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We predict that continuously monitored quantum dynamics can be chaotic. The optimal paths
between past and future boundary conditions can diverge exponentially in time when there is time–
dependent evolution and continuous weak monitoring. Optimal paths are defined by extremizing
the global probability density to move between two boundary conditions, and are then expressed as
solutions to a Hamiltonian dynamical system. We investigate the onset of chaos in pure–state qubit
systems with optimal paths generated by a periodic Hamiltonian. Specifically, chaotic quantum
dynamics are demonstrated in a scheme where two non–commuting observables of a qubit are
continuously monitored, and one measurement strength is periodically modulated. The optimal
quantum paths in this example bear similarities to the trajectories of the kicked rotor, or standard
map, which is a paradigmatic example of classical chaos. We emphasize connections with the
concept of resonance between integrable optimal paths and weak periodic perturbations, as well
as our previous work on “multipaths”, and connect the optimal path chaos to instabilities in the
underlying quantum trajectories.

I. INTRODUCTION

Advances in the fabrication, control, and readout of
qubits have propelled rapid progress in the field of quan-
tum information processing [1, 2] over the past two
decades. This was made possible, in part, through foun-
dational theory work concerning open and continuously–
monitored quantum–mechanical and quantum–optical
systems [3–9], which has led to the contemporary the-
ory of stochastic quantum trajectories (SQTs) [2, 10–12].
Continuous monitoring of quantum systems, where the
system is inherently open and experiences measurement–
induced backaction and non–unitary dynamics, is an ac-
tive field of research [13–16], generating both experimen-
tal and theoretical interest related to topics such as feed-
back control [2, 17–25], entanglement generation [26–33],
and state stabilization [34] in qubits. These topics have
potential applications in larger research efforts toward
quantum error correction [2, 18].

Chaos has been researched in a body of literature
that is largely independent of that just cited. With
the exception of some work concerning chaos in quan-
tum optics [35], the overwhelming majority of the litera-
ture on “quantum chaos” is concerned with the behavior
of quantized versions of systems that have well–defined
classically–chaotic analogs [36, 37]. In classical mechan-
ics, chaos is defined by exponential sensitivity to changes
in initial conditions; therefore, a classically–chaotic sys-
tem, while mathematically deterministic, is effectively
unpredictable in the long term unless it can be initialized
with perfect precision. Exponential divergence of trajec-
tories is often quantified by computing a Lyapunov expo-
nent (LE), where a positive exponent signals that nearby
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paths diverge [38–42]. Studies of classically–chaotic sys-
tems in the quantum regime have resulted in insights
about fluctuations in the spectra of many–body quan-
tum systems [43–45], semi–classical wavepacket dynamics
[46–48], and the transition between classical and quan-
tum dynamics [49–57]. There is an essential difference
in this field, however, in that classical chaos is defined in
terms of the divergence of trajectories, which do not exist
at all in closed quantum systems. Further, the quantum
dynamics of wave functions in closed systems are explic-
itly unitary and applied linearly. A handful of works
have looked specifically at chaos in open quantum sys-
tems [54, 58], or the SQTs of continuously–monitored
quantum systems with chaotic classical analogs [59–64];
the latter have primarily focused on theoretical investiga-
tions of quantization and measurement of the damped–
driven Duffing oscillator, and its classical–to–quantum
transition.

In the current paper we introduce a fundamentally dif-
ferent kind of quantum chaos, using optimal paths (OPs)
to describe the stochastic dynamics induced by quantum
measurement [65–67]. OPs are defined as the extremal–
probability paths which move from an initial state qi
to a final state qf over a traversal time T . Although
our usage here, to describe chaotic dynamics in a quan-
tum measurement problem, is novel, similar mathematics
have been used to study classical stochastic systems (see
e.g. [68–73]). Both theoretical and experimental inves-
tigations of qubit dynamics under various measurement
schemes [74–77] have elaborated on the OP concept for
quantum measurement, demonstrating good agreement
between theory and experiment. The behavior of the
open and measured quantum system is expressed in terms
of a Hamiltonian dynamical system in the OP approach.
This system gives rise to equations of motion for the
OPs, which give a well–defined and conceptually clear
definition of chaos in continuously monitored quantum
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systems. These OPs for qubits are mathematically anal-
ogous to the classical paths in the sense of being extrema
of an action [78], despite the qubit having no classical
analog. We consider a qubit simultaneously monitored
along the non–commuting observables σx and σz as an ex-
ample in which to implement our methods; this is based
on the experimental system realized in [79], which is also
considered theoretically in Refs. [76, 80, 81]. We extend
our investigation of this system to a case where one of
the measurement strengths is varied periodically; in the
limit where the periodic measurements become strong,
our system bears qualitative similarities to the kicked
rotor, or standard map [39, 40, 82, 83], a paradigmatic
example of classical chaos. The kicked rotor has been
studied in a quantum context [54, 62, 84, 85], but our
system, while qualitatively similar at the mathematical
level, is physically quite different.

Our article is laid out as follows: in section II, we intro-
duce our theoretical methods. This includes summaries
of the mathematics of OPs generally, and of situations
where multiple OP solutions link two boundary condi-
tions (“multipaths” [76, 77]). We also propose a defini-
tion of the Lyapunov exponent for OP dynamics. In sec-
tion III we apply our methods to the two–measurement
example mentioned above. With that example in mind,
we are then able to more formally connect OP chaos with
rapid growth in the number of multipath solutions in sec-
tion IV. Some discussion, conclusions, and outlook are
included in section V.

II. THEORETICAL MODEL AND METHODS

Under continuous measurement, the quantum state is
updated through the application of non–unitary opera-
tors, which are constructed based on the correspondence
between the specific measurement process and the read-
out signal(s) r(t). In other words, every time a new read-
out value is acquired, the state ρ(t) is updated by [1]

ρ(t+ dt) =
Mdtρ(t)M†dt

tr
(
Mdtρ(t)M†dt

) , (1)

where Mdt(r) is the measurement operator. The
probability density for acquiring a particular readout
given a particular quantum state is given by ℘(r|ρ) =

tr(Mdtρ(t)M†dt); this is associated with the function G
we discuss below in the limit dt → 0. The state update
can be approximated by expanding (1) to first order in
dt; this is associated with the function F used below.
Such expansions can also lead to the stochastic master
equation (SME). The specific operators we use in our
subsequent qubit measurement examples are based on a
Bayesian update scheme [9]. See appendix A for details.

A. Optimal Paths for Pure-State Qubits

OPs are defined by extremizing the joint probability
of a path q(t) through quantum state space (e.g. Bloch
sphere coordinates for a qubit) and readout(s) r(t). Such
a probability, constrained to paths which link a given ini-
tial q(0) and final q(T ) states, may be expressed in terms
of a path integral of the form

∫
D[p]eS , where we define

the stochastic action S, which contains the stochastic
Hamiltonian H, by

S =

∫ T

0

dt (H(q,p, r, t)− p · q̇) . (2)

A least action principle δS = 0 optimizes the path prob-
ability, and gives us OPs as solutions to

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

∂H

∂r

∣∣∣∣
r?

= 0, (3)

which are Hamilton’s equations with an additional op-
timization condition on the measurement readout(s)
[65, 66], which defines the optimal readout(s) r?(q,p).
The stochastic Hamiltonian can be expressed in the form

H = p · F [q, r, t] + G[q, r, t], (4)

where q̇ = F can be obtained from a quantum Bayesian
scheme [9] by expanding a state update equation to
O(dt), or equivalently as the Stratonovich form of a
stochastic master equation [2, 11, 86, 87] (see appendix
A or [76] for a detailed derivation in the context of
OPs). The “probability cost-function” G [76] is de-
fined by expanding the log–probability ln{P (r(t)|q(t))}
for the readout update given state q (t), as modeled in
the Bayesian formalism. A Hamiltonian H?(q,p, t) may
be obtained by integrating out the readout(s) from the
path integral, because the action is Gaussian in r(t), or
equivalently by substituting r? back into H.

Generically, when we consider the evolution of a qubit
state, q could include all three of the Bloch sphere coor-
dinates x, y, and z. However, for simplicity, and to focus
on new effects, we will limit the space throughout this pa-
per with some simplifying assumptions. We suppose that
all our states start pure and stay pure (this implicitly in-
cludes an assumption that our measurements have ideal
quantum efficiency). Furthermore, we may constrain the
dynamics to the xz–plane of the Bloch sphere, so that
they may be completely expressed by the polar angle θ
in the xz–plane, for x = sin θ and z = cos θ. A disper-
sive qubit readout, as modeled in the Bayesian scheme,
results in F and G having certain forms and properties,
e.g. G is quadratic in r; these force the optimal readouts
r?(θ, p) to be linear in p. Using these relationships, we
are able to simplify our stochastic Hamiltonian down to
the form [76]

H?(θ, p, t) = a(θ, t) (p2 − 1) + b(θ, t) p. (5)
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The angle θ parameterizes the quantum states and p is
the generalized “momentum” conjugate to θ. The func-
tions a and b are determined by the particulars of any
driving and measurements applied to the qubit. We will
add one more assumption and corresponding notation
concerning the time–dependence of H?, for later use; we
suppose that a and b are such that H? can be split into

H?(θ, p, t) = H(0)(θ, p) + h(θ, p, t). (6)

The time–independent term H(0) must be integrable,
because its phase space is two–dimensional, and the
stochastic energy E = H(0) is conserved; then h can be
interpreted as a time–dependent perturbation added to
those integrable dynamics.

B. Multipaths and Lagrange Manifolds

In Refs. [76, 77] we defined “multipath” behavior, and
identified it in physically–realizable qubit systems. We
review some definitions and concepts that will be needed
in this paper. A multipath group of solutions exists when
two or more OPs link the same boundary conditions θ0

and θT (for fixed T ). A particular Lagrange Manifold
(LM) in the OP phase–space, which includes all p0 at
one single initial state θ0, may be used to detect multi-
paths. This LM describes all of the OPs branching out
from a particular initial state (the manifold includes all
of the different OP possibilities on which we may wish to
post–select). The manifold will then deform under the
Hamiltonian flow of (5) over time. Multipaths form at
final states θT which are represented several times in the
final manifold; multipaths form at final boundary condi-
tions where the manifold fails the vertical line test. This
can happen either due to the formation of a catastro-
phe [88], which is a fold in the LM, or simply an overlap
of the LM with itself mod-2π, in which case we say the
solutions have different winding counts about the Bloch
sphere. The multipath phenomenon is quite similar to
that of optical caustics; just as many rays of light may
leave a source with different wave–vectors, and then re–
converge on some other location, OPs may leave a given
state θ0 with different p0, and then re–converge on some
other state θT . Regions of θT where the LM overlaps it-
self are the caustic regions. Catastrophes in the manifold
specify the boundaries of such regions in the final condi-
tions, where the number of OPs connecting the same θ0

and θT increases. The different p0 are not immediately
experimentally accessible for qubit OPs; the generalized
momenta merely index different possible optimal read-
outs r?, which may occur according to some probability
density.

It is useful to define a Jacobian at time T

JT =
∂θT
∂p0

, (7)

for the manifold. The LM we use for finding multipaths
is defined by J0 = 0 ∀ p0. Catastrophes generating mul-

tipaths form where JT = 0, or where its inverse, the
“Van-Vleck determinant” V = |J−1| = |∂2S/∂θ0∂θT |,
expressed in terms of the stochastic action S (2), di-
verges [76]. The behavior of manifolds we care about
here can be described using JT and a curvature or con-
cavity CT = ∂JT /∂p0 = ∂2θT /∂p

2
0.

A multipath containing two MLPs has been observed
in experiment [77], and in principle a larger number
of paths could also be extracted from data given a
large enough ensemble of SQTs. However, the difficulty
of this task increases significantly with the number of
approximately–equally–likely paths meeting a given set
of boundary conditions. A system with a large number
of multipaths becomes significantly less predictable.

C. Computing Lyapunov exponents for OPs

We now define a measure of OP chaos. Based on
classical definitions of chaos, we are interested in paths
with similar initial conditions which diverge exponen-
tially from each other. That is, we consider paths with
similar initial states where a distance D(t) ∼ D0e

tλ(t)

measured between the two paths grows such that λ(t) > 0
over the time interval of interest. The quantity λ(t) we
have implicitly defined above is the Lyapunov Exponent
(LE), which quantifies how quickly paths converge or di-
verge. A number of approaches and conventions for com-
puting LEs can be found throughout the literature, e.g.
in [38–40]. We will use the simplest definition of the LE,

λ(t) ≡ 1

t
ln

(
D(t)

D0

)
, (8)

obtained directly from above, where we must account
for the finite–time nature of this LE, which cannot grow
indefinitely due to the bounded nature of the Bloch
sphere. We define a distance about a path θ, ini-
tialized at θ0 and p0, by using two auxiliary paths
θ± initialized at θ0 ± δθ0, where δθ0 is small (we use
δθ0 = 0.01 in subsequent examples) and p0 is fixed
(δp0 = 0). Using components of distances across the

Bloch sphere (δx±(t))
2

= (sin θ(t)− sin θ±(t))
2

and

(δz±(t))
2

= (cos θ(t)− cos θ±(t))
2
, we define the Eu-

clidean distance as the average of those between the main
path and each auxiliary path, i.e.

D(θ(t)) = 1
2

√
(δx+(t))

2
+ (δz+(t))

2

+ 1
2

√
(δx−(t))

2
+ (δz−(t))

2
.

(9)

Using two auxiliary paths offset in opposite directions
symmetrizes our distance measure (we have no physical
reason to favor the shift being in one direction or the
other).

Although the distance used in the LE would typically
be a distance over all dimensions of phase–space for a
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classical system (i.e. would also account for distances be-
tween p and some p± over time), we here define our dis-
tance in the θ direction only. This is justified for OPs,
because the p cannot be measured directly, and we wish
to emphasize differences in the quantum state itself. Ex-
ponential growth in distance, corresponding to chaos, will
be sufficiently characterized by λ(t) sustaining a positive
value over the evolution time of interest because of the
finite system size.

The way we initialize D0 and define D(t) emphasizes
the effect of imperfect state preparation on the OP dy-
namics. Preparing states with the same p0 (although
not a physically well–defined task for individual SQTs)
amounts to initializing them with similar optimal read-
out(s) r?0. The variation in the initial optimal readout(s)
δr?0 ≈ δθ0 · ∂θr?0|θ0,p0 is(are) on the same order as the
small variation δθ0 in the state itself under this scheme.
Appeals to physical intuition demand that this remain so
as long as the states remain similar, because the monitor-
ing of observables leading to readouts is precisely what is
used construct the SQT in the quantum state θ to begin
with [89]. Furthermore, we will see in section IV that
this definition lends itself well to connecting the chaos it
defines with the multipath behavior given by LMs.

III. TWO CONTINUOUS MEASUREMENTS
WITH VARIABLE STRENGTHS

We now demonstrate the presence of this kind of quan-
tum chaos in a specific system. Consider a qubit simul-
taneously subjected to weak measurements along σx and
σz [76, 79–81, 90]. The measurements are described by
characteristic times τx and τz, respectively, which de-
termine the time scale on which the bare measurement
causes wavefunction collapse. If dt is the time to perform
a single measurement, then τ � dt denotes a weak mea-
surement and τ . dt denotes a stronger measurement,
which becomes projective as τ/dt→ 0. In an experiment,
dt would reflect the time required to acquire one readout
value; the OPs are constructed in the limit of weak and
continuous measurements (the limit as dt → 0). Below
we will always leave τx = 1 µs fixed, but we will modulate
the strength of τz, exploring regimes both where τz . τx
(both measurements are still weak; see section III B and
appendices B 2 and C 2) and regimes where τz � τx (the
z–measurement is periodically much stronger than the
x–measurement; see section III C and appendix C 2).

Our z–measurement will be modulated in strength ac-
cording to

τz(t) = τx −A g(t)

with g(t) = exp

[
−

(t− 1
2Λ)2

2τ2
m

]
for t ∈ [0,Λ],

(10)

which is repeated with period Λ, such that g(t) = g(t+Λ)
for all t. It is useful to notate γx ≡ 1/τx, ε = A/τx,
and set γz ≡ 1/τz = γx(1− εg(t))−1, expressing the peak

strength of the z–measurement in terms of the dimension-
less ε ∈ [0, 1]. We always retain τm � Λ, such that the
changes in τz are narrow compared with their period; for
the purposes of numerical examples, we use τm = 25 ns.
The form (10) amounts to a “kick” in the strength of
the z–measurement, such that the measurement becomes
stronger at the peak of the Gaussian (every half–integer
microsecond). When ε � 1 (A � τx), both the x– and
z–measurements are weak, and when ε → 1 (A → τx),
the z–measurement becomes projective. Intuitively, the
stronger measurements can cause sudden jumps in the
SQTs and OPs, as they induce at least partial state col-
lapse. The size of the jumps is obviously related to the
kick strength ε. The relative values of τx and Λ also im-
pact the OP jump size, however. The OPs do not have
to jump when τx � Λ, since diffusion from any state
will easily reach the z–eigenstates before another kick
happens. However, jumps are necessary in the opposing
regime τx � Λ, since diffusion from an arbitrary state
is unlikely to reach the z–eigenstates on its own before
a kick. See appendix F for a simplified model of the
projective–kick limit, and further details. In examples
below, we always take τx = 1 µs = Λ. Our choice of
τx = 1 µs and the kick duration τm = 0.025 µs implies
that at ε = 0.975 we pass the point where 2 ·min(τz) fits
within one standard deviation of its kick peak (meaning
that this is approximately the value of ε where a single
kick lasts long enough compared to τz to collapse the
state to the eigenstates of σz).

A. Stochastic Hamiltonian for Two
Non-Commuting Qubit Measurements

The stochastic Hamiltonian which generates OPs for
the two–measurement system is defined by (4) and

F =
rx
τx

cos θ − rz
τz

sin θ

G = −r
2
x − 2rx sin θ + 1

2τx
− r2

z − 2rz cos θ + 1

2τz

(11)

(see [76] and/or [65, 80]). With the optimal readouts
r?x = sin θ + p cos θ and r?z = cos θ − p sin θ substituted
in (or integrated out), we obtain H? = (p2 − 1) a(θ, t) +
p b(θ, t) with

a(θ, t) ≡ sin2 θ

2τz(t)
+

cos2 θ

2τx
,

b(θ, t) ≡ sin θ cos θ

(
1

τx
− 1

τz(t)

)
.

(12)

When the measurement strengths are equal (i.e. τx = τ =
τz), as is approximately true for all time when ε� 1, and
at the times between kicks regardless of the value of ε,
the stochastic Hamiltonian reduces to that of a simple
rotor,

H?
rot =

p2 − 1

2τ
. (13)
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As discussed in appendix E, and in other works [76, 79–
81], this rotor Hamiltonian corresponds to simple diffu-
sion of the state on a circle. The rotor Hamiltonian is
integrable because the stochastic energy E = H is con-
served, as is p. Since H?

rot is a function of p only, we may
furthermore regard the pair {θ, p} = 1 as its action–angle
coordinates.

We now introduce the kick (10) into H?. Notice that
γz can be expanded in powers of ε such that

γz =
γx

1− εg(t)
= γx

∞∑
n=0

[εg(t)]
n
. (14)

When ε � 1, the kick barely changes the measurement
strength, and gives OP dynamics described by a small
perturbation to those of H?

rot. The full stochastic Hamil-
tonian H? can be expanded in powers of ε as

H?(θ, p, t) = H(0)(p) +

∞∑
n=1

εnH(n)(θ, p, t), (15)

where H(0) = (p2 − 1)/2τx = H?
rot and

H(n≥1) = gn(t)

(
p2 − 1

2τx
sin2 θ − p

τx
sin θ cos θ

)
. (16)

In the notation of previous sections, we have H? =
H(0)(p)+h(θ, p, t), where the time–dependent part h con-
taining the kicks has been decomposed in powers of ε.
Our aim below will be to explore the dynamics first for
small ε � 1, and then for stronger (ε → 1) measure-
ments. Links to, and explanations of, a series of supple-
mental animations illustrating the dynamics across the
full range of ε can be found in appendix C 2.

We make a few more general remarks before analyzing
the dynamics in detail. First, at the level of SQTs, the in-
tegrable part of the Hamiltonian H?

rot describes isotropic
diffusion about the Bloch sphere, consistent with experi-
mental findings [79] (see also Refs. [76, 80], and appendix
E). However, when τx 6= τz, diffusion towards one set of
measurement eigenstates is favored over the other, and
the SQTs diffuse anisotropically. The diffusion constants
generically grow larger as τ shrinks. See appendix E for
further details. Second, the system we have constructed
greatly resembles the kicked–rotor or standard map, a
system which is often used as a pedagogical example of
classical chaos. The classical kicked rotor [39, 40, 82, 83]
is derived by adding periodic δ–kicks to the Hamilto-
nian for a simple rotor; such a perturbation, which de-
stroys conservation of E and p, is known to make the
rotor’s dynamics become chaotic, especially for stronger
kick strengths. The system we have described above is
also a rotor disturbed by a periodic force, and it most
resembles the classical kicked rotor in the limit where
ε→ 1 and τm → 0 [91] (see appendix F for details). The
onset of chaos in the kicked rotor and similar mappings is
well understood [38–40, 82], and below we will show that
our H? generates qualitatively similar dynamics, with ε
playing a role similar to the kick–strength parameter of
the standard map.

FIG. 1. (Color online) We show a stroboscopic phase por-
trait of H? for ε = 0.1. Paths are initialized across θ for
p = 0, π/3, π/2, 2π/3, π, 3π/2, 2π, and 3π, along with small
offsets (±0.2) about each p0 to improve the plotted resolu-
tion of features in the phase–space. Points are plotted in
between kicks every Λ = 1 µs from T = 0 → 100 µs to con-
struct the image. Colors are assigned based on the LE λ(t)
(8). We see that integrable rotor tori are destroyed at the
p = kπ resonances, where k is an integer, giving way to alter-
nating hyperbolic and elliptic fixed points with new periodic
islands; the other initial conditions shown are not impacted
substantially. A formal derivation in support of this result,
and further remarks, appear in appendices B 1 and B 2. This
image is drawn from a larger animation which can be found
in the supplements described in appendix C 2. Compare the
pattern of islands and tori above with the shape of the LM
displayed in Fig. 2(c).

B. Resonances in the weak measurement regime

Let us consider the dynamics of H? for ε � 1, where
both of the measurements τx ≈ τz remain weak, generat-
ing diffusive quantum trajectories. From animated sur-
veys of the phase space in this regime (see appendix C 2)
we know that disturbances to the integrable phase space
are restricted to regions near p = kπ for integer k. This is
clearly illustrated in Fig. 1, where we show a stroboscopic
phase portrait for ε = 0.1. The question which drives this
subsection is: What is special about the values p = kπ
when ε� 1?

Based on canonical perturbation theories [39, 40, 82,
92–95], including the theorem by Kolmogorov, Arnold,
and Moser (KAM) [96], we expect that the OP dynam-
ics will not deviate substantially from the integrable dy-
namics of H(0) in this regime, except near resonances.
By “resonance”, we refer to a rational number relation-
ship between periodic motion from H(0) and the pe-
riod Λ of the first–order perturbation εH(1). We have
H(0) = H(0)(p) = E, so that the frequency ν(0) of
integrable, periodic OPs is determined by computing
ν(0) = ∂pH

(0) = p/τx = ±
√

1 + 2τxE/τx. A resonance
occurs, and so perturbation theory breaks down, wher-
ever the condition

ν(0)(E)`+ 2πk/Λ = 0 (17)

is satisfied, for ` = 0,±2 and any integer k (see ap-
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FIG. 2. (Color online) We show plots of the LM initialized at θ0 = 0, after T = 20 µs, for ε = 0.1, τx = 1 µs = Λ, and
τm = 0.025 µs. In (a) we plot θT against p0, in (b) we plot θT against pT , and in (c) we repeat plot (b), but with θT plotted
mod-2π since states separated by an angle of 2π on the Bloch sphere are the identical. Lighter colors denote higher winding
numbers. In (a) and (b), the black line shows the LM for H? = H(0) + h, and the dashed red line shows the LM for H(0)

only. Deviations in the LM due to the perturbations, relative to the integrable case, are primarily restricted to values p ≈ kπ
for integer k, that is, in the neighborhood of resonances between H(0) and the weak applied kicks. We further note that the
representation in (c) highlights the enormous similarity between the LM and stroboscopic phase portrait shown in Fig. 1; the
same patterns highlighting flat paths, except at islands forming around resonance zones, are clearly visible in both images.

pendix B 1 for details). For τx = Λ, this relationship
reduces to p` + 2πk = 0, which explains the appearance
of resonances at integer multiples of p = π. Equiva-
lently, those resonances appear where the period of the
integrable motion

T̃ =

∫ T̃

0

dt =

∫ π

0

dθ

θ̇
=
τxπ

p0
→ p0 = k

τxπ

Λ
, (18)

is an integer multiple of the kicking period itself. Along
the paths with resonant p0 or E, the effects of the per-
turbation build over time, since the unperturbed motion
is always “in phase” with the perturbing force, instead of
averaging out and leaving the H(0) dynamics nearly un-
changed, as would happen off–resonance. As these lines
of p0 are destroyed, e.g. as shown in Fig. 1, chaos gets
its first toehold in the phase space; the resonances gen-
erate the first major disruptions to the integrable tori as
ε grows.

The largest deviations from the LM generated by the
flow of H(0) at low ε also occur in paths initialized near
those same resonant p0. H(0) is a quadratic function of
p, so its LM cannot contain caustics [97]. The manifolds
describing multipath behavior originating at the excited
state θ0 = 0, both for H(0), and the full H?, are shown
in Fig. 2; the similarity between Figs. 1 and 2(c) is im-
mediately apparent. When ε is small, the formation of
catastrophes in the LM corresponds with the p0 forming
resonance bands; these give the first interesting multi-
path behavior, and will play a key role in turning the
entire phase–space into a chaotic sea as ε grows larger.
This is the first of many connections we will discuss be-
tween OP chaos and multipaths.

The concept of resonance, in the context of OPs,
should extend well beyond the specific example we dis-
cuss here. Starting with an integrable stochastic Hamil-
tonian, any additional periodic perturbations will gener-
ate dynamical disruptions along paths in the OP phase

space which match the perturbation’s period, much as we
have seen above. This is true even when the perturbation
is weak; from there the resonance phenomenon offers a
relatively well–understood (from classical chaos theory)
pathway to OP chaos as the perturbation is strength-
ened. A wide variety of other schemes which meet these
criteria could be easily devised for qubit systems, using
combinations of measurement(s) and Rabi drive.

C. Chaos and Multipaths in the strong
measurement regime

We now proceed to investigate the dynamics of H? at
values of ε near 1, corresponding to strong kicks (nearly
projective z–measurements). Stroboscopic phase por-
traits for ε = 0.95, 0.98, and 0.99 are shown in Fig. 3.
These figures confirm that chaos overtakes larger por-
tions of the phase space as ε grows. A few examples of
strongly–chaotic paths at ε = 0.99 are shown in Fig. 4,
which serve to illustrate the qualitative effect of OP
chaos. In these examples, we see groups of OPs which
start at nearly identical quantum states; as time goes on,
small deviations in their dynamics are magnified, until
the states θt generated by these OPs are effectively un-
correlated. Qualitatively, we may understand that small
deviations in diffusion between kicks get magnified by the
kick itself; that is, a measurement kick probabilistically
collapses the state to an eigenstate of σz in this regime,
and stochastic elements of the diffusion between kicks
determine the probability for a path to go one direction
or the other at the next kick. Thus, every kick effec-
tively elevates the randomness inherent in the preceding
diffusion step to the point that it manifests as chaotic
unpredictability in the OPs (which are defined statisti-
cally, not on the basis of any one SQT). Thus we see that
states prepared on the border of being easily distinguish-
able experimentally (we use δθ0 = 0.01 and δp0 = 0 in
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FIG. 3. (Color online) We show stroboscopic phase portraits for the Hamiltonian (12) subject to periodic strong measurements
according to (14). Points are plotted at the moment when H? most closely resembles (13), halfway between kicks. We use
τm = 25 ns and τx = 1 µs = Λ. The simulation was run from T = 0 → 15 µs, including 15 “kicks”, to generate the figures.
We show ε = 0.95 (a,b), ε = 0.98 (c,d), and ε = 0.99 (e,f). Color denotes the LEs (8) for the paths in (b,d,f), computed
according to the distance (9) shown in (a,c,e). We are particularly interested in examples where the LE is large as well as
positive, implying that D(t) grows to be much larger than D0 ≈ 0.01 within a modest duration T . Note that the yellow color
for D ≥ 0.2 corresponds to differences in angle on the Bloch sphere greater than approximately 8o. The original integrable
rotor orbits are nowhere to be found, but islands formed by the p = 0 resonance are still clearly visible in the phase portrait.
As ε grows, those periodic islands are gradually destroyed, turning into a chaotic sea as more internal resonances propagate
out, destroying the remaining stable tori. Examples of individual paths with large D and λ from the ε = 0.99 case are shown
in Fig. 4. For supplemental animations showing the evolution between these images, see appendix C 2.

Fig. 4) can lead to OPs which are ripped apart within 5–7
kicks (measurement cycles). In other words, the OPs are
sufficiently sensitive to changes in initial state that small
deviations in state preparation lead to OPs which diverge

wildly from each other within experimentally–accessible
time frames. We stress that although the OP formalism
allows us to work with mathematics from classical Hamil-
tonian mechanics and chaos theory, the above intuition
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FIG. 4. (Color online) We show chaotic paths generated by (a) θ0 = 0.286 and p0 = 1.227, and (b) θ0 = 1.142 and p0 = −0.545,
in the system defined by (12) and (14). We use τx = 1 µs = Λ, τm = 0.025 µs, and ε = 0.99 in both examples. In each plot,
the paths generated by those initial conditions themselves are shown in solid black, whereas those from θ0 + 0.01 are shown
in dashed cyan, and those generated by θ0 − 0.01 are shown in dotted red. The dashed and dotted paths are those used to
compute the distance (9) about the solid black curves, which in turn defines the LE (8). The finite time LEs are plotted on
the axes below their respective path groups. In each of these examples, small variations in the state appear by T ≈ 5 µs, the
paths grow far apart in the quantum state space by T ≈ 10 µs, and the trend continues to T ≈ 15 µs and beyond. This growth
in D corresponds to LEs with sustained positive values large enough to generate sizeable values of t · λ(t) over the evolution
time of interest.

very much emphasizes the intrinsically quantum qualities
of the qubit system, and effects of quantum measurement
which give rise to all the dynamics we discuss.

IV. IMPLICATIONS OF OP CHAOS

We will be able to elucidate the impact of OP chaos
on the underlying SQTs by illustrating that there is a
connection between manifold deformation, multipaths,
and OP chaos. We have already shown that caustics
are born of the same resonance phenomena that create
chaos in the regime ε � 1, and we now show the LM
in the strong–kick regime (ε = 0.99), initialized at the
excited state θ0 = 0 after 3, 4, and 5 kicks in Fig. 5. It
is immediately apparent that by the time even 5 kicks
have taken place, the manifold contains a large number
of catastrophes bounding wide caustic regions, especially
at higher winding numbers [98]. Even among the rela-
tively high–probability dynamics at lower |p0| and fewer
winding counts (the calmest part of the LM), the number
of multipaths grows quickly. Examples from this calmer
region appear in Fig. 6, where we show the OPs describ-
ing a bit flip. After five kicks, we see that there are
already five OPs which make a bitflip from the excited
state to the ground state, in each direction (and that is
only those which do it with half a winding count, never
mind the rarer, but still observable, paths which orbit the

Bloch sphere 1.5 times or more). All of the OPs shown in
Fig. 6 are most–likely paths (MLPs) with similar proba-
bility weights, and are therefore all approximately equally
physically significant [99]. The evolution of the quantum
state under continuous measurement would experimen-
tally be derived using a particular model to reconstruct
the stochastic state evolution from the stream of readout
results. OPs are effectively defined from data with re-
spect to the pre– and post– selected density of ensembles
of SQTs. Some examples are shown in Fig. 6, includ-
ing a two–path winding count group demonstrating good
agreement between theory and simulation [100]. In show-
ing that the OP equations of motion are chaotic, we show
that evolutions with similar θ(t), p(t), and r?(t) diverge
from each other given a modest amount of time to evolve
further. We have measured this divergence in the state
θ, but it also necessarily appears in the optimal readouts
r?, since r(t) is experimentally used to construct a tra-
jectory θ(t). It is tempting to think that OP chaos ought
to imply that the entire distribution of SQTs (without
imposing a final boundary condition) should drastically
change given small variations in the initial state; this
is not necessarily true. Our OPs are derived under the
assumption that a final boundary condition will be im-
posed, which makes them conceptually different from the
global MLP (the OP which reaches the most–likely θT at
the final time), or the average path. In fact, neither of
the latter exhibit particularly striking behavior in the
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FIG. 5. (Color online) The Lagrange Manifold describing multipaths originating at the excited state θ0 = 0 on p0 ∈ [0, 1.5],
under evolution generated by (12) and (14), with ε = 0.99 and τx = 1 µs = Λ, is shown at T = 3 µs (a-c), T = 4 µs (d-f), and
T = 5 µs (g-i). The y–axis in the left column is p0, and the y–axis in the center and right columns is pT . The x–axis always
denotes θT , but in the right column it is shown mod-2π (as is physically relevant for qubit states) rather than as the raw angle
θ. The pairs (b,c), (e,f), and (h,i), respectively, contain the exact same information represented differently. Winding counts in
the right column are denoted by color, with lighter colors corresponding to more winds around the Bloch sphere. The manifold
is only computed and plotted over positive p0 because the phase–space has odd symmetry; the other half of the manifold for
θ0 = 0 is identical except for being mirrored across the origin of the phase space. The number of catastrophes in this segment
of the manifold grows from 9 at T = 3 µs (a-c), to roughly 140 at T = 4 µs (d-f), to approximately 2200 at T = 5 µs (g-i).

system defined by (10) and (12). We can see, however,
that small changes in boundary conditions can drasti-
cally change the number of OP solutions. An example of
this behavior appears in Fig. 7. We confirm from Fig. 6
that the behavior of the OPs reflects the behavior of the
underlying SQT distribution post–selected on the desired
boundary conditions. We also see that we have a situa-
tion where the number of MLPs reaching most θT grows
rapidly, such that it becomes harder to say which dy-
namics are actually the overall “most-likely”. The MLP
is simplest to interpret when only one or a few solutions
exist, corresponding to well–defined routes visible in the
underlying SQT density. Nonetheless, we may proceed
knowing that multipaths with even large numbers of so-

lutions reflect the features of the underlying post–selected
trajectory density. Furthermore, from Fig. 7 we see that
we may find examples of interesting OP behavior using
the LM we use to find multipaths. We next devote some
time to relate the LM’s behavior directly to OP chaos.

A. Formal Connections between OP Chaos and
Multipaths

The sharp growth in the complexity of the LM, due at
least in part to sharp increases in the number of catastro-
phes with each kick, is born of the same resonance phe-
nomenon which generates chaos in this system for low ε



10

FIG. 6. (Color online) We show plots for the density of sim-
ulated SQTs for (12), initialized at θ0 = 0, with ε = 0.99,
τm = 0.025 µs, and τx = 1.0 µs = Λ. All x–axes are time in
µs, and all y–axes are θ, either as the full angle (a), or mod-
2π (b-d). We show (a) the density without post–selection,
and with post–selection on the ground state (θT = ±π) at
(b) T = 3 µs, (c) T = 4 µs, and (d) T = 5 µs. In (b) we
show agreement between MLPs comptuted from simulated
SQTs (blue) with the theoretical MLPs (black). The asso-
ciated LMs may be found in Fig. 5. Normalized density is
shown on the colorbar, where 1 is the maximum trajectory
density between boundary conditions, and 0 corresponds to
no trajectories at all.

FIG. 7. (Color online) A segment of the LM from Fig. 5(g),
(initialized at θ0 = 0, after T = 5 µs, with τm = 0.025 µs,
τx = 1 µs = Λ and ε = 0.99), is shown in (a), in solid black.
The vertical dotted red and dashed blue lines highlight two
particular post–selections, at θT = 9.28 and θT = 9.32, re-
spectively. We compare the number of multipaths linking the
excited state to these two final states over the given time inter-
val. The first of these final boundaries admits 5 OP solutions,
shown in (b), whereas the second admits 11 OP solutions,
shown in (c). This sharp change in the number of solutions
existing between quite similar boundary conditions highlights
a way that instabilities in the OP dynamics (and therefore
the underlying distribution from which they are optimized)
are exaggerated in conjunction with the OPs being chaotic.

(compare Figs. 1 and 2); it is natural to suppose that the
subsequent LM complexity at larger ε, and therefore the
corresponding multipath behavior (Figs. 5 and 6), is con-
nected with the chaotic properties of the OP dynamics
we have described (e.g. in Figs. 3 and 4).

The presence of large numbers of multipaths is a hall-
mark of OP chaos. When multipaths form, the LM over-
laps itself, and in doing so gains areas of large |JT | (see
Fig. 5 (a,d,g) for an example of this). Suppose three LMs
are initialized at the states θ0 and θ±0 = θ0 ± δθ0. In or-
der to avoid chaos, it is necessary that the LMs maintain
similar shapes. We first consider the case where they do
maintain similar shapes, except for some variations ±δθ
and ±δp. After time T , the distance between points with
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FIG. 8. (Color online) Three Lagrange manifolds, initialized
at θ0 = 0 (solid black) and θ±0 = ±0.01 (dashed cyan and dot-
ted red), are shown at T = 5 µs. A more comprehensive view
of the central manifold is shown in Fig. 5 (a,d,g), as we are us-
ing the same parameters (τx = 1 µs = Λ, τm = 0.025 µs, and
ε = 0.99). In this region, the three manifolds have a similar
shape, so the divergence of points with the same p0 depends
on the size of |JT |. Two values of p0 (shown as horizontal
lines) and the corresponding points on each manifold are em-
phasized, highlighting that the points in the region with a
larger |JT | have been torn much farther apart than those in
the region with a smaller |JT |, due to a small shift in the p
direction between the LMs.

the same p0 is

DT ∼ 1
2 |θT (p0)− θ+

T (p0 + δp)|
+ 1

2 |θT (p0)− θ−T (p0 − δp)|+ δθ

≈ δθ0 + δθ + |JT δp|.
(19)

In regions where |JT | is large, the effect of small shifts
in the p direction between manifolds of similar shape is
magnified, so nearby points in these regions will diverge.
In other words, even a small difference δp(t) between p(t)
and p±(t) generates very different values θT and θ±T where
the manifold has large |JT |. This situation is illustrated
in Fig. 8. A large |JT | can only appear when the man-
ifold is either spreading over a very high range of wind-
ing counts, and/or forming many–layered caustics, with
closely–spaced (relative to p0) catastrophes. It is also
possible that adjacent LMs have unrelated shapes after
some time, in which case the region in question is nec-
essarily chaotic. This situation does not have to occur
in connection with the formation of many caustics; how-
ever, if the scale on which caustics form relative to p0 is
smaller than the shifts δp, LMs which maintained simi-
lar shapes become scrambled to the point that they no
longer resemble each other as they evolve. This situation
is shown in Fig. 9. One particularly interesting feature
which emerges from chaotic OP dynamics is that one may
choose similar boundary conditions which sit on opposite

FIG. 9. (Color online) A particular segment of the LM from
Fig. 5 is shown at T = 4 µs (a), and T = 5 µs (b), in solid
black, with auxiliary LMs initialized ±0.01 radians away in
dashed cyan and dotted red (as in Fig. 8). We again use
τx = 1 µs = Λ, τm = 25 ns, and ε = 0.99. At T = 4 µs, the
three manifolds still have a similar shape, but are shifted in
the p direction. In (b), one kick later, more catastrophes have
formed, and are clustered on a scale smaller than the shift in
p, such that paths with the same p0 in different LMs are torn
apart throughout the region shown, rather than only in a few
segments of the LMs with large |JT |.

sides of many catastrophes in the manifold; thus situa-
tions where small changes in final boundary conditions
lead to dramatically different numbers of OP solutions,
as shown in Fig. 7, are relatively commonplace in such
systems.

In appendix D 1 we define numerical “stretching pa-
rameters” which quantify aspects of a manifold’s shape
and deformation. The overall growth of the number of
caustics in a representative segment of the manifold, and
its overall level of deformation, are compared with the



12

FIG. 10. (Color online) We plot three parameters s1 (D1), s2
(D3), and s3 (D7), defined in appendix D 1, which quantify
the deformation of the manifold, along with the average LE
λav (D9). These “stretching parameters” are normalized rela-
tive to the LE so that the magnitude of the area under all the
curves is the same over the interval shown. These parameters
are plotted over the first 5 µs for the system given by (12)
and (14), with A = 0.99 µs, τx = 1.0 µs, and τm = 25 ns.
The manifold was initialized at θ0 = 0 in (a), and θ0 = 0.286
in (b), the latter of which corresponds to Fig. 4(a). In both
(a) and (b) we use auxiliary manifolds with θ0 ± 0.01, and
p0 ∈ [−2, 2] to compute λav. We see that the length L (s1)
and Jacobian J (s2) for the manifold (green ♦ and red 4,
respectively) are very closely related to each other, and that
the number of catastrophes (see s3, blue ×) grows sharply at
each kick, following similar behavior. We see that by about
the third or fourth kick, λav (D9) (black ◦) begins to satu-
rate, and decreases (although it remains quite positive); this
appears reasonable, since the distance (D8) is defined in a way
that gives it a maximum value, whereas the other parameters
plotted here may grow indefinitely. With the support of the
arguments from section IV, the connection between the aver-
age LE and other parameters reinforces that chaos and com-
plex multipath behaviors do not occur independently in this
system; one implies the other across large sections of manifold
(large enough to encompass virtually all reasonably–probable
OP behaviors originating from a particular initial state).

average LE (D9) in Fig. 10. We see that the length of
the manifold grows exponentially (see (D1)), and that
this growth is closely matched by exponential growth in
the average Jt (see (D3)) and number of catastrophes
(see (D7)). This is in contrast with the rate of growth in
catastrophes in the integrable case (for time–independent
τx and τz), which is only linear in time [76]. The average
LE (D9) over a large segment of the LM also grows ex-
ponentially for several kicks, and then levels off. This is
expected, as the distance measure (D8) has a maximum
value—our LEs can never actually grow indefinitely, be-
cause there is a limit to how far apart they can get on the
Bloch sphere. Nonetheless, we see that there is enough
chaos around the θ0 shown, across the range p0 ∈ [0, 2]
to obtain a function λav(t) which is almost always posi-
tive and mostly increasing on t ∈ (0, 5] µs; its magnitude
and shape are similar to those shown from particular ex-
amples in Fig. 4. Furthermore, we see in Fig. 10 that
the shapes of λav(t) and the three parameters describ-
ing the LM are related, highlighting a general connection
between multipaths and OP chaos.

V. CONCLUSIONS

We have have introduced a different kind of chaos in
quantum systems, which may appear in open systems
with dynamics due to continuous measurements. We
do this by looking for chaos in the extremal–probability
paths, rather than in ensembles of stochastic quantum
trajectories directly. OPs are mathematically classical,
and we therefore apply a classical definition of chaos,
which implies a form of unpredictability even in deter-
ministic systems; if paths with nearby initial conditions
diverge exponentially, then knowledge of the long–term
behavior of the system is severely limited by the pre-
cision with which initial states can be prepared. The
OP formalism allows us to apply this classical defini-
tion of chaos to purely quantum systems, lacking any
clear mechanical analog in the classical world. For exam-
ple, we have demonstrated that such exponential diver-
gence may occur in the OPs for a continuously–monitored
qubit, where dynamics reminiscent of the kicked rotor
are generated entirely by making measurements. Lya-
punov exponents computed among OPs show that OPs
with initially–similar quantum states and optimal read-
outs can diverge to completely different states within rel-
atively short times (i.e. over intervals well within the co-
herence times of modern qubits, used in many experi-
ments to implement the weak, continuous measurements
we have considered here). We stress the instability of
OPs is related to the instability of the underlying distri-
bution of SQTs itself, when both initial and final bound-
ary conditions are applied. With the boundaries properly
taken into account, we have shown that chaotic OP be-
havior is connected with dramatic growth, over time, in
the number of OP solutions meeting given sets of bound-
ary conditions, as well as the possibility to see large dif-
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ferences in the number of OP solutions linking nearly–
identical boundary conditions. These effects are them-
selves a form of unpredictability in the dynamics, which
reflect instabilities in the dynamics of underlying SQTs
and their statistics. We have been able to explain the on-
set of both the chaotic and multipath behaviors in terms
of resonances between an integrable and perturbing part
of the OP Hamiltonian. This concept should extend to
any system with a time dependent and periodic pertur-
bation.

Instabilities in the dynamics of stochastic quantum tra-
jectories may have consequences for qubit control, er-
ror correction, and other general problems of interest in
the larger quest for useful quantum control and informa-
tion processing. Extensions of the work we have started
here could generalize into a practical understanding of
when and how OP chaos can occur, and how it impacts
feedback control schemes or other useful tasks involving
continuously–measured qubits. For instance, suppress-
ing the kinds of dynamics we describe here underscores
the need for effective feedback schemes to control compli-
cated systems. Alternatively, a feedback control scheme
itself (which is necessarily time–dependent) could lead to
quite wild and unintended dynamics among rarer events
which deviate from the intended behavior; an under-
standing of these dynamics could aid in designing ro-
bust schemes. We hope that further investigations of OP
chaos in qubits, across a wider range of measurement
schemes, can lead to a deeper understanding of these
questions.
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Appendix A: Review of State Update and Path
Integral Formalisms for Continuous Weak

Monitoring

All of the information contained in this appendix can
be found in other works, e.g. Refs. [9] and [65–67, 76],
and is included here to make this paper more accessible
to those not already familiar with the formalism.

1. Bayesian State Update

As seen in (1) and the surrounding text, the state of
our qubit ρ, given some readout, is updated through the
application of some measurement operators according to

ρ(t + dt) = Mρ(t)M†
{

tr
(
Mρ(t)M†

)}−1
. Individual

weak qubit measurements in the xz–plane of the Bloch
sphere can be implemented with the measurement oper-
ator

Mϕ = exp

[
−

(1 + r2
ϕ) dt

4τϕ

]{
cosh

[
rϕ dt

2τϕ

]
I + sinh

[
rϕ dt

2τϕ

]
(σz cosϕ+ σx sinϕ)

}
, (A1)

for dt� τ . We have a z–measurement for ϕ = 0 and an
x–measurement for ϕ = π/2, i.e. we may define opera-
tors specifically for X = Mϕ=π/2 and Z = Mϕ=0 mea-
surements, for use in the state update equation. These
operator assignments can be shown to be equivalent to
applying Bayes’ rule, in the readout probability densities,
to individual elements of the density matrix ρ [9, 65, 76].

In the example developed in the main text, we are
interested in monitoring both the observables σx and σz
at the same time, i.e. we are interested in the particular

case where

ρ(t+ dt) =
ZXρ(t)X †Z†

tr (ZXρ(t)X †Z†)
. (A2)

The probability density from which the readouts r are
drawn is given by ℘(r|ρ) = tr

(
ZXρ(t)X †Z†

)
. The two–

measurement operator can be expanded to first order in
dt, such that

ZX ≈
(
I + Ẑdt

)(
I + X̂dt

)
≈ I +

(
X̂ + Ẑ

)
dt, (A3)

where X̂ = −(rx−σx)2/(4τx) and Ẑ = −(rz−σz)2/(4τz).
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Notice that to O(dt), any dependence on the order of
measurement operators disappears. Then an update
equation for small dt

ρ̇ = ζ̂ − ρ(t)tr
(
ζ̂
)

(A4)

can be derived, where ζ̂ ≡ [X̂+Ẑ, ρ]+, and the braces [, ]+
denote the anti–commutator. For the vector q of Bloch
sphere coordinates, a dynamical system can be extracted
by taking q̇ = tr(ρ̇σq), which yields

ẋ =

(
1− x2

)
rx

τx
− xzrz

τz
, (A5)

ẏ = −y
(
zrz
τz

+
xrx
τx

)
, (A6)

ż =

(
1− z2

)
rz

τz
− xzrx

τx
. (A7)

It is easy to see that if y = 0, then ẏ = 0 also, so that
the y–evolution can be uncoupled from the system and
neglected; we do this and work purely in the xz–plane of
the Bloch sphere. The remaining x and z equations can
be converted to polar coordinates (R, θ) in that plane; it
is then simple to show that for perfect measurement effi-
ciency (implicitly assumed above), and an initially pure

state (R = 1), that Ṙ = 0, leaving only evolution in θ,
given by

θ̇ = F [θ, r, t] =
rx
τx

cos θ − rz
τz

sin θ. (A8)

2. The Stochastic Path Integral

We now review the procedure developed in Refs. [65–
67] to derive the OPs. We begin by writing down the
joint probability associated with a path (a sequence of
readouts {r} and their associated states {q}), which may
be expressed by

P({q}, {r}|qi,qf ) = δ(qi − q0)δ(qf − qn)

[
n−1∏
k=0

℘(qk+1|qk, rk)℘(rk|qk)

]
. (A9)

The δ–functions at the initial and final points apply the initial and final boundary conditions. The indices k run over
time, such that if ρk = ρ(t), then ρ(t+ dt) = ρk+1 and so on. In our particular case we are interested in

P(θ(t), r(t)|θi = θ(0), θf = θ(T )) = δ(θi − θ0)δ(θf − θn)

[
lim
n→∞

lim
dt→0

n−1∏
k=0

℘(θk+1|θk, rk)℘(rk|θk)

]
, (A10)

where ℘(θk+1|θk, rk) = δ(θk+1 − dtF [θk, rk]) is a deterministic update rule from (A8). The readouts are stochastic,
and drawn from the density ℘(rk|θk) = tr

(
Z(rz)X (rx)ρkX †(rx)Z†(rz)

)
discussed above. Recall that a δ–function

may be written δ(θ) = (2πi)−1
∫ i∞
−i∞ dp exp [−pθ] . We apply this identity to all δ–functions in (A10), such that

P = lim
n→∞

lim
dt→0

N
i∞∫
· · ·
∫

−i∞

(
n−1∏
k=0

dpk

)
exp

[
−p−1(θ0 − θi)− pn(θn − θf ) +

n−1∑
k=0

(−pk(θk+1 − dt Fk) + ln℘(rk|θk))

]

=

∫
D[p] exp

[
B +

∫ T

0

dt
(
−pθ̇ + pF [θ, r] + G[θ, r]

)]
=

∫
D[p] exp

[
B +

∫ T

0

dt(H(θ, p, r, t)− pθ̇)

]

=

∫
D[p] exp (B + S[θ, p, r])

(A11)

for N = (2πi)−(n+2). We use the shorthand B =
−p−1(θ0− θi)− pn(θn− θf ) for the boundary terms, and
the shorthand G for the expansion to O(dt) of the log–
probability for the readouts ln℘(r|θ). The expansion of

ln℘(r|ρ) = ln tr
(
ZXρ(t)X †Z†

)
to O(dt) yields

G dt = −
(
r2
x − 2rx sin θ + 1

2τx
+
r2
z − 2rz cos θ + 1

2τz

)
dt,

(A12)
up to some constants which do not affect the dynamics,
and which can be absorbed into N . This constitutes a
full derivation of the stochastic action and Hamiltonian
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used in the main text. OPs extremize the path proba-
bility, i.e. Hamilton’s equations for the OPs emerge by
demanding δS = 0, a constraint satisfied by solutions ex-
tremizing the path probability P. See Ref. [65] for further
details.

Appendix B: Resonances disrupting integrability

Here we review resonances more formally, as they ap-
ply to the example from section III. Helpful external ref-
erences which inform the following summary and analysis
include [40, 41, 82, 93–96, 102].

1. Introduction to resonances in canonical
perturbation theory

We decompose our stochastic Hamiltonian in powers
of ε, i.e. H(θ, p, t) = H(0)(p) +

∑∞
n=1 ε

nH(n)(θ, p, t), as
we have done above. Below we will assume that ε is
small, and restrict our analysis to a first order pertur-
bation, working only with H ≈ H(0) + εH(1) + O(ε2).
When a Hamiltonian is integrable, it is generally possi-
ble to find a set of canonical coordinates called action–
angle coordinates; the Hamiltonian, when transformed
into these coordinates (the “Kamiltonian”, K [94]), only
depends on the new generalized momenta [93]. We have
assumed that H(0) is already in its action-angle coordi-
nates. We will use our given coordinates {θ, p} = 1, and
hypothetical new coordinates {φ, J} = 1 throughout our
derivations. The braces denote the Poisson bracket. We
will also use a generating function G(θ, J, t) of the sec-
ond type [94], which transforms between the two sets of
coordinates. Recall that

p =
∂G

∂θ
, φ =

∂G

∂J
, and K = H +

∂G

∂t
, (B1)

where φ̇ = ∂JK and J̇ = −∂φK. The aim is to derive
K to first order, and the transformation from θ and p
to φ and J which allows for J̇ = 0 and φ̇ = ν(J). In
other words, we suppose H(0) + εH(1) is also integrable,
and search for the G which transforms to a new Kamil-
tonian K(J) in action–angle coordinates. However, this
procedure will fail at resonances, indicating that even to
first order, the Hamiltonian is no longer integrable at
certain points (the transformation to new action–angle
coordinates cannot be found). Our primary interest is
not in resolving this issue analytically, but merely in see-
ing where and how this transformation becomes impos-
sible. Derivations similar to the one below can be found
in e.g. [40, 82, 95].

We suppose that G can be expanded in powers of ε,
such that G ≈ θJ + ε G(1)(θ, J, t), where G(0) = θJ gives
the identity transformation. Then from (B1) we have

p ≈ J + ε
∂G(1)

∂θ
, and θ ≈ φ− ε∂G

(1)

∂J
. (B2)

Putting these coordinates into H(θ, p, t) and expanding
gives

H(θ, p, t) ≈ H(φ, J, t) + ε{G(1), H?}+O(ε2), (B3)

and then inserting the expansion of H itself, and throw-
ing out terms to second order in ε, gives

H(θ, p, t) ≈ H(0)(J) + εH(1)(φ, J, t) + ε{G(1), H(0)}.
(B4)

The Kamiltonian K ≈ K(0) +εK(1) is then given, to first
order in ε, by

K(0) = H(0)(p = J)

K(1) −H(1)(θ = φ, p = J, t) = {G(1), H(0)}+
∂G(1)

∂t
.

(B5)

We will now assume that our phase space is 2π-periodic
in θ and/or φ, and that the time–dependent perturbation
is also periodic, with some period Λ. Then we can write
H and G as Fourier series

H(1) =
∑
`,k

ζ`,k(J)ei`θe2iπkt/Λ, and

G(1) =
∑
`,k

ξ`,k(J)ei`θe2iπkt/Λ.
(B6)

We put these into the expression for K(1) above. We
assume that K(1) is now only a function of J (meaning
that we have found the action-angle coordinates), such
that K(1)(J) can be absorbed into ζ0,0(J). Then we have

iζ`,k(J)

`ν(0)(J) + 2πk
Λ

= ξ`,k(J). (B7)

This equation contains the resonance condition we are in-
terested in. Resonances occur where `ν(0)(J) + 2πk

Λ = 0,
for any integer ` and k. The Fourier coefficients ξ`,k
of even the first order generating function G(1), which
attempts to recast the perturbed Hamiltonian into a
clearly–integrable form, diverge. This effectively means
that the canonical transformation to action–angle coordi-
nates cannot be completed where a resonance condition
appears. The KAM theorem [96] is largely concerned
with 1) understanding how close to a resonance a path
must be to become chaotic, 2) proving that integrable
tori of H(0) are in fact approximately preserved so long
as they aren’t too close to the resonances, and 3) formally
showing how to actually construct a convergent pertur-
bation theory away from the resonances. We will not con-
cern ourselves with the details of their results overmuch
below, except to note that resonances with low ` and k
(near 0) typically affect or destroy a larger neighborhood
of nearby integrable orbits than those with larger ` or
k. These qualitative features of the dynamics are visible
throughout our numerical studies, detailed in a series of
animations, included in the supplementary materials and
described in section C 2.
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2. More formal analysis of the two-measurement
example

We here consider the system from section III in the
perturbative regime (both measurements are still rela-
tively weak) more formally. Recall the notation and
equations in (14), (16), and in their surrounding text.
Below, we will take τx = 1, thereby handling all times
in units of τx; the kicking period will also taken to
be unity (Λ = 1). We reiterate that τm � 1, such
that the weak kicks are narrow compared with their
repetition period. The OP Hamiltonian (12) is H? =
H(0)(p) + εH(1)(θ, p, t) + ε2H(2)(θ, p, t) + ..., or

H?(θ, p, t) =
p2 − 1

2
+

( ∞∑
n=1

εngn(t)

)
H̃(θ, p) (B8)

for

H̃ ≡ p2 − 1

2
sin2 θ − p sin θ cos θ. (B9)

We may truncate the series to a desired order in ε, and
when ε � 1 (weak kicks, corresponding to A � τx), the
first or second order approximation of the Hamiltonian
will reflect the dynamics quite well. Below we undertake
the actual Fourier expansion implied by (B7), to see how
much more we can learn analytically about its range of
applicability in this system.

We will need to decompose both H̃ (which is periodic
in θ) and

∑
n ε

ngn(t) (which is periodic in time). We

start with H̃. Recall that the Fourier form and coeffi-

cients may be defined as(∑
n

εngn

)
H̃(θ, p) =

∞∑
`=−∞

C`(p, t)e
i`θ (B10)

C` =
1

2π

∫ 2π

0

(∑
n

εngn

)
H̃(θ, p)e−i`θdθ. (B11)

We find the coefficients

C0 =

(∑
n

εngn

)
p2 − 1

4
, (B12)

C±2 =

(∑
n

εngn

)(
1− p2

8
∓ p

4i

)
, (B13)

with those for all other ` vanishing. We now perform
a similar computation, expanding the above coefficients
into Fourier form in t, such that

C`(p, t) =
∑
k

ζ`,k(p)e2iπkt =
∑
k,n

ζ
(n)
`,k (p)e2iπkt. (B14)

This implies that we may write new coefficients

ζ
(n)
0,k (p) = εn

p2 − 1

4

∫ 1

0

gn(t)e−2iπktdt, and (B15)

ζ
(n)
±2,k(p) = εn

(
1− p2

8
∓ p

4i

)∫ 1

0

gn(t)e−2iπktdt. (B16)

Evaluating these expressions requires the result

Cn,k ≡
∫ 1

0

gn(t)e−2iπktdt = 2(−1)k
∫ 1

2

0

exp

[
−nx

2

2τ2
m

]
cos(2πkx)dx

= (−1)k
√

π

2n
τm exp

[
−2π2k2τ2

m

n

](
erf

[
β+
n,k

τm
√

8n

]
+ erf

[
β−n,k

τm
√

8n

]) (B17)

where we have defined β±n,k ≡ n± 4ikπτ2
m, the error functions according to

erf(z) ≡ 2√
π

∫ z

0

e−u
2

du, (B18)

and used the form (10). With τm much narrower than τx = 1 we may approximate Cn,k by extending the integration
bounds, i.e.

Cn,k = (−1)k
∫ 1

2

− 1
2

exp

[
−nx

2

2τ2
m

]
cos(2πkx)dx

≈ (−1)k
∫ ∞
−∞

exp

[
−nx

2

2τ2
m

]
cos(2πkx)dx = (−1)kτm

√
2π

n
exp

[
−2k2π2τ2

m

n

]
.

(B19)
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The entire Hamiltonian can be written, to order O(εN ), as

H? = H(0)(p) +
∑
`

∑
k

∑
n

ζ
(n)
`,k (p)ei(`θ+2πkt)

= H(0)(p) +
∑
k

∑
n

(
ζ

(n)
0,k (p) + ζ

(n)
−2,k(p)e−2iθ + ζ

(n)
2,k (p)e2iθ

)
e2iπkt

= H(0)(p) +

(
p2 − 1

4
(1− cos(2θ))− p

2
sin(2θ)

) ∞∑
k=−∞

N∑
n=1

εn Cn,ke2iπkt.

(B20)

This is still an exact result if N →∞ and the exact form
of Cn,k is used. It is however easily set up to truncate
any of the expressions down to a specific order N in ε.
The range of k which makes substantial contributions to
its sum at a given n should run roughly proportional to√
n/τm, such that the k-sum could also be truncated,

although the number of relevant terms will remain large
(this is clearly valid based on the approximate form of
Cn,k). An approximate version of the Hamiltonian, based
on a truncated Fourier series, is useful in that it can be
more easily studied analytically to a desired order in ε.

Resonance phenomena are not relevant for ` and k
where ζ`,k = 0, but the analysis above shows that we
have more than enough non–zero coefficients at play in
this system to generate all the resonances of interest using
(B7). Specifically, ν(0) = p and Λ = 1 gives resonances at
p = 2πk/` for ` = 0,±2 and any integer k, with emphasis
on |k| near zero. This predicts the onset of chaos at inte-
ger multiples of π, including the fixed point of H(0) along
p = 0, and is entirely consistent with our observations in
Figs. 1 and 2; we elaborate further in appendix C 2.

This analysis does not preclude the formation of reso-
nances beyond those we just described using (B7). The
expression (B7) only includes matches in period between
the zeroth and first order (in ε) parts of H?. For larger
ε, the first–order approximation of the full Hamiltonian
is no longer a good representation of the dynamics. It
is known that resonant tori will give way to alternating
elliptic and hyperbolic fixed points (see e.g. section 7.2
of the text by Ott [38], and the Poincaré–Birkhoff the-
orem). Paths about the elliptic fixed points are closed
curves in the phase space (representing periodic orbits),
which themselves develop resonances with the perturba-
tion (which may become more pronounced in numerical
studies at larger values of ε).

Appendix C: Description of supplementary
animations

We give a complete list of the animations included in
the supplementary materials here, along with captions
to clarify the details and context of each. All animations
from the system of section III can be found at the link
here (films collected in single .pdf) or here (individual
.mp4 files). See article’s main arXiv page for links if

viewing in print.

1. Path pairs in phase space

The two videos below superpose the evolution of par-
ticular path–pairs over the dynamic phase space context
in which they evolve. We see the paths, which start next
to each other in the phase space get pulled apart over
time, in an illustration of the basic definition of chaos.
VT psani1.mp4 – This video shows the phase space (θ

on the x–axis, p on the y–axis) of the system described in
section III, animated in time. Different colors represent
different stochastic energies at any given moment, and
the separatrix at any given time is shown in light green.
It sits along the p = 0 line when the system is like a rotor,
and briefly flares out with each kick. The red and blue
dots track the evolution of the paths of the same colors
in Fig. 4(a). All operating parameters are the same as in
that figure (τx = 1 µs, A = 0.99 µs, τm = 25 ns).
VT psani3.mp4 – This video tracks the paths in

Fig. 4(b). All other details are identical to those in the
video above.

2. Stroboscopic phase portraits

We here discuss animated stroboscopic phase portraits
for the system described in section III. Each frame is a
stroboscopic portrait at a different value of ε, with the
animation running over increasing values of ε. In all of
the films below, τx = 1.0 µs, such that A (in µs) is nu-
merically equivalent to ε (they are used interchangeably
here). We continue using τm = 25 ns throughout. All ini-
tial conditions, arranged on a mesh, run to T = 100 µs,
and are plotted at the strobe times unless they have
diverged (the numerical integration of the path’s value
is no longer certain to be correct to within some toler-
ance). Strobe times occur at every integer time between
kicks; at these times, paths are plotted as a point, with
the point’s color denoting its LE at that time. Black
dots correspond to λ = 0. Cool earth colors range over
λ ∈ [0,−0.25] MHz, growing lighter across that range,
with every point λ < −0.25 MHz plotted at the extreme
end (lightest gray-brown hue) of that cool color bar. Like-
wise, warm colors range over λ ∈ [0, 0.25] MHz, growing

https://drive.google.com/file/d/1cx__Aggt40s3r8ueTe8LlqZyAWLb5NV1/view?usp=sharing
https://drive.google.com/drive/folders/12LgI0dCiSjRYoHO9oiWDaXm7S0PzM7Y1?usp=sharing
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lighter across that range, with every point λ > 0.25 MHz
plotted at the extreme end (lightest yellow hue) of that
warm color bar.

VT chonset survey.mp4 – The evolution of a large
swath of the phase space over low values of ε is shown.
Resonances at p = ±2π,±3π,±4π are immediately vis-
ible, followed by those at p = ±π, and then those at
p = 0. In general, we see similar dynamics at all of
these resonances, where the initially (ε = 0) flat line in
phase space at a resonant p0 opens into a series of sta-
ble islands around an elliptic fixed point (separated by
hyperbolic fixed points). As ε increases, resonances form
within the periodic islands themselves; these resonances
gradually destroy the periodic orbits forming the island,
until the entire region of phase space taken up by the is-
land is effectively a completely–chaotic sea. This process
is generic to chaotic Hamiltonians with resonances [38],
the kicked rotor or standard map being one of the clas-
sic examples [82]. Although we only see its early stages
in this particular film, the process will run to conclusion
in subsequent ones. There is considerable variability in
how fast the different lines generate elliptic islands and
hyperbolic fixed points, and in how large those island
get, thereby disrupting the rotor behavior (relative to
the unperturbed case) nearby. Generally, we can already
see that islands forming at higher |p| in the phase space
(corresponding to rarer events [76]) undergo this process
faster than those at lower |p|, relative to changes in ε.

VT chonset reson.mp4 – Once again we animate the
phase space over low values of ε. This time, our em-
phasis is specifically on the simplest resonances. Initial
conditions generating each frame are chosen specifically
for p0 = 0, π/3, π/2, 2π/3, π, 3π/2, 2π, 3π. Auxiliary lines
shifted by ±0.2 from the main list of p0 are also in-
cluded for context. This gives a clear look at the relative
“strengths” of different resonances, emphasizing the dif-
ferent rates, relative to changes in ε, at which islands
from resonances grow, generate internal resonances, and
are broken apart. Although only the p = 0, π, 2π, and 3π
resonances appear in the first-order expression (B7), we
can begin to see qualitatively similar effects happening,
with periodic islands of half the size and spacing, at the
p = 3π/2 line by the end of this video, suggesting that a
wider variety of resonances come into play when higher
orders of H(n) become relevant to the dynamics.

VT chevolv narrow.mp4 – We zoom in on the for-
mation and evolution of the longest-lived islands in the
phase-space, at p = 0, ± π, over moderate to high val-
ues of ε. An increasing number of resonances within the
stable islands formed from the simpler ones are visible.
These gradually eat away at the main islands as ε grows.
Those which formed around p = ±π are almost com-
pletely destroyed by the end of the video.

VT chfinal pi.mp4 – We slow down the animation
over the destruction of the islands around p = π at high ε,
so that they can be viewed in detail. Note the numbers
of sub-islands forming within the main one; there is a
“countdown” which occurs in the number of alternating

elliptic and hyperbolic fixed points which emerge from
the larger island as it is destroyed. (See e.g. Ott [38],
section 7.2 for details.) That is, the main island is grad-
ually destroyed through the emergence first of a period–6
island chain, followed by a period–5 island chain, and so
on, down to a period–2 sub–island pair just visible as the
last periodic remnants in that part of the phase portrait
disintegrate.
VT chfinal center.mp4 – Finally, we conclude with a

detailed look at the destruction of the final remaining pe-
riodic islands in the phase space, around p = 0, at values
of ε extremely close to one (the stronger measurement
“kicks” are nearly perfectly projective).

Appendix D: Details on numerical methods

In Fig. 10 we plot a number of “stretching parameters”
which quantify various properties of the LM’s shape. We
define those parameters explicitly in section D 1, and then
make some general comments about the numerical com-
putation of the LM in section D 2. The three stretching
parameters we describe are designed for numerical use,
but are very much an outgrowth of the ideas laid out in
section IV of the main text.

1. Numerically Quantifying Manifold Deformation

The first parameter quantifying the deformation of
the manifold examines the degree to which the manifold
“stretches out” relative to its initial configuration, and is
given by

s1(t) =
1

t
ln

(
L(t)

L(0)

)
, (D1)

where the length of the LM is given by

L(t) =

N−1∑
i=0

√
(θi+1(t)− θi(t))2 + (pi+1

0 − pi0)2. (D2)

Numerically, the manifold is defined in terms of a discrete
string of points, indexed by i. When the parameter s1(t)
is positive, it indicates an exponential rate of growth of
the length of the manifold; by definition this means that
states which start near to each other on the manifold
spread out dramatically over intervals where s1 sustains
a positive value over time. Since the LM remains contin-
uous, this should happen in conjunction with growth in
the second parameter we define, which is given by

s2(t) =
1

t
ln (Jav(t) + 1) . (D3)

We define Jav(t) as the average Jt of the manifold, cal-
culated as the weighted average

Jav(t) =
1

2

N−1∑
i=1

wi(t)
(∣∣J+

i (t)
∣∣+
∣∣J−i (t)

∣∣) (D4)
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where

J+
i (t) =

θi+1(t)− θi(t)
pi+1

0 − pi0
, J−i (t) =

θi(t)− θi−1(t)

pi0 − p
i−1
0

,

(D5)

and the weights wi(t) are the fraction of the range of
initial momenta taken up by each segment, i.e.

wi(t) = 1
2

(
pi+1

0 − pi−1
0

)
. (D6)

These weights will all be equal as long as the chosen
initial momenta are evenly spaced, but are required to
compensate for the fact that this is in general not the
case (see appendix D 2). We showed above how chaos
is related to |Jt| � 1; sustained growth in s2 implies
exponential growth in |Jt| across the relevant segment of
the manifold. Following the arguments of section IV, we
expect this to be connected to the formation of chaotic
regions and higher numbers of catastrophes. We capture
this last feature with a third parameter

s3(t) =
1

t
ln (1 +Nc( t)), (D7)

whereNc(t) is the number of catastrophes in the manifold
at time t, i.e. the number of places where Jt = 0. Sus-
tained positive values and growth in s3(t) imply that the
number of catastrophes is increasing exponentially; this
necessarily implies a corresponding amount of growth
in multipath solutions connecting the affected boundary
conditions.

Finally, it is useful to define an average LE of the
manifold, for the purposes of having an explicit measure
of chaos in a manifold segment to compare against the
above parameters describing aspects of the LM’s shape
and deformation over time. We initialize three manifolds
with initial coordinates θ0 and θ±0 = θ0 ± δθ0. The aver-
age distance between points is obtained using the same
weighting as above, combined with (9), to give

Dav(t) = 1
2

N−1∑
i=1

wi(t)

√(
δx+
i (t)

)2
+
(
δz+
i (t)

)2
+ 1

2

N−1∑
i=1

wi(t)

√(
δx−i (t)

)2
+
(
δz−i (t)

)2
,

(D8)

where
(
δx±i (t)

)2
= (sin θi(t)−sin θ±i (t))2 and (δz±(t))

2
=

(cos θi(t)− cos θ±i (t))2 and the weights wi(t) are given in
(D6). The average LE can then be calculated using

λav(t) =
1

t
ln

(
Dav(t)

Dav(0)

)
, (D9)

in analogy with (8).

2. Manifold refinement methods

We have shown, e.g. in Fig. 10, that length of a LM
in OP phase space may increase dramatically in time.

While this may happen to some degree in integrable sys-
tems, simply due to the LM stretching across many wind-
ings about the Bloch sphere or spiraling around an ellip-
tic fixed point, the effect is far less predictable and far
more pronounced in the chaotic systems which are our
topic now. In order to perform good plotting and analy-
sis of the LM after a given time interval, the resolution of
paths in the LM must be adequate at the final time. The
point resolution of the LM has to be especially good near
final boundary conditions of interest for a multipath, if
we are to catch all of the solutions in a multipath group
and find the p0 which lead to the desired θT with high
precision. It should be apparent that this raises con-
siderable numerical difficulties, since it is not obvious, a
priori, where in the range of p0 a high density of paths
should be initialized in order to obtain a good LM after
integration. Furthermore, the number of paths required
may quickly become prohibitively large for timely com-
putation as the interval over which the LM needs to be
integrated grows. To add to the complications, there are
certain paths where p(t) diverges to ±∞ (or close enough
to stop a numerical integration), which must be handled
carefully to avoid wasting time or crashing certain types
of integrators.

We resolve these issues by developing a process to re-
fine the manifold; that is, we have written algorithms
which run a preset number of initial conditions forward,
determine where there are gaps between points in the
final manifold which are unacceptably large, and then
runs more points in the neighborhood of the relevant ini-
tial conditions so as to fill in the final manifold up to
the desired resolution. We have used the Python pro-
gramming language, and a mix of fourth–order Runge–
Kutta and Bulirsch–Stoer integration (see [101]) to do
this. The algorithm may iterate many times until the
final manifold passes some resolution tests over its entire
final range. Some version of this process is required to
obtain the graphics shown in Figs. 2, 5, 6, 7, 8, 9, and 10.
Such an algorithm necessarily results in a manifold sam-
pled over points that are unevenly-spaced in p0, which
motivates the use of weighting factors (D6) in evaluating
shape properties of the LM.

We highlight an aspect of the stretching we have shown
particularly using (D1) however, which is the sheer num-
ber of paths required to get a usable manifold after even
moderate T for the strongly chaotic regime of larger ε.
For ε = 0.99, a single manifold for θ0 = 0 and p0 ∈ [0, 2],
used to find the paths at T = 4.0 µs as shown in Fig. 6(c),
or make a plot like those in Figs. 5 or 10(a), ends up re-
quiring integration of 20, 236 initial conditions over the
time interval. This can be done to quite high precision on
a personal computer within a few hours. By adding one
more kick at these same parameters, i.e. going T = 5.0 µs
as shown in Fig. 6(d), that number jumps to 311, 710 OPs
required to construct the LM; this may be integrated
precisely on a personal computer in 1–2 days. It should
quickly be apparent how this growth becomes a problem
for numerical computation; getting a good manifold after
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even 7 or 8 µs in the strongly–chaotic regime could take
weeks or months without high–powered computational
facilities.

Appendix E: SQT diffusion with two measurements

The mathematical context of many of the objects we
use here is discussed in the literature on stochastic math-
ematical methods; see, e.g., the book by Gardiner [86] for
further details. Suppose we are given a stochastic differ-
ential equation (SDE, a Langevin equation)

ẋ = A(x, t) +B(x, t)ξ(t), (E1)

in Stratonovich form. As discussed elsewhere [65, 76, 87],
the SDEs we obtain from a Bayesian approach become
equivalent to the Stratonovich form of the SDEs we would
obtain from a Stochastic Master Equation (SME) ap-
proach [2, 11] if we make a simplification by assum-
ing the noise is white, specifically by substituting in
rq(t) = q(t) +

√
τqξ(t) where ξ(t) = dW (t)/dt and dW (t)

is a Weiner process. Given a one–dimensional SDE in
Stratonovich form (E1), the corresponding FPE is given
by [86]

∂℘

∂t
= − ∂

∂x
(A℘) +

1

2

∂

∂x

(
B
∂

∂x
(B℘)

)
=

(
B

2

∂2B

∂x2
+

1

2

(
∂B

∂x

)2

− ∂A

∂x

)
℘

+

(
3B

2

∂B

∂x
−A

)
∂℘

∂x
+
B2

2

∂2℘

∂x2
,

(E2)

for ℘ = ℘(θt, t|℘(θ0, 0)).
Let us apply this formula to study the diffusion un-

der two measurements with “kicking”, as treated in sec-
tion III. The equation of motion is

F =
rx
τx

cos θ − rz
τz

sin θ

= sin θ cos θ

(
1

τx
− 1

τz

)
+

ξx√
τx

cos θ − ξz√
τz

sin θ,

(E3)

where we have simplified the noise by taking rx = sin θ+√
τxξx and rz = cos θ+

√
τzξz. We let B = (Bx, Bz), and

take appropriate dot products in (E2) to obtain the FPE

∂℘

∂t
=

3

2

(
1

τx
− 1

τz

)(
sin2 θ − cos2 θ

)
℘

+
5

2
cos θ sin θ

(
1

τx
− 1

τz

)
∂℘

∂θ

+
1

2

(
cos2 θ

τx
+

sin2 θ

τz

)
∂2℘

∂θ2
,

(E4)

where ℘(θ, t) is the probability distribution at a given
time, which is always contingent on having evolved for-
ward from some given initial distribution. The term at-
tached to ∂2

θ℘ is effectively a diffusion constant; notice

that for small τz (e.g. at a kick) the diffusion constant
grows very large, meaning that for a short time trajecto-
ries may jump across large distances in the state-space.
Note also that (E4) reduces to

∂℘

∂t
=

1

2τ

∂2℘

∂θ2
, (E5)

when τx = τ = τz. Thus we see that when the two-
measurement system reduces to a simple rotor, the un-
derlying SQTs undergo isotropic diffusion. This is con-
sistent with theoretical results from elsewhere [76, 80],
as well as observations in the original experimental im-
plementation of this system with fixed measurement
strengths [79]. It sits in contrast with the more com-
plex case (E4) where the measurement strengths are un-
equal, and coefficients in the FPE are state dependent
(thereby privileging collapse to one set of eigenstates over
the other). Periodic strengthening of the measurement
ostensibly results in an overall faster rate of diffusion
to higher winding numbers. The diffusion is no longer
isotropic when τx 6= τz, and shorter τ corresponds di-
rectly to a faster diffusion rate (bigger diffusion constant)
in a particular direction.

Appendix F: A Simple Model of OPs in the
projective kicking limit

We here consider the optimal dynamics in the limit
where τm → 0, and ε → 1 (see eq. (10)); these pa-
rameters correspond to diffusion under equal measure-
ment strengths, periodically punctuated by instanta-
neous, perfectly–projective z–measurements. We will use
a simplified model which ignores winding counts, consid-
ering two MLPs over a single kicking period Λ. That
is, we prepare an initial state θi, allow for diffusion over
a time interval Λ/2 to some θ1, perform a projective z–
measurement resulting in a state θ2, and then again allow
for isotropic diffusion over a duration Λ/2, post–selected
on a neighborhood around some final state θf ∈ [0, π].
We will assume that θi ∈ [0, π], and that the projective
measurement kick may either collapse the state to θ2 = 0
or θ2 = π. This situation is represented in Fig. 11(a). As-
suming we initialize the state at θi (i.e. the probability
density is a delta function), the probability density to
reach some θ1 right before the kick (from solving (E5))
is given by

℘(θ1|θi) =

√
τ

πΛ
exp

[
− τ

Λ
(θ1 − θi)2

]
. (F1)

The discrete probability to collapse to θ2 = 0 or π based
on the previous diffusion step is given by

P (θ2|θ1) =

{
cos2(θ1/2) to move to θ2 = 0
sin2(θ1/2) to move to θ2 = π.

(F2)

Diffusion after the kick looks like (F1), i.e.

℘(θf |θ2) =

√
τ

πΛ
exp

[
− τ

Λ
(θf − θ2)2

]
. (F3)
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FIG. 11. In (a) we show OPs for the situation discussed in
appendix F. Paths are allowed to diffuse isotropically for a
time interval Λ/2, are measured projectively along σz, and
are then allowed to diffuse isotropically again for another Λ/2.
We show the symmetric case, where OPs diffuse from θi = π

2
to θ1, collapse to either θ2 = 0 (red) or π (black), and then
diffuse again to the post-selected state θf = π

2
. The amount of

diffusion allowed before each kick is characterized by Γ = Λ/τ .
The dashed paths are allowed to diffuse relatively little before
the kick (τ � Λ, Γ = 0.2 is shown), whereas the dotted paths
are allowed more diffusion before the kick (τ � Λ, Γ = 5 is
shown). In the lower plots we show solutions optimizing the
value of θ1 according to the transcendental equations (F5),
with θi = π

2
in (b), and θi = 0.286 in (c). The path through

the excited state is shown in dash-dotted red, and the path
through the ground state is shown in solid black. As Γ grows,
more diffusion is allowed between each kick, and the jump
made by the OP at the kick is reduced (the optimal θ1 is
close to θi for Γ� 1, and close to θ2 for Γ� 1).

Combining these two diffusion steps and intermediate
jump, we may construct two probability densities ℘ex
and ℘gr, the first of which is associated with a path that
goes through the excited state (θ2 = 0), and the second
of which goes through the ground state (θ2 = π). These

read

℘ex = cos2

(
θ1

2

)
exp

[
− τ

Λ

{
θ2
f + (θ1 − θi)2

}]
, and

℘gr = sin2

(
θ1

2

)
exp

[
− τ

Λ

{
(θf − π)2 + (θ1 − θi)2

}]
.

(F4)

Note that to account for winding numbers around the
Bloch sphere, we would additionally have to let θ1 →
θ1 + 2π` and sum over all integers `. This implies that
our system reaches equilibrium much faster than if it were
on the real line.

We have shown through the connection of (13) and
(E5) that the OP dynamics over isotropic diffusion are
straight lines, i.e. when τx = τ = τz, the OP goes as
θ(t) = θ0 + p0 t/τ . Therefore, we understand that the
probabilities above describe OPs which go from θi → θf
via a straight line from θi → θ1, a jump from θ1 → θ2,
then another straight line from θ2 → θf . The remaining
question is: what is the value of θ1 which optimizes the
probability density? (What θ1 does the OP go through?)
This can be computed by taking ∂θ1 ln℘ = 0, and solv-
ing for the optimal value of θ1. The solutions are given
according to the transcendental equations

tan

(
θ1

2

)
+

2

Γ
(θ1 − θi) = 0 for ℘ex, or

cot

(
θ1

2

)
− 2

Γ
(θ1 − θi) = 0 for ℘gr,

(F5)

where we have defined Γ ≡ Λ/τ . The parameter Γ is
dimensionless, and since τ−1 sets the rate of diffusion
between kicks, we understand that Γ � 1 represents a
situation in which very little diffusion is allowed between
kicks, whereas when Γ� 1 SQTs diffuse widely between
kicks. In the main text we have emphasized examples
in the intermediate regime where Γ = 1. Note also that
Γ scales the range of p at which resonances appear (see
eq. (18)). The solutions to (F5) for two different θi are
plotted in Fig. 11(b,c). There we see that the value of θ1

which the OP takes is very close to θi when Γ� 1, and is
very close to θ2 when Γ� 1. This is an intuitive result;
if wide diffusion has occurred prior to a kick (Γ � 1),
it is probable to find paths which have already diffused
to the eigenstates they will collapse to when kicked, and
these paths which make only a small jump under the
projective measurement are optimal. However, if very
little diffusion is allowed to occur before a measurement
kick (Γ � 1), trajectories will not have been able to
diffuse to the eigenstates of the kick, and the OP is forced
to jump much further.
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Jordan, and J. Dressel, Phys. Rev. A 96, 022311 (2017).

[35] J. R. Ackerhalt, P. W. Milonni, and M.-L. Shih, Phys.
Rep. 128, 205 (1985).

[36] M. C. Gutzwiller, Chaos in Classical and Quantum Me-
chanics (Springer-Verlag, New York, 1990).

[37] M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds.,
Chaos and Quantum Physics: Les Houches 1989, Ses-
sion LII (North-Holland, Amsterdam, 1991).

[38] E. Ott, Chaos in Dynamical Systems (Cambridge Uni-
versity Press, Cambridge UK, 2002).

[39] L. E. Reichl, The Transition to Chaos: Conserva-
tive Classical Systems and Quantum Manifestations
(Springer-Verlag, 2004).

[40] A. Quillen, “Mechanics and chaotic dynamics,” Lectures
and Lecture Notes, PHY 411, University of Rochester
(2013).

[41] M. Tabor, Chaos and Integrability in Nonlinear Dynam-
ics (Wiley, New York, 1989).

[42] S. H. Strogatz, Nonlinear Dynamics and Chaos (West-
view Press / Perseus Books, Cambridge MA, 1994).

[43] M. L. Mehta, Random Matrices and the Statistical The-
ory of Energy Levels (Academic Press, New York, 1967).

[44] O. Bohigas, in Chaos and Quantum Physics: Les
Houches 1989, Session LII, edited by M.-J. Giannoni,
A. Voros, and J. Zinn-Justin (North-Holland, Amster-
dam, 1991) Chap. 2, pp. 87–200.

[45] C. E. Porter, ed., Statistical Theories of Spectra: Fluc-
tuations (Academic Press, New York, 1965).

[46] U. Smilansky, in Chaos and Quantum Chaos, edited by
W. D. Heiss (Springer-Verlag, Berlin, 1992) Chap. 2, pp.
57–120.

[47] M. C. Gutzwiller, in Chaos and Quantum Physics: Les
Houches 1989, Session LII, edited by M.-J. Giannoni,
A. Voros, and J. Zinn-Justin (North-Holland, Amster-
dam, 1991) Chap. 3, pp. 201–250.

[48] E. J. Heller, in Chaos and Quantum Physics: Les
Houches 1989, Session LII, edited by M.-J. Giannoni,
A. Voros, and J. Zinn-Justin (North-Holland, Amster-
dam, 1991) Chap. 9, pp. 547–664.

[49] M. V. Berry, in Chaos and Quantum Physics: Les
Houches 1989, Session LII, edited by M.-J. Giannoni,
A. Voros, and J. Zinn-Justin (North-Holland, Amster-

http://dx.doi.org/10.1103/PhysRevD.20.384
http://dx.doi.org/10.1023/A:1026666701671
http://dx.doi.org/10.1023/A:1026666701671
http://dx.doi.org/10.1007/BF02894935
http://dx.doi.org/10.1007/BF02894935
http://dx.doi.org/https://doi.org/10.1016/0375-9601(88)90309-X
http://dx.doi.org/10.1103/PhysRevA.47.1652
http://dx.doi.org/10.1103/PhysRevA.47.1652
http://dx.doi.org/10.1103/PhysRevLett.70.548
http://dx.doi.org/10.1103/PhysRevA.49.2133
https://books.google.com/books?id=AlXSmZTHxtwC
http://dx.doi.org/10.1103/PhysRevB.60.5737
http://dx.doi.org/10.1103/PhysRevB.63.115403
http://dx.doi.org/10.1103/PhysRevB.63.115403
http://dx.doi.org/10.1103/PhysRevA.94.042326
http://dx.doi.org/10.1103/PhysRevA.94.042326
http://dx.doi.org/10.1119/1.1475328
http://dx.doi.org/10.1080/00107510601101934
http://dx.doi.org/10.1080/00107510601101934
http://dx.doi.org/ 10.1038/ncomms11527
http://dx.doi.org/ 10.1103/PhysRevX.6.011002
http://dx.doi.org/ 10.1103/PhysRevX.6.011002
http://dx.doi.org/10.1103/PhysRevLett.117.133601
https://arxiv.org/abs/1711.01208
http://dx.doi.org/ 10.1103/PhysRevA.62.012105
http://dx.doi.org/10.1103/PhysRevA.65.042301
http://dx.doi.org/10.1103/PhysRevA.65.042301
http://dx.doi.org/10.1109/PHYCON.2003.1237011
http://dx.doi.org/10.1109/PHYCON.2003.1237011
http://dx.doi.org/https://doi.org/10.3166/ejc.9.279-284
http://dx.doi.org/https://doi.org/10.3166/ejc.9.279-284
http://dx.doi.org/10
http://dx.doi.org/10.1038/nature11505
http://dx.doi.org/10.1038/nature11505
http://dx.doi.org/ 10.1103/PhysRevX.3.021008
http://dx.doi.org/10.1103/PhysRevA.91.012118
http://dx.doi.org/10.1103/PhysRevA.91.012118
http://dx.doi.org/ http://doi.org/10.1016/j.physrep.2017.02.003
http://dx.doi.org/10.1103/PhysRevLett.120.020505
http://dx.doi.org/10.1103/PhysRevLett.120.020505
https://arxiv.org/abs/1803.00545
https://arxiv.org/abs/1803.00545
http://dx.doi.org/10.1103/PhysRevB.67.241305
http://dx.doi.org/10.1103/PhysRevB.67.241305
http://dx.doi.org/10.1103/PhysRevB.73.235331
http://dx.doi.org/10.1103/PhysRevA.78.062322
http://dx.doi.org/10.1103/PhysRevA.78.062322
http://dx.doi.org/10.1103/PhysRevLett.112.170501
http://dx.doi.org/10.1103/PhysRevLett.112.170501
http://dx.doi.org/ 10.1103/PhysRevA.92.062321
http://dx.doi.org/10.1103/PhysRevX.6.041052
http://dx.doi.org/10.1103/PhysRevA.93.062310
http://dx.doi.org/10.1103/PhysRevA.93.062310
http://dx.doi.org/10.1103/PhysRevA.96.022311
http://dx.doi.org/10.1016/0370-1573(85)90105-X
http://dx.doi.org/10.1016/0370-1573(85)90105-X
http://astro.pas.rochester.edu/~aquillen/phy411/lectures.html


23

dam, 1991) Chap. 4, pp. 251–304.
[50] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508

(1994).
[51] S. Habib, K. Shizume, and W. H. Zurek, Phys. Rev.

Lett. 80, 4361 (1998).
[52] W. H. Zurek, Physica Scripta 1998, 186 (1998).
[53] A. K. Pattanayak, B. Sundaram, and B. D. Greenbaum,

Phys. Rev. Lett. 90, 014103 (2003).
[54] A. R. R. Carvalho, R. L. de Matos Filho, and L. Davi-

dovich, Phys. Rev. E 70, 026211 (2004).
[55] Y. Ota and I. Ohba, Phys. Rev. E 71, 015201 (2005).
[56] A. Kapulkin and A. K. Pattanayak, Phys. Rev. Lett.

101, 074101 (2008).
[57] B. Pokharel, P. Duggins, M. Misplon, W. Lynn, K. Hall-

man, D. Anderson, A. Kapulkin, and A. Pattanayak,
Sci. Rep. 8, 2108 (2018).

[58] E. Ott, T. M. Antonsen, and J. D. Hanson, Phys. Rev.
Lett. 53, 2187 (1984).

[59] T. P. Spiller and J. F. Ralph, Physics Letters A 194,
235 (1994).

[60] T. A. Brun, I. C. Percival, and R. Schack, J. of Phys.
A: Math. and Gen. 29, 2077 (1996).

[61] T. Bhattacharya, S. Habib, and K. Jacobs, Phys. Rev.
Lett. 85, 4852 (2000).

[62] G. G. Carlo, G. Benenti, and D. L. Shepelyansky, Phys.
Rev. Lett. 95, 164101 (2005).

[63] S. Habib, K. Jacobs, and K. Shizume, Phys. Rev. Lett.
96, 010403 (2006).

[64] J. K. Eastman, J. J. Hope, and A. R. R. Carvalho, Sci.
Rep. 7, 44684 (2017).

[65] A. Chantasri, J. Dressel, and A. N. Jordan, Phys. Rev.
A 88, 042110 (2013).

[66] A. Chantasri and A. N. Jordan, Phys. Rev. A 92, 032125
(2015).

[67] Areeya Chantasri, “Stochastic path integral formalism
for continuous quantum measurement,” PhD Disserta-
tion, University of Rochester (2016).

[68] A. Kamenev, Field theory of non-equilibrium systems
(Cambridge University Press, 2011).

[69] M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, J.
Chem. Phys. 100, 5735 (1994).

[70] M. I. Dykman, M. M. Millonas, and V. N. Smelyanskiy,
Phys. Lett. A 195, 53 (1994).

[71] M. I. Dykman, L. I. McCann, V. N. Smelyanskiy, D. G.
Luchinsky, R. Mannella, and P. V. E. McClintock,
Chaos 11, 587 (2001).

[72] D. Ryvkine and M. I. Dykman, Phys. Rev. E 73, 061109
(2006).

[73] H. B. Chan, M. I. Dykman, and C. Stambaugh, Phys.
Rev. Lett. 100, 130602 (2008).

[74] S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan,
K. W. Murch, and I. Siddiqi, Nature 511, 570 (2014).

[75] A. N. Jordan, A. Chantasri, P. Rouchon, and B. Huard,
Quantum Studies: Math. and Found. 3, 137 (2015).

[76] P. Lewalle, A. Chantasri, and A. N. Jordan, Phys. Rev.
A 95, 042126 (2017).

[77] M. Naghiloo, D. Tan, P. M. Harrington, P. Lewalle,
A. N. Jordan, and K. W. Murch, Phys. Rev. A 96,
053807 (2017).

[78] OPs are effectively a low-noise idealization of the open
qubit dynamics, where the noise is directly due to mea-
surement backaction, which is an inherently quantum–
mechanical effect. Mathematically, deriving the OPs, or
paths in the small–noise limit, is quite similar to deriv-

ing classical paths as the limit of a quantum system.
[79] S. Hacohen-Gourgy, L. S. Martin, E. Flurin, V. V. Ra-

masesh, K. B. Whaley, and I. Siddiqi, Nature 538, 491
(2016).

[80] A. Chantasri, J. Atalaya, S. Hacohen-Gourgy, L. S. Mar-
tin, I. Siddiqi, and A. N. Jordan, Phys. Rev. A 97,
012118 (2018).

[81] J. Atalaya, S. Hacohen-Gourgy, L. S. Martin, I. Siddiqi,
and A. N. Korotkov, Phys. Rev. A 97, 020104 (2018).
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