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It is proven that the exact excited-state wavefunction and energy may be obtained by 
minimizing the energy expectation value of trial wavefunctions that are constrained only to have 
the correct nodes of the state of interest. This excited-state nodal minimum principle has the 
advantage that it requires neither minimization with the constraint of wavefunction orthogonality 
to all lower eigenstates nor the antisymmetry of the trial wavefunctions. It is also found that the 
minimization over the entire space can be partitioned into several interconnected minimizations 
within the individual nodal regions, and the exact excited-state energy may be obtained by a 
minimization in just one or several of these nodal regions. For the proofs of the theorem, it is 
observed that the many-electron eigenfunction (excited state as well as ground state), restricted 
to a nodal region, is equivalent to a ground state wavefunction of one electron in a higher 
dimensional space; and an explicit excited-state energy variational expression is utilized by 
generalizing the Jacobi method of multiplicative variation. In corollaries, error functions are 
constructed for cases for which the nodes are not necessarily exact. The exact nodes minimize 
the energy error functions with respect to nodal variations.  

 
 
I. INTRODUCTION 
 

 Variational principles have provided the most popular and effective ways to compute the 

properties of electronic systems. In this connection, it is well known that the minimization of the 
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expectation value of the Hamiltonian yields the wavefunction and energy of the kth eigenstate if 

the trial wavefunction for the kth state is constrained to be orthogonal to the wavefunctions for 

the 0, 1, 2, …, k-1 states, where the energy of state n+1 is understood to be at least as high as the 

energy of state n. A related notion is the Hylleraas-Undheim-MacDonald theorem [1]. This 

theorem states that the eigenvalues of the Hamiltonian matrix in any finite dimensional subspace 

of the Hilbert space are bounded from below by the true eigenvalues of the Hamiltonian. High 

quality results typically require relatively large finite dimensional subspaces, where the 

eigenvalue problem becomes computationally expensive. In fact, the computational cost of the 

best eigenvalue solver algorithms scale quadratically with the dimension of the subspace.  

 With this in mind, it is the purpose of this paper to present a nodal variational principle for 

excited states. Specifically, we prove that in order to obtain the energy and wavefunction of the 

kth state it is sufficient that the minimization takes place with the constraint that the trial 

wavefunction has the same nodes as the wavefunction of the kth eigenstate. It is not necessary to 

impose the difficult orthogonality constraint. It is also not necessary to impose explicitly 

antisymmetry. The imposition of the nodal constraint is sufficient.    

While interest in nodes of eigenfunctions goes back at least to the proof that the kth 

eigenfunction of the one-electron Schrödinger equation, in any multi-dimensional space, has no 

more than k nodal regions [2], and although research regarding nodes and their properties 

continued [3], it was the ground-state fixed-node variational principle [4] and tiling theorem [5] 

of the Quantum Monte Carlo (QMC) method that aroused substantial interest in nodes and their 

properties [6-11]. The ground-state fixed-node variational principle states that an energy 

minimization in a nodal region of an arbitrary antisymmetric wavefunction gives an upper bound 

to the ground-state energy, and if a nodal region is bounded by the exact nodes, the energy 

minimization gives the ground-state energy.  The proof of the ground-state fixed-node variational 

principle indirectly relies on the tiling theorem [5]. 

The QMC method is now being commonly used for excited states as well as ground states. In 

fact, the nodal variational principle for excited states presented in this paper is being implied 

without a proof for a number of QMC applications, such as the computations of optical gaps in 

nanostructures [12] and solids [13], diffusive properties of the vacancy defects in diamond [14], 

diamonoid excitation energies and Stokes shifts [15], excitation spectra of localized Wigner 
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states [16], quasi-particle excitations of the electron gas [17], and electronic [18] and 

rovabrational excitations [19] of molecules. As the QMC experience demonstrates, even 

approximations to the correct nodal surfaces typically result in accurate excited-state values. 

The ground-state fixed-node variational principle has been extended to non-degenerate 

[6] and degenerate [7] excited states that are ground states within certain symmetry classes of 

trial wavefunctions. More precisely, the trial wavefunctions are supposed to transform according 

to the one-dimensional irreducible representation of the symmetry point group of the 

Hamiltonian. The proofs that are used therein are symmetry-restricted generalizations of the 

ground-state fixed-node proof [4] and rely on symmetry-restricted generalizations of the ground-

state tiling theorem [5]. Although symmetries are not uncommon in molecules consisting of a 

handful of atoms, larger molecules are less likely to posses any symmetry, and no tiling theorem 

currently exists that would be applicable to an arbitrary excited state. In contrast, the proofs of 

the theorem, its corollaries, and the supporting lemma in the current paper do not rely on a tiling 

theorem and are applicable to any excited state. 

We prove the theorem and its corollaries by means of two complementary routes, A and 

B. Proof A is based on our observation that a many-electron wavefunction, with a domain of 

consideration that focuses upon a single nodal region, is equivalent to a single-electron 

wavefunction in a higher dimensional space. Proof B extends the ground-state Jacobi method of 

multiplicative variation to excited states.  

Moreover, when the exact nodes are not known, corollaries to the proofs given here construct 

two different error functions that assess the quality of approximate nodes. These error functions 

incorporate energy minimization with the given approximate nodes. The minimization of the 

error functions, with respect to variations of the nodes, achieves zero once the geometries of the 

nodes become exact. We show that the explicit antisymmetry constraint is not necessary even 

when the nodes are approximate. Numerical examples illustrate the use of the error functions. 

 

II. NODAL VARIATIONAL PRINCIPLE 

 

Given below are the two different proofs of our theorem that expresses the following 

nodal variational principle for excited states:  
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(i) The minimum of the energy expectation value of trial wavefunctions that are 

analytically well behaved and have the nodes of the exact eigenfunction 

 of N-electrons is the exact eigenvalue . The minimum of the 

energy expectation value is achieved at the exact eigenfunction 

.  

(ii) In addition, even the minimization in just one or several nodal regions also 

yields .  

Note that it has been shown [20, 21] that spin-free wave functions are sufficient in the 

context of the present work.  

 

 

 III. PROOFS OF THE THEOREM 

 

Proof A: Consider the nodal hypersurface corresponding to the k-th eigenfunction; i.e. all of 

the points in the 3N-dimensional coordinate space of N electrons that satisfy the condition

. This nodal hypersurface, i.e. a (3N-1)-dimensional surface in the 3N-

dimensional space of electron positions, partitions the configuration space into m nodal regions 

 .  is either strictly positive or strictly negative in each of the m 

nodal regions. Some technical aspects of the nodal constraint are in Appendix I of the 

Supplementary Material. 

Now consider a trial wavefunction  that is not necessarily antisymmetric 

with respect to the exchange of like-spin electrons and has the same nodes as the k-th 

eigenfunction . The trial wavefunction , which is normalized to 

unity, could be the exact k-th eigenfunction  itself. The integration over the entire 

3N-dimensional space can be partitioned into a sum of integrations over the m nodal regions, 
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,   (1) 

 

where  signifies  in the nodal region .  

The energy expectation value of  can be similarly partitioned as 

 

                       

.              (2) 

 

The expressions , which we now denote as , on the right-hand side of Eq. 

(2) are the energy expectation values of  in the individual nodal regions  and

 is the respective probability of finding the N-electron system in the 

individual nodal region . Consequently, the right-hand side of Eq. (2) is an average over the 

nodal-region energies that are weighted by the respective probabilities. If the trial wavefunction 

 
is the exact eigenfunction  itself, then . (A 

similar partitioning of the energy expectation value of a one-dimensional Hamiltonian was used 

in Ref. [11] in the proof of a different variational principle involving nodes.) 

 It is important to observe here that the k-th eigenfunction  in a nodal 

region is, in fact, the ground-state solution for the given nodal region. This is because an 

eigenfunction that is either strictly positive or strictly negative is a ground state according to an 

extension presented here of a theorem of Courant and Hilbert [2]. Although the original theorem 

is for a one-electron wavefunction in a space of arbitrary dimension, the many-electron 
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eigenfunction , restricted to a nodal region, can be equivalently interpreted as a 

ground state wavefunction of one electron in 3N-dimensional space, even when  is 

an excited state.§ In such an interpretation, the many-electron Hamiltonian is regarded as an 

effective Hamiltonian of one electron in 3N-dimensional space. The eigenfunction 

 
may also be regarded as an eigenfunction of one electron in 3N-dimensional 

space. 

According to the foregoing ground state minimum principle for each nodal region, the 

nodal region normalized energy expectation value of 
 
cannot be lower than the 

nodal region normalized energy expectation value of the k-th eigenvalue of : 

    .                           (3) 

 Multiplication on both sides of the inequality in Eq. (3) by 
 
followed by a summation 

over j gives  

 

,                    (4) 

 

                                                             
§ Note that the interchange symmetry of 

 
does not play a role for an isolated nodal 

region for the following reason. If  belongs to a nodal region, then 

, in which the spatial coordinates corresponding to two spin-equivalent 

electrons are interchanged, is outside the nodal region, as the interchange changes the sign of the 

wavefunction. 
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Ψk Ĥ Ψk Lj

Ψk Ψk Lj

= Ek

 
pLj

  
E k( ) = Ψ k( ) Ĥ Ψ k( ) = pLj
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The inequality in (4) arises because each  is non-negative, the use of normalization 

expression in Eq. (1), and the fact that the weighted average increases if any of the contributing 

energies increases. Eq. (4) proves part (i) of the theorem.  

Eq. (3) demonstrates that an energy minimization in an isolated nodal region actually 

gives the exact energy  of the entire eigenfunction . More generally, consider 

an energy minimization over some of the nodal regions, such as over an isolated region of space 

bounded by nodes. An appropriately normalized nodal energy minimization over just some of the 

nodal regions also yields the exact energy , as demonstrated by a generalization of Eq. (4): 

 

   

 

,                         (5) 

 

where the partial sum is only over those nodes that participate in the minimization. Eq. (5) 

proves part (ii) of the theorem. 

 

Proof B:  

Consider trial wavefunctions of the type , where the kth state 

 is kept fixed and the function  is varied. The function 

 is assumed to be everywhere smooth (in particular, everywhere finite) and such 

that  is a well-behaved wavefunction. It is important to note that 

 
is not assumed here to be necessarily antisymmetric with respect to 

the exchange of like-spin electrons.  
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The theorem will now be proven by showing that the explicit form of the g-variations 

around the excited state , which can be considered to be a generalization to excited 

states of the Jacobi method of multiplicative variation**, is  

.            (6)

 
 

Note that the inequality in Eq. (6) occurs because the sums are non-negative. 

The equality on the left in Eq. (6) is derived by the following chain of equalities  

 

(7) 

 

Additional details of the derivation of Eq. (7) can be found in Appendix II of the Supplementary 

Material.  

At this stage, the inequality in Eq. (6) has been proved. But in order for the inequality to 

constitute a proof of the theorem, each trial wavefunction , that has the same 

nodes as the k-th eigenfunction , should be presentable as 

. In other words, the well-behaved scaling function  

                                                             
** On p. 458-459, Vol. I of [2] the Jacobi method of multiplicative variation is introduced and 

applied to the ground-state problem only. 
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must be presentable as .  Since  vanishes at the nodes, the 

finiteness of the ratio may not appear to be guaranteed. However, the ratio is in fact finite as 

shown in Appendix III of the Supplementary Material.  

Thus, the inequality in Eq. (6), together with the fact that each trial wavefunction 

 that has the same nodes as the k-th eigenfunction  is presentable 

as , proves part (i) of the theorem. 

 As with Proof A, Proof B can be adapted to a single nodal region, or more generally, to 

several nodal regions with an appropriate normalization of the energy expectation value. Eq. (6) 

implies that the analog of Eq. (5) is 

 

 ,          (8)

 
 

where each sum in j could be replaced by simply one term when only one nodal region is used, 

which proves part (ii) of the theorem. 

 

IV. COROLLARIES TO THE THEOREM 

Now assume that the  nodal regions   are not necessarily the exact 

nodes of . It is assumed that the approximate nodes are variations around the exact ones, i.e. 
that the approximate nodes can be continuously deformed back to the exact ones.   

In this case, the minimizing energies within the different nodal regions,
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may differ from each other. Although the trial wavefunctions  are not constrained to be 

antisymmetric, the energy-minimizing trial wavefunction  will always be antisymmetric if 

the nodes come from some antisymmetric wavefunction, as the Lemma and its proof in 
Appendix IV of the Supplementary Material demonstrate.  

 A relevant “error expression”, corresponding to , is 

 

     ,             (10) 

 

where  
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Note that the larger nodal regions are weighted higher in expression (10). This error expression 

achieves its minimum of zero if and only if the trial wavefunction  is the true eigenfunction 

, because then all the nodal-region minimizing energies in Eq. (9) are equal.  

 Corollary I to the Theorem:  The minimization of error expression (10), with respect to 
nodal variations, yields the correct nodes of .  

Another nodal error expression is dictated by the use of  in Proof B. The expression 

is  
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.                         (12) 

 

Corollary II to the Theorem:  Minimization of error expression (12) with respect to nodal 
variations, for all allowable scaling functions , yields the correct nodes of . Note that the 

allowable ’s from Proof B are such that  preserves the nodes of . 

 

 

V. SIMPLE NUMERICAL EXAMPLES 

 

It was observed earlier that a many-electron wavefunction, with a domain of 

consideration that is restricted to a single nodal region, is equivalent to a single-electron 

wavefunction in a higher dimensional space. As a result, a single-electron example is worthwhile 

for demonstrating the qualitative features of approximate nodal regions. As an illustration, 

consider the exact and approximate 4S state of the hydrogen atom. The approximate 

wavefunctions minimize the total energy while being constrained to approximate nodes. Tables 

V.1-V.4 in the Supplementary Material give data for four approximate wave functions that 

possess inexact nodes. The utility of error expression (10) for helping to select the best 

wavefunction is reflected in the fact that the wavefunction with the best average energy, which is 

associated with the bottom row of Table V.3, is the one that gives the lowest value for error 

expression (10); compare the bottom rows of Table V.1-V.4. Comparison of the bottom rows in 

Table V.1 and Table V.4 also reveals, however, that it is possible for a wavefunction with a 

higher value for error expression (10) to actually give a better average energy.  

The green (middle) lines on the right-hand side of Fig. 1 [23], which is associated with the 

wavefunction in Table V.1, depict the nodal-region energy minima (solid lines) and actual 

eigenvalue (dotted line) of the example. The ground-state energies in the different approximate 

nodal regions are not necessarily equal, making the energy discontinuous across the nodes.  
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The right-hand side of Fig. 1 depicts the split of the nodal-region energies into their local 

kinetic and potential energy components, obtained by rearranging the eigenvalue equation as 

, which is the way it is utilized, for instance, in the familiar local energy 

and variance expressions [25, 26, 27]. As can be seen in Fig. 1, about the same nodal deviation 

from an exact nodal position can have a dramatically different impact on the nodal energy, 

depending on the strength of the external potential 
 
at the position of a node. For this 

reason, energy based error expressions (10) and (12) give measures for gauging nodal quality 

that should provide worthwhile alternatives to the use of the geometric notion of nodal distance 

error [28, 29]. These energy-based error expressions measure the cumulative deviation of the 

nodal-region energy minima from the average energy. When the nodes are exact, all of these 

nodal-region energy minima equal the excited-state eigenvalue, which is a constant throughout 

the entire space.  

It is interesting to note that the value of error expression (10) can be determined solely by the 

discontinuities of the local kinetic energy at the nodes. The value of error expression (10) is 

invariant with respect to a shift of all the nodal-region energy minima by the same constant and, 

as a result, this value depends only on the differences of the nodal-region energy minima. The 

differences of the neighboring nodal-region energy minima are, in turn, equivalent to the extent 

of the discontinuities of the local kinetic energy at the respective nodes. 

If, through the use of error expressions (10) or (12), there is an indication that a particular 

subset of nodal regions might be preferred, then it would be reasonable to consider choosing this 

subset alone.	For example, for the wavefunction associated with Table V.1, if only the third and 

fourth nodal regions (as counted from the nucleus outwards) are used, instead of all four nodal 

regions, the values of error expressions of Eq. (10) and Eq. (12) [30] go down from 1.0167×10-4 

Eh2 to 2.9484×10-7 Eh2 and from 3.0694×10-3 Eh2 to 7.9837×10-7 Eh2, respectively, where Eh 

signifies the Hartree unit of energy. Simultaneously, the approximate energy estimate improves 

from -0.03139 Eh to -0.03126 Eh compared with the exact value of -0.03125 Eh. It becomes clear 

that a restriction to the third and fourth nodal regions of the approximate hydrogen atom 4S 

wavefunction improves the energy estimate. In fact, compared with all the nodal combinations in 

!! 
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Table V.1, the use of the third and fourth regions gives both the lowest value for error expression 

(10) and the best average energy. (When only a subset of the nodal regions is employed, for 

which zero values of error expressions 10 and 12 serve as necessary eigenstate conditions, it is 

understood that expressions 10, 11, and 12 are adjusted to incorporate the particular squares of 

the norms of the nodal regions.) 

Appendix VI of the Supplementary Material contains two similar illustrative numerical 

examples based on the exact and approximate fifth excited states of the harmonic oscillator.  

 

 

 
 

Fig. 1. The exact (dotted lines) and approximate (solid lines) wavefunctions corresponding to the 
4S state of the hydrogen atom are depicted on the left-hand side of the figure on different radial 
distance scales. The exact wavefunction has nodes at r = 1.8716 bohr, 6.6108 bohr, and 15.5180 
bohr, while the approximate wavefunction has nodes at 2.0240 bohr, 6.6068 bohr, and 15.6442 
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bohr. The four nodal regions are enumerated from the nucleus outwards. The exact energy of the 
hydrogen atom in the 4S state is -0.03125 Eh, while the nodal-region energies of the approximate 
hydrogen-atom wavefunction are -14.010x10-2 Eh (1st), -1.000x10-2 Eh (2nd), -3.261x10-2 Eh (3rd), 
-3.106x10-2 Eh (4th). The corresponding local energies are depicted on the right-hand side of the 
figure (kinetic: red (upper) curves; potential: blue (bottom) curve; total: green (middle) lines)  

While the mathematical results in this paper are general, the difficulty is that their 

applications to many-electron systems require flexible and robust numerical representations of 

the multi-dimensional nodes. For these purposes, one might use generalizations of the approach 

in reference 31. In any case, our theorem justifies the interpretation that approximate excited 

state energies and wave functions are obtained even when the exact nodes are only known 

approximately, as exemplified by the cases given in the Introduction. 

 

VI. CONCLUSIONS 

 

In this paper, a minimum principle featuring nodes was proven for excited states. Aspects of 

this minimum principle are currently being actively utilized in practice, but no proof has actually 

been given until now.  

The excited-state theorem within provides the realization that the minimization over the 

entire space can be partitioned into interconnected minimizations in individual exact nodal 

regions, and an energy minimization over all space or over one or several nodal regions gives the 

exact excited-state energy. Moreover, the exact excited-state wave function is obtained when the 

minimization is performed over all space. The smoothness of the trial wavefunctions across the 

nodes is the link between the minimizations within each of the nodal regions. Explicit 

expressions for the wavefunction variation around an excited state with the nodes constrained to 

the correct ones are given in Eq. (6) and Eq. (8).  

Expressions (10) and (12) of the corollaries extend the minimum principle to nodal variations 

when the exact nodes are unknown. The lemma, proven in Appendix IV, supports the corollaries 

and establishes a key connection between the nodes and the antisymmetry of the trial 

wavefunctions.  

The main results in this paper are formulated in the theorem and corollaries. In addition, we 
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have provided suggestions for calculations of excited states when approximate nodes are used in 

the nodal energy minimization process. With this in mind, simple numerical examples illustrate 

the use of expressions (10) and (12) as error estimates of approximate nodes.  

 It is expected that the excited state minimum principle presented here and the extension of 

the minimum principle to nodal variation, will have a wide range of new applications due to the 

general validity of these principles for excited states. 
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Appendix I 

 

The nodal constraint is imposed by restricting the variational space to the linear space of 

wavefunctions that are well behaved and have the nodes of the k-th eigenfunction 

. In this Letter, a wavefunction is “well behaved” if it belongs to the space of “test 

functions” in the sense of the theory of tempered distributions, i.e. the wavefunction has partial 

derivatives of any order (“infinitely smooth”) and falls off to zero at infinity faster than any 

polynomial (“rapid decay”) (see [22]). In the case of approximate nodes, slightly weaker 

conditions are assumed, namely that the wavefunction is well behaved in the above sense in each 

nodal region and first-order smooth, i.e. the wavefunction has continuous first derivatives, at the 

nodes. The restricted variational space is linear, as a linear combination of such trial 

wavefunctions is still a wavefunction with the properties that are assumed above. Alternative to 

restricting the variational space, the Hamiltonian of interest,  (the kinetic part is 

, where is acting on the i-th electronic coordinates, and the 

   Ψk r1,r2 ,...,rN( )

  Ĥ = T̂ + V̂

  
T̂ = − 1

2
∇i

2

1≤i≤N
∑ ∇i =

∂
∂ri ,x

+ ∂
∂ri ,y

+ ∂
∂ri ,z
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potential part is , where  is the external potential), might be 

modified with the addition of delta function type infinite potential walls along the nodes. A 

replacement of  with such a modified Hamiltonian  is an alternative way to ensure a nodal 

constraint on the trial wavefunctions upon energy minimization, as the eigenfunctions of  

naturally have nodes at the places where the potential of  becomes infinite.   

 

 

Appendix II 

 

Here are the details for the derivation of Eq. (7). 

 

(II.1) 

 

   
V̂ = 1

ri − rj1≤i< j≤N
∑ + v ri( )

1≤i≤N
∑ v r( )

  Ĥ ˆ ′H
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gΨk T̂ gΨk − g 2Ψk T̂ Ψk
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2
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2 gΨk + 1

2
g 2Ψk
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2 Ψk
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The following arguments are used in Eq. (II.1): 1) integration by parts in the second 

equality, 2) derivative of a product in the third equality, 3) algebraic simplification in the fourth 

equality, and 4) coordinate interchange symmetry of  in the last equality.  

 

 

Appendix III 

This appendix demonstrates that  is finite, assuming both 

the eigenfunction 
 
and the trial wavefunction 

 
are analytic around 

the node. 

An eigenfunction has 3N variables and its node, i.e. the positions in the 3N-dimensional 

space where the wavefunction is zero, is a hypersurface of dimension (3N-1). For each point on 

the nodal hypersurface there is a one-dimensional direction, perpendicular to the nodal 

hypersurface, that leads toward non-zero values, so the behavior of the eigenfunction, in the 

vicinity of its node, is effectively described by a one-dimensional Schrodinger equation: 

 

,                                               (III.1) 

where . Subsequent differentiation of Eq. (III.1) gives 

 

            (III.2) 

    

( )1 2, ,..., Ng r r r

g r1,r2 ,...,rN( ) = Ψ k( ) r1,r2 ,...,rN( )
Ψk r1,r2 ,...,rN( )

Ψk r1,r2 ,...,rN( ) Ψ k( ) r1,r2 ,...,rN( )

!!
d2Ψk r( )
dr2

= f r( )Ψk r( )

f r( ) = −2 Ek −V r( )⎡
⎣

⎤
⎦

!!
d3Ψk r( )
dr3

=
df r( )
dr

Ψk r( )+ f r( )dΨk r( )
dr

!!
d4Ψk r( )
dr4

=
d2 f r( )
dr2

Ψk r( )+2df r( )
dr

dΨk r( )
dr

+ f r( )d
2Ψk r( )
dr 2

 …
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Now, we employ a proof by contradiction. If  as well as , then 

Eqs. (III.1) and (III.2) dictate that all higher derivatives of the eigenfunction also vanish, i.e. 

 for any n. Based on the assumption that  is analytic around the node at 

, it follows that the eigenfunction identically vanishes everywhere around the origin, i.e. 

, which is absurd. Consequently,  but . Hence, assuming the 

eigenfunction can be expanded in a Taylor series around the point at the node ( ), 

, where . 

 The Taylor expansion of a trial wavefunction around a point at the node has to be 

, where  and . The 

prefactor  guarantees the trial wavefunction  vanishes at the node ( ).  

As a result, 
 

does not 

diverge at the node of the eigenfunction.     

 

 

Appendix IV 

 

Lemma: The minimizing wavefunction  is antisymmetric. (The spin-free wave functions 

that are antisymmetric are such with respect to the interchange of electron coordinates that 

correspond to the same spin.) 

Proof: Define  to be the normalized antisymmetric wavefunction such that the nodes of 
 divide the N-electron configuration space into  nodal regions  . The nodes 

of the trial wavefunctions  are assumed to be the nodes of . 

dΨk r( )
dr

r=0

=0 !!Ψk 0( ) =0

!!

dnΨk r( )
drn

r=0

=0 Ψk r( )

r =0

!!Ψk r( )≡0 Ψk 0( ) =0 dΨk r( )
dr

r=0

≠0

r =0
Ψk r( ) = a1r +a2r2 +a3r3 +…= r a1+a2r +a3r

2 +…( ) !!a1 ≠0

   
Ψ k( ) r( ) = bn r n + bn+1r

n+1 + bn+2r
n+2 +…= r n bn+bn+1r + bn+2r

2 +…( ) bn ≠0 n≥1

 r n

 Ψ
k( ) r( ) r =0

   

Ψ k( ) r( )
Ψk r( ) =

r n bn+bn+1r + bn+2r
2 +…( )

r a1+a2r + a3r
2 +…( ) =

r n−1 bn+bn+1r + bn+2r
2 +…( )

a1+a2r + a3r
2 +…

!! 
!Ψmin

k( )

Φ

Φ !m !Lj !! j =1,2,…,m( )
!Ψ k( ) Φ
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Choose a point  in the whole configuration space of N electrons.  Label 

the nodal region, where the point  lies, as A. An interchange of two electrons having the same 
spin, say the first and the second electrons, maps the point  to a new point . 

Label the nodal region, where the point  lies, as A’. 

The nodal regions A and A’ are different, because  and  

have different signs (as a reminder:  is antisymmetric). If  and  are connected with a 

straight line, there has to be an odd number of nodal crossings along the line as there is a sign 

change at each nodal crossing. 

The interchange of the first and second electrons, in fact, maps every point of A to a point 

of A’ making the two nodal regions “isomorphic”, i.e. of the same form and size. Since the nodal 

regions A and A’ are isomorphic, the ground state in A is mapped to the ground state in A’ (up to 

a normalization factor) by the interchange of the first and second electrons. In the same manner, 

another nodal region, say B, is mapped to an isomorphic nodal region B’, C to C’, D to D’ and so 

on. That is, one half of the configuration space (A, B, C, D, …) is mapped to its isomorphic other 

half (A’, B’, C’, D’, …). The uncertainty in the normalization factor of the ground state is 

reduced to just an uncertainty in the sign due to the perfect mirror symmetry between the two 

isomorphic halves. 

The minimizing wavefunction  is a ground state within each nodal region. As a 

result,  restricted to A is mapped (up to a sign) to  restricted to A’ by the interchange 

of the first and second electrons, i.e. . 

On the one hand, every minimizing wavefunction, antisymmetric or not, changes sign 
across a node because it is linear around the node (Appendix III). On the other hand, as stated 
above, there is an odd number of nodal crossings along the straight line connecting  and . 

Finally, . 
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!
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!
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!
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!
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!
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      Appendix V 

 

 Tables V.1-V.4 present, in Hartrees, the energies and corresponding errors of the 
minimizing wavefunctions in single, double, triple, and quadruple combinations of nodal regions 
for four 4S state wavefunctions of the hydrogen atom with approximate nodes. 

 

    

Nodal regions 
  with 

 over the 

nodal regions  

Eq. (10) with 

 over 

1,2,3,4 

Eq. (10) with 

 over the 

nodal regions  

1 -0.14010 1.1849*10-2 1.1819*10-2 0. 

2 -0.01000 4.5153*10-4 4.5743*10-4 0. 

3 -0.03261 1.8427*10-6 1.4862*10-6 0. 

4 -0.03106 3.7671*10-8 1.1052*10-7 0. 

1,2 -0.03453 1.0764*10-5 2.5995*10-3 2.5897*10-3 

1,3 -0.03829 4.9508*10-5 6.2577*10-4 5.7819*10-4 

1,4 -0.03199 5.4590*10-7 1.0122*10-4 1.0086*10-4 

2,3 -0.02823 9.1122*10-6 8.9746*10-5 7.9779*10-5 

2,4 -0.03030 8.9878*10-7 1.6486*10-5 1.5306*10-5 

3,4 -0.03126 1.9032*10-10 2.9484*10-7 2.7933*10-7 

1,2,3 -0.03305 3.2276*10-6 5.9458*10-4 5.9184*10-4 

1,2,4 -0.03121 1.7651*10-9 1.1387*10-4 1.1384*10-4 

1,3,4 -0.03207 6.7424*10-7 8.7959*10-5 8.7493*10-5 

2,3,4 -0.03060 4.2089*10-7 1.4539*10-5 1.3920*10-5 

1,2,3,4 -0.03139 1.9140*10-8 1.0167*10-4 1.0167*10-4 

!Emin
k( )

Ek − !Emin
k( )⎡

⎣⎢
⎤
⎦⎥
2

!Emin
k( )

!Emin
k( ) !Emin

k( )
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Table V.1. The energies and corresponding errors of the wavefunction V.1 for the 4S state of the 
hydrogen atom with approximate nodes. The energies are in Hartrees. The squared norms of the 
wavefunction in the four nodal regions are respectively 0.007188, 0.030936, 0.128878, 
0.832998. 

 

 

Nodal regions 
  with 

 over the 

nodal regions  

Eq. (10) with 

 over 

1,2,3,4 

Eq. (10) with 

 over the 

nodal regions  

1 -0.01000 4.5153*10-4 4.5442*10-4 0. 

2 -0.04337 1.4700*10-4 1.4536*10-4 0. 

3 -0.02636 2.3944*10-5 2.4611*10-5 0. 

4 -0.03153 8.1424*10-8 4.7355*10-8 0. 

1,2 -0.03998 7.6272*10-5 1.7676*10-4 1.0167*10-4 

1,3 -0.02580 2.9677*10-5 3.9181*10-5 8.7611*10-6 

1,4 -0.03145 4.0860*10-8 1.8031*10-6 1.7850*10-6 

2,3 -0.03039 7.4593*10-7 5.3203*10-5 5.2335*10-5 

2,4 -0.03193 4.5963*10-7 4.8663*10-6 4.4939*10-6 

3,4 -0.03102 5.2981*10-8 2.4927*10-6 2.4039*10-6 

1,2,3 -0.02985 1.9470*10-6 6.3667*10-5 6.1526*10-5 

1,2,4 -0.03185 3.5525*10-7 6.5460*10-6 6.2670*10-6 

1,3,4 -0.03095 9.2014*10-8 4.0657*10-6 3.9280*10-6 

2,3,4 -0.03139 1.9591*10-8 6.7730*10-6 6.7678*10-6 

1,2,3,4 -0.03138 4.5884*10-9 9.4020*10-6 9.4020*10-6 

!Emin
k( )

Ek − !Emin
k( )⎡

⎣⎢
⎤
⎦⎥
2

!Emin
k( )

!Emin
k( ) !Emin

k( )
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Table V.2. The energies and corresponding errors of the first alternative wavefunction V.2 for 
the 4S state of the hydrogen atom with approximate nodes. The energies are in Hartrees. The 
squared norms of the wavefunction in the four nodal regions are respectively 0.003377, 
0.029859, 0.096241, 0.870523. 

 

Nodal regions 
  with 

 over the 

nodal regions  

Eq. (10) with 

 over 

1,2,3,4 

Eq. (10) with 

 over the 

nodal regions  

1 -0.02075 1.1023*10-4 1.1123*10-4 0. 

2 -0.03789 4.4137*10-5 4.3511*10-5 0. 

3 -0.02588 2.8840*10-5 2.9350*10-5 0. 

4 -0.03178 2.7825*10-7 2.3057*10-7 0. 

1,2 -0.03559 1.8868*10-5 5.2595*10-5 3.4136*10-5 

1,3 -0.02562 3.1680*10-5 3.3473*10-5 1.2577*10-6 

1,4 -0.03170 2.0479*10-7 9.8504*10-7 8.2084*10-7 

2,3 -0.02894 5.3250*10-6 3.2960*10-5 2.7415*10-5 

2,4 -0.03204 6.1811*10-7 2.0613*10-6 1.5154*10-6 

3,4 -0.03110 2.1550*10-8 3.5598*10-6 3.5221*10-6 

1,2,3 -0.02863 6.8585*10-6 3.5934*10-5 2.8826*10-5 

1,2,4 -0.03196 5.0796*10-7 2.7722*10-6 2.3294*10-6 

1,3,4 -0.03104 4.3752*10-8 4.2085*10-6 4.1427*10-6 

2,3,4 -0.03136 1.1844*10-8 5.0638*10-6 5.0600*10-6 

1,2,3,4 -0.03130 2.2384*10-9 7.2620*10-6 7.2620*10-6 

 

!Emin
k( )

Ek − !Emin
k( )⎡

⎣⎢
⎤
⎦⎥
2

!Emin
k( )

!Emin
k( ) !Emin

k( )
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Table V.3. The energies and corresponding errors of the second alternative wavefunction V.3 for 
the 4S state of the hydrogen atom with approximate nodes. The energies are in Hartrees. The 
squared norms of the wavefunction in the four nodal regions are respectively 0.005799, 
0.037427, 0.109387, 0.847386. 

 

Nodal regions 
  with 

 over the 

nodal regions  

Eq. (10) with 

 over 

1,2,3,4 

Eq. (10) with 

 over the 

nodal regions  

1 -0.01000 4.5153*10-4 5.7794*10-4 0. 

2 -0.05227 4.4195*10-4 3.3239*10-4 0. 

3 -0.03312 3.4957*10-6 8.4886*10-7 0. 

4 -0.03178 2.7835*10-7 5.1235*10-6 0. 

1,2 -0.04941 3.2965*10-4 3.4904*10-4 1.1295*10-4 

1,3 -0.03242 1.3758*10-6 1.8240*10-5 1.5622*10-5 

1,4 -0.03153 7.8434*10-8 1.1632*10-5 5.3270*10-6 

2,3 -0.03885 5.7797*10-5 1.0008*10-4 7.6934*10-5 

2,4 -0.03457 1.1048*10-5 4.9776*10-5 4.9492*10-5 

3,4 -0.03214 7.9189*10-7 3.9694*10-6 3.5507*10-7 

1,2,3 -0.03824 4.8828*10-5 1.1027*10-4 9.2654*10-5 

1,2,4 -0.03433 9.5012*10-6 5.4966*10-5 5.4882*10-5 

1,3,4 -0.03196 4.9800*10-7 8.7447*10-6 4.3961*10-6 

2,3,4 -0.03422 8.8319*10-6 3.7932*10-5 3.7899*10-5 

1,2,3,4 -0.03404 7.7898*10-6 2.8065*10-5 2.8065*10-5 

 

!Emin
k( )

Ek − !Emin
k( )⎡

⎣⎢
⎤
⎦⎥
2

!Emin
k( )

!Emin
k( ) !Emin

k( )
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Table V.4. The energies and corresponding errors of the third alternative wavefunction V.4 for 
the 4S state of the hydrogen atom with approximate nodes. The energies are in Hartrees. The 
squared norms of the wavefunction in the four nodal regions are respectively 0.007466, 
0.102640, 0.240274, 0.649620. 

 

 

Appendix VI 

 

In addition to the exact and approximate wavefunctions for the 4S state of the hydrogen 

atom, consider also the exact and two approximate fifth excited states of the one-dimensional 

harmonic oscillator†† (Fig. VI.1) [23].  

Table VI.1 summarizes the energy and error expression values of the minimizing 

wavefunctions with nodal approximations both in the entire space and in selected nodal regions 

only. It becomes clear that a restriction of HO-1 to the third nodal region and of HO-2 to the first 

nodal region improves the energy estimates. 

 

                                                             
†† The two wavefunctions that minimize the energy-expectation value of the harmonic oscillator, 
while being constrained to nodes displaced from the exact positions, are abbreviated HO-1 and 
HO-2 (see the caption of Fig. VI.1 for more details). 
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Fig. VI.1 The exact (dotted lines) and approximate (solid lines) wavefunctions corresponding 

to the fifth excited state of the harmonic oscillator (HO) are depicted on the left-hand side of the 

figure. The exact wavefunction (upper and lower left) has nodes at 0.959 and 2.020, while the 

first approximate wavefunction (HO-1, upper left) has nodes at 0.759 and 2.080 and the second 

approximate wavefunction (HO-2, lower left) has nodes at 0.985 and 2.420. The exact energy of 

HO is 5.5000, while the nodal-region energies of the HO-1 are 8.6564, 3.8478, and 5.6742 and 

the nodal-region energies of HO-2 are 5.2218, 3.8525, and 6.7234. The corresponding local 

energies are depicted on the right-hand side of the figure. The kinetic components are in green 

(curves with decreasing values), the potential components are in blue (curves with increasing 

values) and the sum of the two is in red (horizontal lines).  Only the right halves of the 

wavefunctions are shown due to the antisymmetry with respect to the origin. A representation of 

the harmonic-oscillator problem with unitless distance and energy is chosen [24].   
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Approximate 
wavefunction 

Energy       Error expression 1, 
Eq. (10) 

     Error expression 2, 
Eq. (12) [29] 

HO-1 (1, 2, 3) 5.1974 1.9478 4.6713 

HO-1 (3) 5.6742 0.2273 0.2273 

HO-2 (1, 2, 3)  5.1319 1.6451 1.3926 

HO-2 (1) 5.2218 0.0081 0.0081 

 

Table VI.1. The energies and error-expression evaluations of the approximate 

wavefunctions (HO-1 and HO-2 as defined previously) are shown in the table. The nodal 

regions, where the wavefunctions are considered, are indicated in the leftmost column (in 

parentheses). The harmonic oscillator energies are unitless.  
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