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Floodlight quantum key distribution (FL-QKD) has realized a 1.3Gbit/s secret-key rate (SKR)
over a 10-dB-loss channel against a frequency-domain collective attack [Quantum Sci. Technol. 3,
025007 (2018)]. It achieved this remarkable SKR by means of binary phase-shift keying (BPSK) of
multiple optical modes. Moreover, it did so with available technology, and without space-division
or wavelength-division multiplexing. In this paper we explore whether replacing FL-QKD’s BPSK
modulation with a high-order encoding can further increase that protocol’s SKR. First, we show that
going to K-ary phase-shift keying with K = 32 doubles—from 2.0 to 4.5Gbit/s—the theoretical
prediction from [Phys. Rev. A 94, 012322 (2016)] for FL-QKD’s BPSK SKR on a 50-km-long
fiber link. Second, we show that 2d × 2d quadrature amplitude modulation (QAM) does not offer
any SKR improvement beyond what its d = 1 case—which is equivalent to quadrature phase-shift
keying—provides.

I. INTRODUCTION

Quantum key distribution [1] (QKD) allows remote
parties (Alice and Bob) to create a shared random bit
string with unconditional security. Later, they can em-
ploy their shared string for one-time-pad (OTP) encryp-
tion [2] of messages they wish to keep entirely private
from any eavesdropper (Eve). Unfortunately, current
QKD systems’ Mbit/s secret-key rates (SKRs) [3–7] fall
far short of what is needed to make high-speed (Gbit/s)
transmission with OTP encryption ready for widespread
deployment. Floodlight QKD (FL-QKD) [8–10] is a re-
cent protocol that uses binary phase-shift keying (BPSK)
of multiple optical modes and homodyne detection to
achieve security against the optimum frequency-domain
collective attack. Its initial theoretical study [8] pre-
dicted that FL-QKD was capable of Gbit/s SKRs at
metropolitan-area distances over single-mode fiber (no
space-division multiplexing) in a single-wavelength chan-
nel (no wavelength-division multiplexing) without the
need to develop any new technology. The initial table-
top experimental demonstration of FL-QKD [9] used
100Mbit/s modulation to realize a 55Mbit/s SKR over a
10-dB-loss channel (equivalent to 50 km of low-loss fiber)
in a setup that was limited by the bandwidth of its elec-
tronics. A subsequent table-top experiment [10], using
GHz-bandwidth electronics, attained a 1.3Gbit/s SKR
over a 10-dB-loss channel using a 7Gbit/s modulation
rate

Why is FL-QKD’s SKR so much higher than prior
state of the art, even when compared at the same
collective-attack security level? It is because FL-QKD
takes advantage of multimode encoding, whereas the pre-
dominant decoy-state BB84 protocol does not [3], and
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conventional continuous-variable (CV) QKD protocols
require single-mode encoding [4]. Moreover, the SKR
advantage over decoy-state BB84 shown in recent D-
dimensional QKD experiments [5–7] comes only from
mitigating the SKR-limiting effect of single-photon de-
tectors’ dead time, i.e., within each time slot of their D-
slot symbols these protocols take no advantage of multi-
mode encoding. Thus the SKRs in bits/s for prior state-
of-the-art systems are constrained to be no more than
the ultimate limit on SKR in bits/mode, viz., the PLOB
bound [11], SKR ≤ − log2(1 − η) bits/mode for a chan-
nel with transmissivity η. In contrast, FL-QKD’s pre-
dicted 2Gbit/s SKR [8] over a 50-km-long fiber link uses
10Gbit/s BPSK modulation of 200modes/symbol mak-
ing its 10−3 bits/mode well below the − log2(1−η) = 0.15
PLOB bound for η = 0.1, while still affording the Gbit/s
SKRs needed for high-speed OTP encryption.

How can we increase FL-QKD’s bits/mode SKR, other
things being equal, to further enhance its bits/sec SKR?
Because FL-QKD relies on homodyne detection, there
is a potential answer from classical fiber-optic communi-
cation, where a similar problem has been confronted in
the context of increasing the spectral efficiency (bits/s-
Hz = bits/mode) for coherent (homodyne or heterodyne)
detection systems [12]. For classical communication the
answer is to go to a high-order modulation format, e.g.,
K-ary phase-shift keying (KPSK) or quadrature ampli-
tude modulation (QAM). Therefore, in this paper we will
evaluate the merits of FL-QKD’s using those formats.
We show that KPSK with K = 32 doubles—from 2.0 to
4.5Gbit/s—the theoretical prediction from Ref. [8] for
FL-QKD’s BPSK SKR on a 50-km-long fiber link, but
we find that 2d × 2d-symbol QAM does not offer any
SKR improvement beyond what its d = 1 case—which is
equivalent to quadrature phase-shift keying, i.e., 4PSK—
provides.

The remainder of the paper is organized as follows. We
begin, in Sec. II, by extending the FL-QKD protocol—as
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presented in Ref. [8] and subsequently realized in Refs. [9,
10]—to allow for high-order encoding, using either the
KPSK or QAM signal constellations. Next, in Sec. III, we
analyze FL-QKD’s performance when it employs KPSK
with 1 ≤ log2(K) ≤ 5, or 2d × 2d square-lattice QAM
with 1 ≤ d ≤ 4. We conclude, in Sec. IV, with some
discussion and suggestions for future work. Derivation
details appear in Appendices A and B.

II. FL-QKD WITH HIGH-ORDER ENCODING

In FL-QKD with high-order encoding (schematic in
Fig. 1), Alice splits the W -Hz bandwidth, flat-top
spectrum, high-brightness (many photons/mode) output
from an amplified spontaneous emission (ASE) source
into a low-brightness (� 1 photon/mode) signal and a
high-brightness reference. To enable channel monitor-
ing, Alice combines her low-brightness ASE with the sig-
nal output from a spontaneous parametric downconverter
(SPDC)—of the same W -Hz bandwidth flat-top spec-
trum as the ASE—in an n:1 ASE-to-SPDC-ratio with
n � 1. Alice uses a single-photon detector to moni-
tor her SPDC’s idler and another single-photon detec-
tor to monitor a κA � 1 fraction that she taps from
her combined ASE-SPDC light, while sending the re-
mainder of that light—whose brightness is NS � 1
photon/mode—to Bob. Alice retains her bright refer-
ence beam in an optical-fiber delay line—using ampli-
fiers as needed—for use as her dual-homodyne receiver’s
high-brightness (NLO � 1 photons/mode) local oscilla-
tor (LO).
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Figure 1. Quantum channel setup for FL-QKD under
frequency-domain collective attack. ASE: amplified sponta-
neous emission source. SPDC: spontaneous parametric down-
converter. LO: local oscillator.

In the absence of Eve, the fiber link from Alice to Bob
is a pure-loss channel with transmissivity κS � 1. Eve’s
presence, however, allows her to control that channel,
hence Alice and Bob must perform channel monitoring
to bound Eve’s information gain. So, prior to his encod-
ing operation, Bob taps a small fraction κB � 1 of the
light he receives and sends it to a single-photon detector.

The outputs from Alice and Bob’s single-photon detec-
tors enable them to determine the singles rates SI for
Alice’s idler and SA (SB) for Alice’s (Bob’s) tap, as well
as CIA (CIB) and C̃IA (C̃IB) the time-aligned and time-
shifted coincidence rates between Alice’s idler and Alice’s
(Bob’s) tap. They use their measurements to: (1) verify
that Bob receives the photon flux he would get were Eve
absent; and (2) determine Eve’s intrusion parameter, fE ,
from [8]

fE = 1− [(CIB − C̃IB)/SB ]/[(CIA − C̃IA)/SA]. (1)

Alice and Bob’s knowing Eve’s intrusion parameter quan-
tifies the integrity of the Alice-to-Bob channel, and al-
lows them to place an upper bound on Eve’s Holevo-
information rate for her optimum frequency-domain col-
lective attack. Eve can realize that optimum attack in
the form of an SPDC light-injection attack [8], in which
case fE is the fraction of the light entering Bob’s terminal
that comes from Eve.

To complete his part of the FL-QKD protocol, Bob first
takes the light not routed to his channel monitor’s single-
photon detector and modulates it with a random symbol
selected from his signal constellation at an R = 1/T baud
symbol rate. In Refs. [8–10], that constellation was
BPSK, i.e., Bob randomly applied a 0Rad or πRad phase
shift. In the present work, Bob will employ either a
KPSK or a square-lattice QAM constellation, as shown in
Figs. 2(a) and 2(b), respectively, and detailed in Sec. III.
These encodings are easily imposed on the ASE light
that Bob receives from Alice by means of commercially-
available electro-optic modulators, cf. the 7 Gbit/s BPSK
modulation applied to 2.24-THz-bandwidth ASE light in
the FL-QKD experiment reported in Ref. [10].

After his encoding, Bob amplifies his modulated light
with a gain GB � 1 quantum-limited amplifier whose
output ASE has brightness NB = GB − 1, and sends
the modulated and amplified light back to Alice through
what, in Eve’s absence, is a κS-transmissivity fiber. The
amplifier’s gain will overcome the return-path loss inso-
far as Alice is concerned, thus making FL-QKD’s per-
formance only subject to one-way path loss, despite its
being a two-way protocol. Furthermore, the amplifier’s
ASE will mask Bob’s modulation from Eve’s passive (lis-
tening only) attack. Indeed, Alice’s transmitting low-
brightness (NS � 1) light to Bob precludes Eve’s deriv-
ing a sufficiently good broadband phase reference—from
light she taps from the Alice-to-Bob channel—for retriev-
ing Bob’s symbol stream from his noisy transmission to
Alice [13]. On the other hand, Alice’s high-brightness
(NLO � 1) broadband LO beam enables her to reliably
recover Bob’s symbols.

To decode Bob’s symbols, Alice uses dual-homodyne
reception, i.e., she 50-50 beam splits both the light re-
turned from Bob and her LO, and then makes homo-
dyne measurements of the I (0 rad LO phase shift) and Q
(π/2 rad LO phase shift) in-phase and quadrature com-
ponents of the returned light, as in classical KPSK or
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Figure 2. Signal constellation examples: (a) 8PSK, (b) 4× 4
QAM. In both cases the gray shading marks one-standard-
deviation regions for Alice’s receiver about the {Īk + iQ̄k}—
where Īk + iQ̄k is how Bob’s kth transmitted symbol would
appear, in a noise-free world, at the output of Alice’s dual-
homodyne receiver—and the red lines mark the boundaries of
her minimum error-probability decision regions. Note that the
eccentricity of the elliptical contours shown in (a) originates
from the correlation between Alice’s LO and the light she
receives from Bob. That eccentricity has been exaggerated in
(a) to emphasize the rotational symmetry, while in (b) circular
contours are shown because, as demonstrated in Appendix B,
the contours’ eccentricity is negligible for parameter values of
interest for FL-QKD.

QAM fiber-optic communications. Following Alice’s min-
imum error-probability decoding of Bob’s symbol stream
from her measured sequence of I + iQ values, Alice and
Bob complete the FL-QKD protocol with the usual key
reconciliation and privacy amplification steps, using an
authenticated classical communication channel.

III. SECRET KEY RATES

Our route to determining FL-QKD’s performance
when it employs KPSK or QAM parallels what was done
in Ref. [8] for FL-QKD using BPSK: we obtain a lower
bound on the SKR from

SKRLB = βIAB − χUB
EB . (2)

Here: (1) β is Alice and Bob’s reconciliation ef-
ficiency; IAB is Alice and Bob’s bits/s Shannon-
information rate, which they calculate from their mea-
sured conditional probability distribution—obtained dur-
ing reconciliation—for Alice’s decoded symbol given
Bob’s encoded symbol; and (2) χUB

EB is an upper bound
on Eve’s bits/s Holevo-information rate, which Alice and
Bob calculate from their channel monitors’ fE measure-
ment. Also, we are assuming that: (1) Eve mounts
an SPDC light-injection attack—which, see below, re-
alizes her optimum frequency-domain collective attack
on KPSK—with fE = 0.01 intrusion parameter; and (2)
SKRLB is sufficiently high that a typical QKD session
will push deep into the asymptotic regime, i.e., no finite-
key correction is needed. Note that IAB does not achieve

the Holevo capacity for classical information transmis-
sion from Bob to Alice, even in absence of Eve. That
capacity is achieved by Bob’s encoding with an ensem-
ble of Gaussian-distributed coherent states and Alice de-
coding with a joint-detection receiver [14]. Our inter-
est, however, is in high-SKR QKD when Eve may be at-
tacking the quantum channel. Hence we have chosen to
use the principal high-order encodings employed in fiber-
optic communications. As will be seen below, however,
the SKR gains we obtain with these high-order encod-
ings fall far short of what they afford in conventional
fiber-optic communications.

The subsections that follow evaluate SKRLB for FL-
QKD with KPSK and QAM using the same parame-
ter values that Ref. [8] assumed, thus enabling direct
comparisons of FL-QKD’s performance using these high-
order encodings to the protocol’s performance with its
original BPSK encoding. These parameter values are as
follows. (1) Alice’s ASE and SPDC sources operate at
1550 nm wavelength and have W = 2THz bandwidth.
(2) Alice’s transmission to Bob has a 99:1 ASE-to-SPDC
ratio, and its brightness, NS , is chosen, for each prop-
agation distance, to maximize SKRLB. (3) Alice and
Bob are connected by L-km-long single-mode fibers with
0.2 dB/km loss. (4) Alice and Bob use 1% taps for their
channel monitors. (5) Bob’s symbol rate isR = 10Gbaud
(T = 0.1 ns symbol duration) [15]. (6) Bob’s amplifier
has gain GB = 104. (6) Alice’s LO is undegraded with
brightness NLO = 104, and her receiver has an η = 0.9
homodyne efficiency. (7) Alice and Bob’s reconciliation
efficiency is β = 0.94.

Before proceeding to our SKRLB evaluations, there is
an important point to make about Alice’s homodyne-
measurement statistics. With our assumed T = 0.1 ns
symbol duration and W = 2THz source bandwidth,
there are M = TW = 200modes/symbol in Bob’s trans-
mission to Alice. In this M � 1 regime, the cen-
tral limit theorem implies that Alice’s I and Q val-
ues for each received symbol are jointly Gaussian ran-
dom variables given the value of Bob’s transmitted sym-
bol. Furthermore, the means, variances, and covariance
of I and Q—which fully characterize their joint condi-
tional distribution—can be obtained from the value of
the transmitted symbol and the conditional covariance
matrix of the return and reference beams’ M indepen-
dent identically-distributed (iid) return-LO mode pairs.

A. FL-QKD Performance with KPSK Encoding

In FL-QKD with KSPK encoding, Bob’s applies a
2πk/K rad phase shift to the light remaining after his
monitor tap, where k (his symbol to be encoded) is
equally likely to be any integer between 0 and K − 1.
As a result, given Bob’s transmitted symbol k, the joint
distribution for Alice’s I and Q has the rotational sym-
metry shown in Fig. 2(a). Specifically, p( I,Q | k ) is a
Gaussian, whose mean 〈I+ iQ〉 = Īk+ iQ̄k has phase an-
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gle 2πk/K and a k-independent magnitude, and whose
covariance matrix is such that

Ĩk ≡ I cos(2πk/K) +Q sin(2πk/K) (3)

Q̃k ≡ −I sin(2πk/K) +Q cos(2πk/K) (4)

are statistically independent with k-independent vari-
ances σ2

Ĩ
> σ2

Q̃
. (See Appendix A for the details.)

The preceding statistics make it easy to determine Al-
ice’s minimum error-probability rule for decoding Bob’s
transmitted symbol from her I + iQ measurement. Be-
cause Bob sends each possible symbol with equal prob-
ability, the minimum error-probability rule reduces to
making a maximum-likelihood decision as to which sym-
bol was sent [16]. Because the conditional statistics of
I and Q are Gaussian and rotationally symmetric, the
maximum-likelihood decision rule is minimum-distance
decoding: Alice decodes her measured I+ iQ as the sym-
bol whose Īk + iQ̄k is closest to that measured value. As
shown in Fig. 2(a), this means that the decision region,
Dk, in the I + iQ plane wherein Alice decodes symbol k
is,

Dk = { I + iQ : −πk/K ≤ θ < πk/K}, (5)

where |I + iQ|eiθ is the polar-coordinate form of I + iQ.
Using the {Dk}, together with the equiprobable nature

of Bob’s encoding and the jointly-Gaussian conditional
distributions {p( I,Q | k )}, we can numerically evaluate
the conditional probabilities Pr( k̃ | k ) for Alice to decode
her I + iQ value as k̃, given that Bob sent symbol k, via

Pr( k̃ | k ) =

ˆ ˆ
Dk̃

dIdQp( I,Q | k ). (6)

Alice and Bob’s Shannon-information rate then follows
from

IAB = R


K−1∑
k=0

K−1∑
k̃=0

Pr( k̃ | k )

K
log2

[
K Pr( k̃ | k )∑K−1
k′=0 Pr( k̃ | k′ )

] .

(7)
At this point, we can obtain SKRLB from Eq. (2) once

we have an upper bound on Eve’s Holevo-information
rate, χUB

EB , when she mounts an SPDC light-injection at-
tack. In that attack, Eve injects signal light from her
own W -Hz bandwidth, flat-top spectrum, low-brightness
SPDC source into the Alice-to-Bob channel, so that it
will get modulated and amplified by Bob and then trans-
mitted on the Bob-to-Alice channel. Eve also stores
her SPDC source’s idler light, for use as a reference
and then—making use of that reference, plus the light
she has tapped from the Alice-to-Bob channel, and the
light she taps from the Bob-to-Alice channel—Eve makes
the collective quantum measurement that maximizes her
Holevo-information rate.

In Ref. [8] it was shown that Eve’s SPDC light-injection
attack realizes her optimum frequency-domain collective

attack when Bob uses BPSK encoding. It turns out that
this is still true when Bob uses KPSK encoding, because
KPSK’s signal constellation is rotationally symmetric.
This makes Eve’s conditional state, given Bob transmits
symbol k, a Gaussian state with a k-independent von
Neumann entropy. It also makes her unconditional state
identical to what prevails when Bob uses BPSK. Con-
sequently, applying the χUB

EB derivation from Ref. [8]’s
Appendix C to FL-QKD with KPSK requires only that
in the final χUB

EB formula—Eq. (C56) of that appendix—
the maximum allowable value for χUB

EB be increased from
R log2(2) = R to R log2(K), i.e.,

χUB
EB = Rmin{MκSNS [fE/ ln(2)− fE log2(fEκSNS)

+ (1− fE)NS log2(1 + 1/NS)], log2(K)}. (8)

This result omits O(κ
3/2
S ) and O(N

−1/2
B ) terms that were

included in our numerical evaluations but are too long to
display here.

Figure 3(a) plots KPSK’s SKRLB versus one-way path
length L for 1 ≤ log2K ≤ 5 when, for each L value, Al-
ice’s source brightness NS is chosen to maximize SKRLB

and the other system parameters as given earlier in this
section, i.e., they are the same as those employed in
Ref. [8]. We see that at 50 km path length going from
BSPK to 32PSK increases the SKR from 2Gbit/s to
4.5Gbit/s. The inset in Fig. 3(a) plots the optimized
NS versus L. As required to defeat Eve’s passive eaves-
dropping attack on BPSK [8, 10, 13], we see that NS � 1
prevails at all distances shown for that case. Somewhat
higher brightnesses—but still satisfying NS < 1 at all
distances—are optimum as K increases, because Eve’s
decoding a higher-order KPSK requires her to have a
higher-quality phase reference, something that is still in-
accessible to her at those NS values. As an interesting
side note, we point out that the convergence with in-
creasing L of Fig. 3(a)’s SKRLB 4PSK curve to its BPSK
curve—a behavior that can be shown analytically—is due
to the resulting in decrease Alice’s signal-to-noise ratio
and the structure of those two signal sets.

B. FL-QKD Performance with QAM Encoding

In FL-QKD with 2d × 2d square-lattice QAM, Bob
first selects a symbol from 0 ≤ k ≤ Kq − 1 ≡ 4d2 − 1
in an equiprobable manner. He then intensity and phase
modulates the light remaining after his channel-monitor
tap to encode that symbol so that, in a noise-free world,
it would appear as Īk + iQ̄k—the center of the kth gray-
shaded region in Fig. 2(b)—at the output of Alice’s dual-
homodyne receiver [17].

Our first task is to use the Gaussian approximation
for Alice’s I and Q values’ conditional distribution to de-
termine Alice’s minimum error-probability decision rule.
Finding that decision rule, without further approxima-
tion, is made difficult by the symbol-dependent condi-
tional variances and covariance of I and Q. In Ap-
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Figure 3. SKR lower bounds for FL-QKD versus one-way
path length L, with insets showing the optimized brightness
NS of Alice’s transmission to Bob. The assumed parameter
values are given in the text. (a) SKRLB with KPSK for 1 ≤
log2(K) ≤ 5. (b) SKRLB with 2d × 2d square-lattice QAM
for 1 ≤ d ≤ 4.

pendix B, however, we show that for the parameter val-
ues of interest, it is reasonable to take I and Q to be
statistically independent, given Bob’s transmitted sym-
bol is k, with mean values Īk and Q̄k, and equal symbol-
independent variances, σ2.

With the preceding approximation for QAM’s condi-
tional measurement statistics, p( I,Q | k ), finding FL-
QKD’s minimum error-probability decision rule reduces
to the one for classical fiber-optic communication with
QAM: decoding an equiprobable QAM symbol from its
observation in additive white Gaussian noise. The min-
imum error-probability decision rule for that problem is
minimum-distance decoding, i.e., the decision region, Dk,
for symbol k is

Dk = { I + iQ : arg min
k′
|(I − Īk′) + i(Q− Q̄k′ | }, (9)

as shown in Fig. 2(b).
So, to evaluate Alice and Bob’s Shannon-information

rate, we use QAM’s p( I,Q | k ) and its Dk̃ to calculate
Pr( k̃ | k ) from Eq. (6) for 0 ≤ k, k′ ≤ Kq − 1. The
desired Shannon-information rate is then found from

IAB =

R


Kq−1∑
k=0

Kq−1∑
k̃=0

Pr( k̃ | k )

Kq
log2

[
Kq Pr( k̃ | k )∑Kq−1
k′=0 Pr( k̃ | k′ )

].(10)
Now, to complete our goal of finding FL-QKD’s

SKRLB for operation with 2d × 2d square-lattice QAM
when Eve mounts an SPDC light-injection attack, we
need to get χUB

EB for that attack. Eve’s Holevo-
information rate upper bound can be obtained in man-
ner similar to the case of BPSK. Indeed, the derivation
in Appendix C of Ref. [8] is directly applicable with only
minor changes. This applicability is due to Eve’s con-
ditional state, given Bob transmits his kth symbol, still
being Gaussian, and her unconditional state still hav-
ing a Wigner covariance matrix that is diagonal. Hence,

Ref. [8]’s Appendix C provides the upper bound we are
seeking if we: (1) take account of the k-dependent nature
of Eve’s conditional state in evaluating the average of her
conditional-states’ von Neumann entropies; (2) bound
her unconditional state’s von Neumann entropy by the
von Neumann entropy of a thermal state with the same
Wigner covariance matrix; and (3) use R log2(Kq), in-
stead of R, as the upper limit of her Holevo-information
rate. (See Appendix B for the details.)

Figure 3(b) plots QAM’s SKRLB versus one-way path
length L for 1 ≤ d ≤ 4 when, for each L value, Al-
ice’s source brightness NS is chosen to maximize SKRLB

and the other system parameters are the same as those
employed in Ref. [8] and for KPSK. The inset in this
figure shows the optimized NS value versus L; as ex-
pected, low-brightness operation is maintained to ward
off Eve’s passive-eavesdropping attack. What may not
be expected for QAM, however, is the following behav-
ior. Unlike what we saw for KPSK—where increasing K
led to increasing SKR, albeit with diminishing returns,
for 1 ≤ log2(K) ≤ 5—the best QAM performance, for
1 ≤ d ≤ 4, occurs when d = 1. But d = 1 square-lattice
QAM is merely quadrature phase-shift keying (QPSK =
4PSK) rotated by π/4 rad, so we conclude that QAM,
at least in its square-lattice form, offers no benefit SKR
benefit to FL-QKD [18].

IV. DISCUSSION

We have shown that 32PSK can increase FL-QKD’s
SKR on a 50-km-long fiber channel from 2.0Gbit/s to
4.5Gbit/s, but that square-lattice QAM offers no SKR
improvement beyond its 4-ary case, which is equivalent to
4PSK. Therefore, the first thing to discuss is the reason
for this behavior, which contrasts sharply with QAM’s
ability to provide substantial capacity increases in clas-
sical fiber-optic communication by virtue of its higher
spectral efficiency.

It is easy to see why FL-QKD with KPSK suffers di-
minishing returns with increasing K. Because NS < 1
is maintained to ensure security against Eve’s passive-
eavesdropping attack, the {Īk+iQ̄k} become more tightly
packed around a circle of limited radius in the I,Q place
with increasing K. Thus, because the one-standard-
deviation noise regions about these points do not change
withK, increasingK makes it harder for Alice to reliably
decode Bob’s transmitted symbols, hence limiting Alice
and Bob’s SKR gain with increasing K.

Alice’s transmitting at low brightness, so that Eve can-
not obtain a suitable high-quality broadband phase ref-
erence to decode Bob’s KPSK, defeats passive eavesdrop-
ping. For 2d × 2d square-lattice QAM with d > 1, how-
ever, the situation is different. Now, Bob’s symbols vary
in both intensity and phase. So, even without a suitable
high-quality broadband phase reference, Eve’s passive-
eavesdropping attack can provide some intensity infor-
mation about Bob’s symbols. Moreover, as is the case for
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KPSK, Alice faces increasing difficulty in discriminating
between Bob’s different QAM symbols with increasing d,
because those symbols lie within a limited-radius circle
in the I,Q plane, and they are each surrounded by fixed-
radius one-standard-deviation noise regions. The result
is that d = 1 is the best of the 2d×2d square-lattice QAM
constellations insofar as FL-QKD’s SKR is concerned.

In conclusion, FL-QKD—whether with its original
BPSK encoding or with its high-order KPSK encoding—
currently offers something that no other QKD protocol
does: Gbit/s SKRs over metropolitan-area distances with
available technology and without the space-division or
wavelength-division multiplexing. Hence FL-QKD could
make OTP encryption of high-data-rate traffic possible
over such distances. Two issues that remain to be ad-
dressed before widespread use of FL-QKD might occur
are as follows.

The first issue arises because FL-QKD is an interfer-
ometric protocol, which implies that proper function-
ing of Alice’s dual-homodyne receiver requires that the
roundtrip Alice-to-Bob-to-Alice fiber link be stabilized
in time delay to < 1 ps and in phase to < 0.2 Rad for
BPSK and even more finely for KPSK. It turns out, how-
ever, that the BPSK-level challenge has been overcome
by MIT Lincoln Laboratory, which has recently reported
success in stabilizing the 86-km-roundtrip fiber link be-
tween its Lexington Massachusetts location and the Cam-
bridge Massachusetts MIT campus [19]. Performing a
field test of FL-QKD on such a stabilized, deployed-fiber
channel is the next experimental step that ought to be
taken in FL-QKD’s development. In support of such a
field test, extending our SKR analysis to include the im-
pact of imperfect phase stabilization is an important fu-
ture task.

The second issue to be addressed concerns FL-QKD’s
existing security proof’s being limited to frequency-
domain collective attacks in the asymptotic domain, as
opposed, e.g., to decoy-state BB84’s coherent-attack se-
curity proof with a finite-key correction [3]. Toward this
end, a recent theoretical study [20] elaborates the use of
limited entanglement-assisted channel capacity to prove
that Gaussian attacks are the optimum for a broad class
of two-way QKD protocols. We have used that result
to establish a framework that could provide the desired
coherent-attack security proof for FL-QKD [21]. Com-
pleting that security proof is the essential next step in
FL-QKD’s theoretical development.
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Appendix A: Details for KPSK Encoding

In this appendix we shall supply details for FL-QKD
with KPSK encoding that were omitted from Sec. IIIA,
viz., we will derive the means, variances, and covariance
of I and Q conditioned on Bob’s having transmitted the
kth symbol from his KPSK alphabet. Then, we will ver-
ify the rotational invariance claimed in Sec. IIIA, by
proving that Ĩk and Q̃k from Eqs. (3) and (4) are sta-
tistically independent, given k, and we will find their k-
independent conditional variances, σ2

Ĩ
> σ2

Q̃
.

Our work in this appendix will draw heavily upon
the BPSK theory for FL-QKD that was established in
Ref. [8]. In that paper’s Appendix A, it was shown that
the returned and LO light entering Alice’s receiver for a
particular symbol transmission comprise a collection of
M = TW iid mode pairs with photon annihilation oper-
ators { â′Bm

: 1 ≤ m ≤ M } and { â′Rm
: 1 ≤ m ≤ M },

respectively. Under Eve’s SPDC light-injection attack,
and assuming Bob has transmitted his kth symbol, the
results from Ref. [8]’s Appendix A—generalized to ac-
count for KPSK signalling—show that the â′Bm

and â′Rm

modes are in a zero-mean, jointly-Gaussian state that
is completely characterized by its non-zero second mo-
ments:

〈â′†Bm
â′Bm
〉 = κS [GB(1− κB)κSNS +NB ] ≡ nB , (A1)

〈â′†Rm
â′Rm
〉 = NLO, (A2)

〈â′†Bm
â′Rm
〉 = e−2πik/KcRB , (A3)

where

cRB ≡ κS [GB(1−κB)(1−fE)NSNLOn/(n+1)]1/2. (A4)

Alice 50-50 beam splits her returned and LO modes to
provide the following inputs for the I and Q channels of
her dual-homodyne receiver:

â
′(I)
Bm

= (â′Bm
+ âVBm

)/
√

2, (A5)

â
′(Q)
Bm

= (â′Bm
− âVBm

)/
√

2, (A6)

â
′(I)
Rm

= (â′Rm
+ âVRm

)/
√

2, (A7)

â
′(Q)
Rm

= (â′Rm
− âVRm

)/
√

2, (A8)

where the {âVBm
, âVRm

} are in their vacuum states. The
I and Q outputs of Alice’s dual-homodyne receiver are
then the results of the quantum measurements

Î =

M∑
m=1

(â
′(I)†
+m â

′(I)
+m − â

′(I)†
−m â

′(I)
−m), (A9)

Q̂ =

M∑
m=1

(â
′(Q)†
+m â

′(Q)
+m − â

′(Q)†
−m â

′(Q)
−m ), (A10)
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where

â
′(I)
±m ≡

√
η (â

′(I)
Bm
± â′(I)Rm

)/
√

2 +
√

1− η v̂(I)±m, (A11)

â
′(Q)
±m ≡

√
η (â

′(Q)
Bm
± iâ′(Q)

Rm
)/
√

2 +
√

1− η v̂(Q)
±m, (A12)

with η being her receiver’s homodyne efficiency, and the
{v̂(I)±m, v̂

(Q)
±m} modes being in their vacuum states.

Straightforward calculations now yield the following
expressions for the conditional means, variances, and co-
variance of I and Q, given that Bob’s transmitted symbol
was k:

Īk = Mη cos(2πk/K)cRB , (A13)

Q̄k = Mη sin(2πk/K)cRB , (A14)

σ2
Ik

= Mη[η cos(4πk/K)c2RB + nB

+NLO(1 + ηnB)]/2, (A15)

σ2
Qk

= Mη[−η cos(4πk/K)c2RB + nB

+NLO(1 + ηnB)]/2, (A16)

σIkQk
= Mη2 sin(4πk/K)c2RB/2. (A17)

Finally, we can prove our rotational invariance claim for
the conditional statistics of I and Q. Using Eqs. (3) and
(4), together with the conditional moments we have just
obtained, gives us the desired result: p( Ĩk, Q̃k | k ) is a
Gaussian distribution that is completely characterized by
the following moments,

〈Ĩk〉 = MηcRB , (A18)

〈Q̃k〉 = 0, (A19)

σ2
Ĩk

= Mη[ηc2RB + nB +NLO(1 + ηnB)]/2, (A20)

σ2
Q̃k

= M [−ηc2RB + nB +NLO(1 + ηnB)]/2, (A21)

σĨkQ̃k
= 0. (A22)

Here, the Gaussian nature of p( Ĩk, Q̃k | k ) follows from
p( I,Q | k )’s being Gaussian, and the statistical indepen-
dence of Ĩk and Q̃k given k was sent then follows from
their being uncorrelated (σĨkQ̃k

= 0). We also see that
Ĩk and Q̃k have k-independent variances, σ2

Ĩ
> σ2

Q̃
, given

k was sent.

Appendix B: Details for QAM Encoding

Here we shall supply details for FL-QKD with QAM
encoding that were omitted from Sec. III B, i.e., the con-
ditional means, variances, and covariance of I and Q,
where we again rely on results from Ref. [8]’s Appendix
A.

Suppose that Bob encodes his kth symbol on the light
remaining after his channel monitor’s tap by imposing a
transmissivity 0 < κq ≤ 1 attenuation and a 0 ≤ θq < 2π
phase shift that are chosen in accord with where the kth
symbol appears in his 2d × 2d square-lattice QAM con-
stellation. Conditioned on that symbol being sent, and
assuming that Eve has mounted an SPDC light-injection
attack, the returned and LO light that enters Alice’s re-
ceiver are again comprised of M iid {â′Bm

, â′Rm
} mode

pairs that are each in a zero-mean, jointly-Gaussian state
that is completely characterized by its non-zero second
moments:

〈â′†Bm
â′Bm
〉 = κS [GB(1− κB)κqκSNS +NB ] ≡ nBq

,

〈â′†Rm
â′Rm
〉 = NLO,

〈â′†Bm
â′Rm
〉 =
√
κq e

−iθqcRB . (B1)

It is now a relatively simple matter to show that

Īk = Mη
√
κq cos(θq)cRB , (B2)

Q̄k = Mη
√
κq sin(θq)cRB , (B3)

are the conditional-mean values, and

σ2
Ik

= Mη[ηκqc
2
RB cos(2θq) + nBq

+NLO(1 + ηnBq )]/2, (B4)

σ2
Qk

= Mη[−ηκqc2RB cos(2θq) + nBq

+NLO(1 + ηnBq
)]/2, (B5)

σ2
IkQk

= Mη2κqc
2
RB sin (2θq) /2, (B6)

are the conditional variances and covariance of Alice’s I
and Q values when Bob transmits his kth symbol.

To simplify finding Alice’s minimum error-probability
decision regions—and hence the calculation of Alice and
Bob’s Shannon-information rate—we note that the pa-
rameter values assumed in Sec. III imply that

NLO � κqc
2
RB ∼ κqκ2SGBNSNLO

> nBq
∼ κqκSNB � 1. (B7)

Using these relations simplifies Eqs. (B4)–(B6) to σ2
Ik
≈

Mη2NLOnBq
/2, σ2

Qk
≈ Mη2NLOnBq

/2, and σIkQk
≈ 0,

thus justifying the white Gaussian noise assumption
made in Sec. III B.
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