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In measurement-based quantum computation (MBQC), a special highly-entangled state (called
a resource state) allows for universal quantum computation driven by single-qubit measurements
and post-measurement corrections. The large number of qubits necessary to construct the resource
state constitutes one of the main down sides to MBQC. However, in some instances it is possible to
extend the resource state on the fly, meaning that not every qubit must be realised in the devices
simultaneously. We consider the question of the minimal number of physical qubits that must be
present in a system to directly implement a given measurement pattern. For measurement patterns
which have quantum circuit representation as formalized by the notion of flow, with n inputs, n
outputs and m total qubits, we show that only minimum of n + 1 and m qubits are required; while
the number of required qubits can be as high as m−2 for measurement patterns which implement a
unitary, but do not have a quantum circuit representation, as formalized by the notion of generalized
flow (gflow). We discuss the implications of removing the Clifford part of a measurement pattern,
using well-established transformation rules for Pauli measurements, for the presence of flow versus
gflow, and hence the effect on the minimum number of physical qubits required to directly realise
the measurement pattern.

I. INTRODUCTION

The circuit model of quantum computation [1]
provides a direct analogue to the common classi-
cal computational model based on networks of logic
gates. On the other hand, measurement-based quan-
tum computation (MBQC) [2], provides a concep-
tually and practically different model. This model
harnesses unique features of quantum mechanics re-
lated to entanglement and measurement, and hence
does not have a direct classical counterpart.

A measurement-based computation can be repre-
sented by a measurement pattern, where single-qubit
measurements are made on a special resource state
(known as graph state), consisting of qubits pre-
pared in a specific entangled state. For a formal
definition of a measurement pattern we refer the
reader to [3]. Resource states can be formed by
first preparing single-qubit states and then applying
specific entangling operations. The entangling oper-
ations in a measurement pattern can be represented
by a graph, where each vertex corresponds to a qubit
and each edge corresponds to an entangling opera-
tion performed between the qubits indicated by the
vertices it connects. This graph together with iden-
tified sets of input and output qubits is known as
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the open graph corresponding to the computation
[4]. Since the measurements underlying such com-
putations do not have predetermined outcomes, it is
necessary to have some dependency structure in or-
der to guarantee determinism. The existence of such
a structure for arbitrary choices of measurement an-
gles is determined fully by the open graph. For open
graphs the presence of flow [5] is a sufficient condi-
tion, and generalized flow (gflow) [6] is a sufficient
and necessary condition, for the existence of an ap-
propriate dependency structure to ensure determin-
ism [7]. The class of measurement patterns with flow
is universal for quantum computing and the transla-
tion from quantum circuits to measurement patterns
always leads to a pattern with flow [8]. The mea-
surement patterns which implement a unitary but
do not have a quantum circuit representation, are
formalized by the notion of gflow.

Despite the advantages of the MBQC model [8–
18], its realisation is often expensive in terms of
physical qubits, as the number of qubits in a mea-
surement pattern is usually much more than the
number of logical qubits in the computation [15, 19–
21]. This stems from the fact one qubit is required
for each (non-Clifford) single-qubit gate in the com-
putation. MBQC has been demonstrated experi-
mentally using various discrete-variable (qubit) sys-
tems [22–28] and continuous variable systems [29–
31]. However, experiments for qubit systems have
generally been restricted to low numbers of qubits
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and scaling them up is an important challenge [22,
31].

Here we examine the number of physical qubits
required to realise a measurement pattern, when en-
tanglement operations and measurements can be re-
ordered. We consider the question of whether the
whole resource state has to be constructed at the
beginning, or whether it is possible to add qubits on
an as needed basis. In the latter case, we consider
the minimal number of necessary physical qubits at
any time, which we denote minQR. We show that
minQR is different for open graphs with flow ver-
sus those with only gflow, and in some instances
this difference can be dramatic. The remainder of
the paper is structured as follows. We begin by in-
troducing needed definitions and background. We
then derive the required physical qubit resources for
measurement-based computations for the cases of
flow and gflow. We also examine the effect of remov-
ing Pauli measurements, which implement Clifford
group gates, in terms of its effect on the presence of
flow.

II. DEFINITIONS AND BACKGROUND

For a graph G = (V,E), V denotes the set of
its vertices and E is the set of its edges. An open
graph is a triplet (G, I,O), where G = (V,E) is an
undirected graph and I,O ⊆ V are respectively the
sets of input and output vertices. The size of G,
m is its number of vertices. Non-input vertices are
denoted by IC and non-output vertices are denoted
by OC .

Flow and gflow on open graphs, as defined in the
following, determine an ordering of measurements
which guarantees that measurement angles can al-
ways be adapted based on previous results to imple-
ment a unitary transformation deterministically, for
any choice of measurement angles.

Definition 1 (Danos & Kashefi [5]). An open graph
(G, I,O) has flow if and only if there exists a map
f : OC → IC and a strict partial order ≺f over V
such that all of the following conditions hold for all
i ∈ OC .

• i ≺f f(i),

• if j ∈ N(f(i)), then j = i or i ≺f j, where
N(v) contains adjacent vertices of v in G,

• i ∈ N(f(i)).

In this case, (f,≺f ) is called a flow on (G, I,O).

To aid clarity, we will make use of the notation
u → v, if f(u) = v and u ⇒ v, if u → v1 → v2 →
. . .→ vn−1 → vn where vn = v.

Let (G, I,O) be an open graph with flow. Then,
a collection Pf of directed paths in G is called a
path cover of (G, I,O) [32] if (i) each v ∈ V is in-
cluded in exactly one path. In other words, paths
are vertex-disjoint and they cover G, (ii) each path
in Pf is either disjoint from I or intersects I only
at its initial vertex, and (iii) each path in Pf inter-
sects O only at its final vertex. In this paper, we
assume that |I| = |O| = n (corresponding to pat-
terns performing unitary transformations). In this
case, for (G, I,O), there are n paths, each start-
ing from an input vertex, ij , and ending at an
output vertex, oj (possibly overlapping), such that
ij → v1j → v2j → . . .→ vnjj

→ oj ∈ Pf . The path
to which qubit w belongs is denoted by P(w).

Definition 2 (Browne et al. [6]). An open graph
(G, I,O) has generalised flow (gflow) if and only if

there exists a map g : OC → P IC

(the set of all
subsets of vertices in IC) and a strict partial order
≺g over V such that all of the following conditions
hold for all i ∈ OC .

• if j ∈ g(i) then i ≺g j,

• if j ∈ Odd(g(i)), then j = i or i ≺g j, where
Odd(K) = {k| |N(k) ∩K| = 1 mod 2}, is
the odd neighbourhood of K, i.e. the set of ver-
tices which have an odd number of neighbours
in K.

• i ∈ Odd(g(i)).

In this case, (g,≺g) is called a gflow on (G, I,O).

There is a well-established method for translat-
ing from quantum circuits to measurement patterns
through the use of gate teleportation [33]. The no-
tion of flow captures the fact that f(i) is the qubit
that adaptively corrects the teleportation byproduct
produced by measuring qubit i. The partial order
guarantees that there is a chain of qubits which is
teleported along disjoint paths in Pf in the open
graph such that if they are measured in the partial
order induced by flow, the corrections can be consis-
tently applied. It should be noted that the class of
patterns with flow is universal for quantum comput-
ing and the translation from circuits to the patterns
always leads to a pattern with flow [34].

Gflow is a generalization of flow and turns out to
be a necessary condition where the state is not nec-
essarily teleported into a single site, but across many
sites during the computation. In these open graphs,
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the teleportation byproduct produced by measuring
a qubit i can be consistently corrected by a correct-
ing set denoted g(i) instead of one single qubit.

III. MINIMAL QUBIT RESOURCES

In this section, we discuss the question of the min-
imal number of physical qubits that must be present
in a system to directly implement a given measure-
ment pattern. We consider the reordering of the en-
tanglement and measurement operations such that
the number of physical qubits necessary at any one
time is minimised. The idea is based on postpon-
ing each entangling operation as long as possible.
Suppose it is the turn of a qubit w ∈ OC to be mea-
sured with respect to an ordering of measurements
induced by flow. We will denote the set of unmea-
sured qubits at this stage, excluding w, as Uw and
the set of measured qubits as Mw. The measurement
on a particular qubit w commutes with entangling
operations between u and v when neither u nor v
is equal to w, but does not commute with entan-
glement operations between w and its unmeasured
neighbours [35]. Therefore, these operations have to
be performed first before the measurement. The set
of unmeasured neighbours of w is denoted by Nw,
which is equal to N(w) ∩ Uw. The measurement of
the qubit w affects the state of qubits in Nw. As no
operation acts on a previously measured qubit [3], w
is not required beyond this point during the realisa-
tion of a pattern.

Now, we investigate the minimal set of qubits
which must simultaneously exist prior to the mea-
surement of w, excluding w itself, which we label
Qw. This set is the union of two subsets of ver-
tices: (i) the subset that is required for performing
the measurement on w, Nw, and (ii) the subset of
qubits which have been affected by previous opera-
tions and which have not been measured, and hence
must be retained until measurement (if they do not
belong to O) or until the end of computation. We
now characterise this latter subset.

At the beginning of a measurement-based com-
putation, the qubits in I are provided or prepared
in some joint input state and must be retained un-
til they are measured (if they do not belong to O),
or until the end of computation. When it is the
turn of a qubit w to be measured, the set of all
unmeasured input qubits excluding w is denoted
Iw. During the computation, measurements can-
not be commuted past entangling operations involv-
ing the same qubit, and hence the neighbours of
any measured qubits must either be measured or re-

tained. We will denote by Ow the subset of qubits
in Uw with measured neighbours. More formally,
Ow = {v ∈ Uw|N(w) ∩Mw 6= ∅}, where ∅ is the
empty set. Therefore, we have Qw = Nw ∪Iw ∪Ow.

Suppose it is the turn of a qubit w ∈ OC to be
measured with respect to an ordering of measure-
ments induced by flow. The paths in Pf are like the
teleportation paths of the qubits, and Lemma 3 in-
dicates that there is exactly one qubit in each path
that must exist prior to the measurement of w.

Lemma 3. Let (G, I,O) be an open graph with flow.
There exists exactly one member of Qw in each path
P of Pf .

Proof. We first prove that in each P there exists at
least one member of Qw, and then we prove that
this lower bound must be saturated. We will use
v to label this unique vertex for a particular path.
Tackling the upper bound first, for a given P, one of
the following two cases will happen:

1. w ∈ P: With respect to the flow definition,
there is v ∈ Nw ∩ Uw given by v = f(w) such
that P(v) = P(w).

2. w /∈ P: In this situation, there are only two
possible cases:

• None of the qubits in P have been mea-
sured previously. Therefore, there exists
v ∈ Iw in this path.

• At least one of the qubits in P has been
measured previously. Let u be the last
qubit which has been measured in this
path. Therefore, we have v = f(u) ∈ Ow.

This guarantees that at least one qubit in each path
must be in Qw, when the input state is left unspec-
ified.

We now show that if u, v ∈ Qw, and u 6= v, then
P(u) 6= P(v). The proof is done by contradiction.
Suppose P(u) = P(v) and without loss of generality,
suppose u ⇒ v. In such a situation, it must be the
case that v /∈ Iw. Therefore, one of the following
two cases will occur:

1. v ∈ Nw: Based on the flow definition, u has to
be measured before w which belongs to N(v).
Therefore, u /∈ Qw.

2. v ∈ Ow: Based on the flow definition, u has to
be measured before all of the neighbours of v,
but since v ∈ Ow, a neighbour of v has been
previously measured. Therefore, u /∈ Qw.
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This leads directly to the conclusion that in each P,
v is the unique member of Qw.

In Theorem 4, minQR is determined for open
graphs with flow.

Theorem 4. Let (G, I,O) be an open graph with
flow, with the same number of inputs and outputs, n.
To realise patterns with the underlying open graph,
minQR is min(n+1,m), where m is the whole num-
ber of qubits in the pattern.

Proof. First, consider the case that I = O (m = n),
which implies that all qubits are inputs and outputs
simultaneously. In this case, minQR is trivially equal
to m = n. Now, suppose that I 6= O, and in this
case, according to Lemma 3, the size of Qw is equal
to the number of paths in the graph, trivially equal
to n, and therefore by including the presence of w,
we have minQR = n + 1.

Although we have shown that minQR for open
graphs with flow on n inputs is min(n + 1,m), it
is not the case for open graphs with gflow. This
is demonstrated by constructing a family of open
graphs which require large numbers of qubits to be
present as a counter-example. We will consider open
graphs (Hn, I, O) with n > 1 inputs, {i1, i2, ..., in}, n
outputs, {v1, v2, ..., vn}, and (m−2n) 6= 0 intermedi-
ate qubits, {vn+1, vn+2, ..., vm′}, where m′ = m− n.
Rather than specifying the edges of Hn directly, we
instead specify the edges of the graph HC

n obtained
by complementing the edges of Hn. This is for
simplicity since Hn will be highly connected. The
graph HC

n , shown in Fig. 1, has the following edges:
{ij , vj} for j ∈ {1, 2, ..., n − 2}, {vn+j , vn+j+1} for
j ∈ {0, 1, ...,m′ − n− 1}, and {in−1, vm′}.

A gflow on Hn can be found by applying the
algorithm proposed in Ref. [36], which yields the
following: g(ij) = {vj , vn−1} for j ∈ {1, ..., n −
2}, g(vj) = {vj−2, vj−1} for j ∈ {n + 1, ...,m′},
g(in−1) = {vm′−1, vm′} and g(in) = vm′ . Since from
Fig. 1 the maximum degree of HC

n can easily be seen
to be 2, the minimal degree of Hn must be equal to
m − 3. Starting from a qubit w in a partial or-
der induced by a gflow on this open graph, we have
|Nw| ≥ m− 3. Therefore minQR ≥ m− 2.

We conclude by examining the effect of measure-
ment of Pauli operators on graphs with flow and
those with gflow, since this can alter the presence
of flow. Unitary operators which map Pauli group
operators to the Pauli group under conjugation are
known as Clifford group operations. Any of these op-
erators can be implemented by patterns with Pauli

 vm’-1
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 vn+1

 vn+2
    

   i1    

    

   i2    

    

  in-2    

    

  in-1    

    

   in   

  v1    

  v2    

    

 vn-2    

    

 vn-1    

    

  vn    

FIG. 1. Representation of (HC
n , I, O). Input qubits are

shown by i1, i2, ..., in and squared vertices represent out-
put qubits.

measurements X and Y only [37]. Due to the na-
ture of corrections made during an MBQC, measure-
ments of Pauli operators are unaffected and can be
shifted to the start of the computation. In Ref. [19],
general transformation rules for graphs are described
when Pauli measurements are performed on qubits.
This allows for Pauli measurements to be eliminated
by modifying the graph state to be prepared and
updating the other measurement bases. For exam-
ple, in the case of a Y measurement on qubit w,
the graph corresponding to the resulting state is ob-
tained by replacing the subgraph consisting of neigh-
bours of w by its complement, and removing w and
any incident edges. Measurement bases of qubits
neighbouring w also need to be updated.

Consider an open graph (H ′n, I, O) where H ′n is
a graph consisting of HC

n (shown in Fig. 1) and
another vertex, y which is connected to all of the
vertices of HC

n . (H ′n, I, O) has a flow as follows:
f(ij) = vj for j ∈ {1, ..., n − 2}, f(in−1) = vm′ ,
f(in) = y, f(vj) = vj−1 for j ∈ {n + 1, ...,m′}, and
f(y) = vn−1. Thus, minQR = n+ 2. It can be read-
ily verified that when y is measured in the Y -basis,
H ′n will be transformed to Hn, which has been pre-
viously shown that has gflow, with minQR ≥ m− 2.
On the other hand, when any vertex in Hn is mea-
sured in the Y -basis, (Hn, I, O) will lead to an open
graph which has gflow but not flow. In Fig. 2, fur-
ther examples are given where measurement main-
tains flow and where Pauli measurement introduces
flow to an open graph that previously had only gflow.
This highlights the fact that when certain measure-
ments are fixed to a Pauli basis in measurement pat-
tern, their removal can have either a positive or neg-
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FIG. 2. Examples of removing or introducing flow in
open graphs after measuring a single qubit in the Y ba-
sis. Input qubits are shown by i1, i2 and squared ver-
tices represent output qubits. a) A sample open graph,
(Ga, I, O) with flow. b) The resulting open graph after
measuring v4 in (Ga, I, O), which has flow. c) A sample
open graph (Gc, I, O) with gflow. d) The resulting open
graph with flow after measuring v3 in (Gc, I, O).

ative effect on the minimal physical qubit resources
necessary to implement the pattern.

IV. SUMMARY OF RESULTS AND
CONCLUSION

In this paper, we considered the question of the
minimal number of physical qubits that must be
present in a system to directly implement a given
measurement pattern. We showed that for measure-
ment patterns with flow, with n inputs, n outputs
and m total qubits, only minimum of n + 1 and m
qubits are required, while the number of required
qubits can be as high as m−2 for measurement pat-
terns with only gflow.

Our results provides a mechanism to take advan-
tage of protocols naturally constructed in the mea-
surement based model directly in the circuit model

augmented with individual gate teleportations. As
an application of our results, we consider the case of
blind quantum computing (BQC) protocols natively
derived in the measurement based model, introduced
in Ref. [8] and Ref. [15]. In the UBQC protocol [8],
a regular graph state, known as a brickwork state,
of dimensions N ×M is used where N and M are
proportional to the dimensions of the quantum cir-
cuit corresponding to the desired computation. The
open graph related to this brickwork state has flow
and Theorem 4 provides a way to implement the
BQC protocol using only N + 1 qubits, instead of
N ×M qubits. In order to equip BQC with verifi-
cation [15], randomly prepared single qubits (called
traps), isolated from the actual computation are in-
serted blindly which act as a witness. The introduc-
tion of a trap qubits increases the size of the required
brickwork state by 2 ×M in the most basic verifi-
cation protocol of Ref. [15], while by converting to
the circuit model, the minimal number of qubits to
implement verification becomes N + 3.

We also discussed the implications of removing the
Clifford part of a measurement pattern, using well-
established transformation rules for Pauli measure-
ments, for the presence of flow versus gflow. We con-
cluded that when certain measurements are fixed to
a Pauli basis in measurement pattern, their removal
can have either a positive or negative effect on the
minimal physical qubit resources necessary to imple-
ment the pattern.
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