢1, ¢; and ¢3 ac-
cording to the Hamiltonian Hrwy = hgg(éi + éﬂ(é; +
&) (el + ¢3) (g3 denoting the coupling strength), where
the third mode is strongly driven, it plays the role of
the pump and is treated classically. Amplification is ob-
tained for a pump frequency w,, set to the sum we; + weo
and the TWM becomes a two-mode squeezer. For direc-
tional coupling, obtained with circulators as sketched in
Fig. 1 (a), the TWM acts as a correlated bath for the
distant cavities. Their dissipative dynamics is governed
by the Lindbladian [20]

Ls = kD[ay coshr + @} sinh 7] + kD[ay coshr + ! sinh 7]

(1)

with the dissipation superoperator D[a]- = a - al —
1{a'a,-}. Here r denotes the cavities’ decay rates as-
sumed to be identical, and the squeezing parameter r is
set by the pump amplitude, also expressed in decibel:
rag = (20/log10)r [25]. For empty cavities, this Lind-
bladian steers the cavity state to the two-mode squeezed
vacuum state psy = S,.|0,0)(0,0|S], with the two-mode
squeezing operator S, = er(@maz—ajal),

The qubits are dispersively coupled to their own cav-
ity, with the coupling Hamiltonian, Hgispersive,j=1,2 =
—%hxjd;dj&zj (x; representing the qubit-cavity disper-
sive coupling strengths). Considering equal dispersive
shifts, the qubit-cavity Hamiltonian reads

Gee) + ShXM (64 + &+_>(, |
2

with 6, = |k){], |g) = |gg), le) = |ee) and 6_4, 64—
couple the odd parity Bell states |¢+) = i(|ge> F leg)).
The even and odd qublt subbpaces are coupled to the
photon number sum N = a1a1 +a2a2 and difference M =

. 1 N
Hdispersive = §hXN(0gg -

a}al — agag. Similarly to [10], the qubits are driven at
resonance with the same Rabi amplitudes (2, leading to a



Hamiltonian of the form Hgyive = \/ﬁhQ(6+g+6+e)+h.c.,
coupling the even qubit subspace to |¢.).

A. Numerical simulations

To highlight the stabilization mechanism of |¢_) by en-
tanglement distillation, let us have a look at the quantum
dynamics sketched in Fig. 1 (a). Whenever the qubits are
in the even manifold Span{|gg), |ee)}, the correlated dis-
sipation, Eq. (1), combined with the dispersive coupling,
Eq. (2), generate a two-mode squeezed thermal state psr,
the thermal aspect comes from the detuning of the cavi-
ties by x/2 (see next subsection for more details). Qubit
driving then induces oscillations between Span{|gg), |ee)}
and |¢). Finally, the Bell state |¢_) is populated from
|¢4) via the dispersive interaction. It is essential here to
notice that the coupling is mediated by the photon num-
ber imbalance M, the thermal character of pgr is thus
crucial to activate this tunneling process. Once in the
odd qubit subspace, the Lindbladian steers the cavities
to the two-mode squeezed vacuum state pgy. At each
round, entanglement is accumulated and the cycle in the
Hilbert space stops when in |¢_)(d—_|psv.

The simulations in the inset of Fig. 2 illustrate the
concentration of entanglement for various amplification
(two-mode squeezing) strengths. The fidelity to the Bell
state |¢_) is plotted as a function of time for squeezing
strengths spanning from .1 dB to 6 dB. While we observe
the convergence of Fidelity to its maximal value 1, the
squeezing strength only affects the convergence rate.

This convergence rate I" to the Bell state |¢_) is plot-
ted in the same Fig. 2 versus squeezing strength. For a
fixed Rabi rate 2 = 0.8k, the highest rate takes place
at a modest squeezing strength, below 8 dB. This behav-
ior is the result of the following competing phenomena.
First, the stabilization process is activated by the fluctu-
ations of the population imbalance M by the two-mode
squeezed thermal state. More precisely, as it will be seen
\V(M?) = Lo|sin(9)]sinh(2r)
where § = tarctan(x/k) (+ for |gg) and — for |ee)).
These fluctuations increase with amplification strength.
Second, the pointer state of the cavities is a two-mode
squeezed vacuum state in the odd qubit subspace and a
two-mode squeezed thermal state in the even qubit sub-
space. The coupling between the two subspaces is per-
formed by the qubit drive and for small drive strength,
Q < K, X, the oscillation rate is given by Qtr{psvpsr}
that decreases with amplification strength. Increasing
the Rabi rate, see top axis, leads to a saturation of the
convergence rate around Topy >~ £/3.

The effect of photon losses in the transmission lines is
to heat the two-mode squeezed state for the odd qubit
subspace. As a result, the two-mode squeezed vacuum
state is not the steady-state and cannot stabilize the Bell
state with 100 % fidelity anymore. In Fig. 3 (a), we plot
the complementary of the qubits concurrence C [26]. The

in the next subsection,
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FIG. 2. Remote entanglement stabilization in the amplifi-
cation mode and with the directional connection. The con-
vergence rate is plotted versus amplification strength in dB.
For a fixed strength Q of the qubit drives, the convergence
rate reaches a maximum for a finite value of the squeezing
strength. However this decrease in convergence rate, observed
for strong squeezing powers, can be compensated by increas-
ing the qubit drives strength (full curve, corresponding to
an optimal choice of ). Parameters are x1/2m = x2/27 =
5MHz, k/27 = 1MHz. Inset: Temporal dynamics of the
fidelity F' for different values of the squeezing strength.

concurrence decreases with the losses (here, 7 represents
the transmission efficiency between the TWM and each
of the cavities). This situation is similar to [20] but with
the crucial difference that with no loss our protocol gives
a fidelity of 100 % and that a smaller amount of squeezing
provides further robustness to transmission losses. The
asymmetry in the cavity couplings to the transmission
lines (0k = |k1 — K2|) also reduces the steady-state con-
currence, but again, smaller amount of squeezing leads
to further robustness, see Fig. 3 (b). The results ob-
tained so far did not take into account the effect of qubit
relaxation (rate 1/77) and dephasing (rate 1/7%). Nat-
urally, the steady-state concurrence decreases for large
relaxation and dephasing rates, see Fig. 3 (c¢). While
a larger amount of squeezing provides a faster entan-
glement stabilization, therefore compensating for qubit
relaxation and dephasing, it reduces the robustness to
transmission loss and asymmetry. The optimal value
of squeezing should be chosen as a function of the ex-
perimental parameters. Our protocol can also be real-
ized between field modes at identical frequencies, such a
setup may be helpful in the modular architecture con-
text because the cavity modes in distant modules could
have identical frequency. This is accomplished by creat-
ing single-mode squeezed states with a pair of degenerate
parametric amplifiers which are then transformed into a
two-mode squeezed state by a 50-50 beam splitter [27].
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FIG. 3. Effect of imperfections on remote entanglement sta-
bilization in the amplification mode and directional connec-
tion. Using the same parameters as in Fig. 2, and 2 = 1.6k,
the complementary of the steady state concurrence is plotted
against transmission losses (a), asymmetry in the cavity cou-
plings to the transmission lines (b) and qubit relaxation and
dephasing (for 71 = T5») (c). One observes that applying a
weak amount of squeezing provides more robustness to trans-
mission losses and asymmetries but leads to a slower rate of
convergence, harming the asymptotic concurrence in presence
of qubit’s relaxation and dephasing. In practice, one needs to
choose an optimal value of squeezing to compromise between
these two effects.

B. Cavity pointer states for even and odd qubit
parity

The above entanglement concentration mechanism can
be understood in the following way: in the absence of the
qubit drives, the cavities admit a joint pointer state that
depends on the parity of the qubits. When the qubits are
in an odd state span{|ge), |eg) }, the cavities pointer state
is the squeezed vacuum state, and when the qubits are in
an even state span{|gg), |ee)}, the cavities pointer state
is a squeezed thermal state. We now provide a proof for
this claim.

a. Qubits in odd manifold Suppose that the qubits
are in the odd qubit subspace. The interaction Hamilto-
nian reduces to :

. Ax ~ . N
Hdispersive = TXM(UJrf + Uer). (3)
We now perform the following Bogoliubov transformation
by = dy cosh(r)+al sinh(r).
(4)

Note that the photon number difference operator M is
left invariant by this transformation

by = @y cosh(r)+ald sinh(r),

The dynamics thus reads

dp e &2 7 Ft7
% = —Z[Hdisp,p] + Z Ll/le - %(LLLVP + pL:r/LV)
v=1,2

s

. hy ~ o ~ n
with Hyep = %Mi)(@_ +6_1), Ly = /rby, and Ly =
Vrbs.

It is clear that the steady state of this dynamics is of
the form p = |00)(00| ® p, where |00) is the vacuum state
of the Bogoliubov modes by and by and Pq is a qubits state
in the odd manifold. It is known that the Bogoliubov
vacuum correspond to the two-mode squeezed state in
the original basis a1, as.

b. Qubits in even manifold Suppose now that the
qubits are in the even qubits subspace. The interaction
Hamiltonian reduces to

. hx o, . R
Hdispersive = ?N(Ugg - Uee)' (7)

The dynamics of the reduced density matrix of the cavi-
ties is then given by

dp A - . R
dtc = _Z[Hdisp7p0] + Z vacLzT/ - %(L:T/

v=1,2

~

vPe t+ Pcflliu)

(8)

X By -
with Hgisp = i%N (4 for qubits in |gg) and — for

lee)), L1 = \/k(a; cosh(r) + al sinh(r)), and Ly =
V# (@ cosh(r)+al sinh(r)). To compute the steady state
of this dynamics, we use the characteristic functions for-
malism [30, 31]. For a two-mode field, the characteristic
function is defined as a function of two complex variables
v and u, given by:

D(t,v, 1) = Trlpe(t) exp(va] — v"ar)exp(ua) — p*az)).
(9)
This is an equivalent description of the quantum state p.
The dynamics for p. can be transformed into a partial
differential equation for the characteristic function:

102 X9 0 -0 04
rot . T2 a0 Yau e Mo
1 1
=5 @ V)@= (| +[v]*) cosh(2r)+(vp+v" ") sinh(2r)| @,
0 0 0 0
h vV =v* — * —. sol
where .V = v o +U8v + u o +'u<9u We solve

this equation using the method of the characteristics.
Denoting ®( the characteristic function of the initial
state, the solution is given by

Kt o Xt Kt Xt

O(t,v, 1) = Po(e” 2T v, e TEEF p)h(t, 0, 1)



where

(t,v, ) = exp{ e ha(t,0, 1) — 3 ha(w, 1))
ha(t,v, 1) = |vf* + |ul?
ﬁ [H(U}L@iixt + v*p*eTX) sinh(2r)
F x cos(xt)(vp™ — v*p) — xsin(xt)(vp + v*p*)]
ha(v, 1) = [(Jul? + [1f?) cosh(2r)

+ (k(vp +v*p*) £ix(vp — v*p")) sinh(2r)}

K,2+X2
Noting that ®0(0,0) = 1 and that hy(t,v,u) is a

bounded function of time, ®(¢,v,n) converges exponen-
tially at rate x to ® (v, u), given by

@ (v, 1) = exp{—5 [([v]? + [uf*)cosh(2r) + avpu + v 4]},
(10)

with @ = a, + ia; = cos(#)sinh(2r)e?, 0 being defined
by tan(d) = + X This corresponds to the Gaussian state
K

24(¢ ) = exp{—3 (€ VRGN (11)

(Re(v),Im(v), Re(n), Im(p)), R is the
0 1), and the

where (¢,\) =
symplectic matrix R = R ﬁ; R = (_1 0
covariance matrix o is given by

_ (cosh(2r)T A Y e T
7= ( A cosh(2r)I) A= ( o ar> ’

with Z the identity matrix. This Gaussian state is a
two mode squeezed thermal state, characterized by the

squeezing parameter ¢ = e’ where 6 is defined by

tan(6) = +X and the squeezing strength 7’ is defined by
K

tanh(2r’) = cos(f)tanh(2r), and by the mean number of

thermal photons nyy, = %(\/1 + sin’(6)sinh?(2r) — 1).

III. ENTANGLEMENT STABILIZATION WITH
A DELOCALIZED MODE

In the conversion mode, the pump frequency w, is set
close to the difference w.; — wee between the frequency
of the modes ¢; and ¢;. The TWM then generates a
beam-splitter interaction,

Hconvert = hA(_éIél + 612-62) + 59(6162 + é;él)a (12)
in the appropriate rotating frame and after a rotat-
ing wave approximation. Here ¢ represents the effec-
tive coupling strength between the two-modes which is
proportional to the pump amplitude. The detuning,
A = %(wp — We1 + wea), will be useful to correct mis-
match between the qubit-cavity couplings.

To expose the remote connection idea, as a toy model
we first consider a full hybridization between the cavity
mode a1 (a2) with the TWM mode ¢é; (&), ie. ¢ — a
n (12). Hamiltonian (12) is diagonalized through rotat-
ing the modes a; by an angle defined as tan20 = g/A,

s AT A AT cos(f) —sin(6f
(fi fa) =Ro (a1 a2)" where Rg = (Sin((Qg cos(é)))
In order to couple the mode f1 to both qubits with the
same dispersive shift y.g = X222 the detuning is set to

X1+x2’
A= gzx\}%. The total Hamiltonian is then given by

Hoy = LE(f1f1 — f3 f2) — Shixesr (621 + 622) f{ f1, (13)

X1+Xx2
VXixz '
nel coupling g strong enough to ensure £ > hy.q, the

delocalized mode fs is largely detuned from f;. As a
consequence, we have neglected the coupling between f1
and fg through the dispersive interaction. The physics
becomes effectively single mode and the protocol exper-
imentally realized in [10] can be applied to the delocal-
ized mode fl. Manipulating mode fl is straightforwardly
achieved with drives on one or both cavities. The final
Hamiltonian after a rotating wave approximation in the
large tunnel coupling ¢ limit in the interaction picture
reads

FIeff :hXeff(&gg - OA—ee)flJrfl + h’i\/{':lC()S(Xefft)(f}r + fl)

H{AQU6 g + Gor) — BQe™Xet (6, — G, ) +h.c.}.
(14)

with the energy separation £ = hg For a tun-

The first term of Hamiltonian Heg shifts the frequency
of the cavities by £xeg if the qubits are both in ground
or excited state, but does not involve the qubit states
|ge) and |eg) that contribute to the Bell state to be sta-
bilized. This crucial property is the result of correcting
the dispersive shift asymmetry with A. The second term
displaces the cavity states to a coherent state with an av-
erage of @i photons if the qubits are in states |gg) or |ee), it
corresponds to the cavity drive channel in Fig. 1 (b). The
last terms drive the qubit to the Bell state |¢4.) if the cav-
ities are empty and to the Bell state |¢_) if the cavities
are displaced, respectively. Both cavities are also cou-
pled to zero-temperature environnements with damping
rate k, that tends to relaxe the cavities to vacuum. The
resulting quantum dynamics stabilizes the state [¢_)|00).

A. Numerical simulations

The fidelity F of the Bell state |¢_) is plotted in Fig. 4
versus tunnel coupling strength and compared to the re-
sult obtained for two qubits in the same cavity [10]. The
remote entanglement stabilization converges to the local
protocol result for g 2 40x. In this limit, the characteris-
tics of the stabilization process have been widely studied
for a single cavity [28, 29] and can be directly used to
describe the remote configuration. Temporal dynamics
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FIG. 4. Remote entanglement stabilization in the conver-
sion mode and with the bidirectional connection. The single-
cavity result (dashed and dotted lines) is recovered for a suf-
ficiently large tunnel coupling g (full and dash-dotted lines).
Results are obtained for different values of the damping rate
of the long resonators, k¢ = 0 in cyan and k¢ = 10k in
black. The damping rate of the cavities and TWM modes
is k/2m = 1MHz, the effective dispersive shift is equal to
Xeff = Dk, the cavity drives are set to displace the mode czl
by an average of i = 3 photons, the qubit drives strength
is © = Kesr/2. For the simulations of the single-cavity case,
we vary the effective damping rate keg similarly to the two-
mode case. This explains the slight reduction of the fidelity
for k, = 10k with increasing g (and therefore keg). Inset:
Temporal dynamics of fidelity establishment and stabilization
for different values of the tunnel coupling and k; = k.

for the preparation and stabilization protocol are plotted
in the inset of Fig. 4.

We now consider the cavities coupled to the TWM
through long resonators, described by the harmonics by
and d,, of fundamental frequency well below the cavity
and TWM frequencies [17]. Among those let us select
the closest harmonic to each cavity frequency, b and cz,
and consider for simplicity that the three modes a; (a2),
b (d), ¢ (é) are in resonance. We note g, the value of
a1 — b coupling (taken to be the same as ap — d) and
ge that of the b—é coupling (the same as d— ég), and
define ¢ such that g, = gsiny, and g. = gcos ¢ where
G = (g2 + g>)'/2. Very interestingly, in the limit of large
coupling to the long resonators g > g, A, the dynam-
ics can be restricted to the two delocalized modes fl, fg
involving the cavity and TWM modes with a vanishing
contribution of the connecting modes. The modes ng
are weakly dependent on the dissipation ky of the long
resonators, they are thus delocalized dark modes with re-
spect to the connecting resonators. The resulting effec-
tive Hamiltonian is similar to Eq. (13) with parameters

— oXitX2 12 _ _XiXx2 2 S
E = 9 e S ¢ and yeg = i Cos” @ For simi

lar dispersive shifts and coupling strengths and for large
enough tunnel coupling, the physics is equivalent to the
single cavity realization [10] but with an effective disper-
sive coupling that is divided fourfold; The extension to
remote cavities thus requires strong dispersive couplings,

X1,2 ~ 20k.

In Subsection IIIB, we provide a more rigorous de-
scription of the whole system, involving the harmonics bn,
and d,,. This description shows that the effective single
mode description is valid for large enough tunnel coupling
g and away from other resonances.

In Fig. 4 the parameters of the delocalized modes fl
and f2 are obtained after diagonalization of the linear
system. The cavity frequencies are wq /27 = 7GHz,
wea/2m = 11 GHz, the dispersive shifts are xi/2r =
18.8 MHz and xo/2m = 15MHz, the fundamental fre-
quency of the long resonators is wp,wqy =~ 1GHz, the
detuning between the cavities and the TWM modes is
set to 210 MHz, as for the detuning between the cav-
ity mode @y (a2) and the 7" (11*") harmonic by (di1),
the coupling to the long resonators is g/27 = 100 MHz
with ¢ = 0.227. Concerning the robustness to imperfec-
tions, the pump detuning is used to correct a dispersive
coupling asymmetry and an asymmetry in other parame-
ters does not lead to qualitative changes in performances.
Only a large damping rate of the connecting resonators,
ke = 10k, can affect the stabilized fidelity (see Fig. 4).

B. Deriving an effective single mode model

We now derive the effective single mode model from
the description of the whole system including harmonics
l;n7 cin of the long resonators and show that it is valid for
large enough tunnel coupling g and away from other res-
onances. The total Hamiltonian without the qubits and

the drives, in the frame rotating at w,1 + A for aq, by, ¢1,
and at wes — A for ag,d,, é2, is given by

H/h = Aalas + éley —alay —eley) + g(eles + éley)
+ Z[(n — ng)wp + 8 — AJbl by,

n

+ 3 [(m — mo)wq + 64 — Ald}d,

(15)

To proceed, we build the vector a of the bare modes
sorted as follows: a1, ag, é1, ¢, by, dn (N modes in
total). The Hamiltonian without qubits and drives is
then diagonalized, Ho/li = 3. E,Al A, where the vec-
tor of eigenmodes A is sorted such that f1 and f2 are
the first eigenmodes. We define the matrix P with the
relation a = PA. We go to the frame rotating at E;
for all eigenmodes, where Ho/h =3, _, AE, Al A, with
AE,, = E,, — FEy. The dispersive couplings and the cavity
drives will give a coupling between the eigenmodes and
drive them.



The coupling to qubits reads

i _ 1. & ats AT
rq/h——§X1az1a1a1 2X20z2aga2

=" Z 3 1P 1nP1m21 + X2P2nPam6.2] hAm

n,m=1

The dispersive couplings to eigenmode A; are tuned with
A to get equal dispersive shifts x to each qubits, y11 =
X21 = X, where we note X, = x;P3,. Note that here
we use a tilda instead of the subscript “eff” for a lighter
notation.

rq/h = % (Uzl + &ZQ)AJ{Al
N A~ A
- Z % X1P1nP1m621 + X2P2nPam.0] AT A,

n,m=1

(n,m)#(1,1)

Two drives are then applied on cavity 1, at frequencies
Wdal,1 = Wa1 + A+ E1+x and waa1,2 = Wa1 + A+ Ep —
to drive eigenmode A; when qubits are in states |gg) or
lee). The driving Hamiltonian reads

Hg,/h = 2cos(xt) Z [ },

with €, = Pi,e. The bare Lindbladian consists of a
dissipator for each mode. In terms of the eigenmodes,
this induces a dissipative coupling between all modes.
The total Lindbladian reads

n n<m
with C[A;, Ao]- = A; - A} +
R = ZﬁkPi'm
k

where R is the vector of damping rates of a.
We set the qubits state to |71, j2) and write the equa-
tions of motion

Knm = § ExPrnPrm,
k

O A, = —2i¢, cos(xt) — [i(AE, — ixI12) + 15,] A,
+ 3 [Exde = LRnm) Am. (16)
m#n
with
nglgf = X1P1nP1m<j1‘a-zl‘j1> + X2P2nP27”<j2‘a-22‘j2>'

The drive strength is set by (2€;/%1)? = 7 to displace
the A; mode by /7 in the steady state. The set of lin-
ear differential equations Eq. (16) can be expressed with
matrices, ;A = —2i€cos(xt) — iVA, and diagonalized,

V = QDQ! with Im{D,,} > 0. The equations are
integrated into

t
At) = —2iQ/ dt’e ) cog(yt')Q e
0

9 e—iDt _ g—ixtT  o—iDt _ gixtT R
DI D+ xZ

(17)

To attest that the physics is effectively single mode, we
show that the modes A,~1 are not displaced. We define
the parameter p as

max, -1 {maxt {\<A¥fj2>(t)|}}

[(AD72)(t = o0)]

Hjrje =

that is small when the dynamics involves only the eigen-
mode Aj.

The dependence of the couplings §, (in the Hamilto-
nian (15)) on the harmonic index n is g, = v/n + 1go [17].
In simulations of Fig. 5, we keep the damping rates
constant k, = k. We use the parameters of the ex-
periment Ref. [17] for the long resonator b: L, =
68CI'I1,LUb = 92MHZ,n0 = 75,%17775 = 1MHZ,§Q1,75 =
Je1,75 = 500MHz, for k1 = k2 = 1MHz and we =
we2 = 6.9GHz. For the long resonator d, we take it
1.2 times longer, Ly = 81.6cm,wy = 76.7 MHz, my =
90,Kld790 = 1MHZ,§a2790 = §c2,90 = 500 MHz. The re-
sults are plotted in Fig. 5. The x mismatch is corrected
at g/2r = 168 MHz where Ey ~ 21y, figg.cc ~ 0.01,
Hgeeqg ~ 0.07. For this specific value of the coupling
strength g, numerical simulations show that the most
unwanted driven eigenmode is Ay (the maximum over n
in the definition of u;,;, corresponds to n = 2). This is
in good agreement with Fig.5, which shows that around
g/2m = 168 MHz the system is well approximated by the
toy model where only the first two eigenmodes are con-
sidered. The parasitic driving of the second mode can
be suppressed by driving cavity 2 with the appropriate
strengths. With this we get j1gg.cc > 0.004, fige eq =~ 0.05.

IV. CONCLUSION

We have proposed two protocols for entanglement sta-
bilization of two distant qubits that are connected to a
three-wave mixer. The stabilization mechanism is con-
trolled by the TWM pump amplitude and frequency
and use different nonlocal resources, either a two-mode
squeezed state or a delocalized mode. The latter pro-
tocol is more robust against experimental imperfections
such as asymmetries and losses. On the other hand, the
protocol using a shared two-mode squeezed state, is an
unusual example of autonomous entanglement distilla-
tion where even modest squeezing results in significant
entanglement. Our protocols are general and can be im-
plemented with current superconducting quantum circuit
technology. Remote entanglement stabilization based on
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FIG. 5. Parameter p;, ;, for the 4 two-qubit states, obtained

for n = 4. The dashed lines are obtained from Hamilto-
nian (13) with the effective parameters £ = g% sin? ¢
and Yeff = X)§1+X932 cos? .

TWDMs can be used to distribute entanglement in a net-
work of qubits as the connection between qubits and the
mixer could be through a quantum router [1] with no es-
sential change in the physics of the process. Thus the
schemes are well suited for modular quantum computing
and demonstrate that TWMs are advantageous devices
for this purpose.
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