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For systems of controllable qubits, we provide a method for experimentally obtaining a useful class
of multitime correlators using sequential generalized measurements of arbitrary strength. Specifi-
cally, if a correlator can be expressed as an average of nested (anti)commutators of operators that
square to the identity, then that correlator can be determined exactly from the average of a mea-
surement sequence. As a relevant example, we provide quantum circuits for measuring multiqubit
out-of-time-order correlators (OTOCs) using optimized control-Z or ZX -90 two-qubit gates common
in superconducting transmon implementations.

I. INTRODUCTION

Out-of-time-ordered correlators (OTOCs) have seen a
surge of interest in recent literature due to their appar-
ent connection to information scrambling in many-body
quantum systems [1–29]. Prototypical systems that ex-
hibit efficient scrambling, such as black holes, are out of
reach for experimental verification, but it is still possible
to simulate scrambling dynamics in the laboratory using
controllable systems of qubits [30–34]. For such a sim-
ulation, an OTOC could serve as a scrambling witness.
As such, there is a growing interest in measuring OTOCs
for qubit systems straightforwardly.

In this paper, we extend previous work [35, 36] that
outlines how an OTOC may be determined from a se-
quence of weak measurements. Such weak measure-
ments have two shortcomings: First, they require signifi-
cant data collection to overcome statistical noise. Sec-
ond, they assume that backaction perturbation terms
are small enough to neglect, which may be difficult to
achieve experimentally. Indeed, recent experiments have
found that strengthening weak measurements of other
complex quantities like weak values [37, 38] dramatically
improves the accuracy of their estimation [39, 40]. To
achieve similar benefits, we improve upon the sequential-
measurement method by eliminating the need for weak
measurements. We show how OTOCs may be exactly de-
termined from simple averages of measurement sequences
of any strength, including standard nondemolition pro-
jective measurements.

This remarkable simplification for obtaining OTOCs
with measurement sequences is restricted to observables
that square to the identity, which form a useful class of
observables. Many existing OTOC works consider ob-
servables with precisely this structure [16, 41–46]. Such
observables can have only two distinct subspaces, associ-
ated with the eigenvalues ±1, so are natural observables
to consider for practical circuit simulations using qubits.
For example, the OTOC for two single-qubit observables
that lie at opposite ends of a spin chain undergoing non-
integrable dynamics would be a natural short-term ex-
perimental goal [31, 35, 36, 47–49].

More generally, our improved method enables the ex-
act measurement of the expectation values of nested
(anti)commutators of observables that square to the iden-
tity. Due to this generality, our method encompasses
many quantities that may be of potential interest out-
side the field of OTOCs. We show that two-point time-
ordered correlators (TOCs) and four-point OTOCs are
special cases of this nested structure, and provide exam-
ple circuits for how to measure these quantities.

Since TOCs and OTOCs are complex, we use qubit
measurements of two canonical types to isolate their real
and imaginary parts separately: informative measure-
ments with collapse backaction and noninformative mea-
surements with unitary backaction. Targeting supercon-
ducting transmon qubits, we provide ancilla-based quan-
tum circuits for implementing the two canonical qubit
measurements needed to obtain the correlators. Our
implementations use gates consistent with contempo-
rary hardware and generalize experimentally prototyped
methods [50–52].

This paper is organized as follows. In Section II, we de-
tail the needed qubit measurement circuits and derive the
general method for obtaining nested (anti)commutator
averages, with supplementary details provided in Ap-
pendix A. In Section III, we specialize the general result
to two-point TOCs and four-point OTOCs. We conclude
in Section IV.

II. MEASURING QUBIT
(ANTI)COMMUTATORS

Consider a system of controllable qubits that can
be pairwise coupled with an entangling gate, assumed
to be optimized for a particular hardware architecture.
For concreteness, we target an array of superconducting
qubits, such as transmons [53, 54]. Standard transmon
measurements couple to the energy basis as the compu-
tational basis such that the ground state is |0〉 and the
first excited state is |1〉. The qubit Pauli observables are

defined as Ẑ = |1〉〈1|−|0〉〈0|, Ŷ = −i |1〉〈0|+i |0〉〈1|, and

X̂ = |1〉〈0| + |0〉〈1|, with respective eigenstates |z±〉 =



2

|1/0〉, |y±〉 = (|1〉± i |0〉)/
√

2, and |x±〉 = (|1〉±|0〉)/
√

2.
As a cautionary note, this superconducting-qubit con-
vention is opposite the quantum-computing convention
for 0 and 1, to allow a qubit Hamiltonian to be written
naturally as Ĥq = E1 |1〉〈1|+E0 |0〉〈0| = ~ωq(Ẑ/2) + Ē1̂,
with positive qubit frequency ωq = (E1−E0)/~ > 0, and
energy offset Ē = (E1 +E0)/2 at the mean qubit energy
(and usually omitted). For simplicity, we assume that
higher energy levels outside the qubit subspace may be
safely neglected.

We assume that the single-qubit gates at our dis-
posal will be the three basic rotations, R̂x(φ) =

exp(−i(φ/2)X̂), R̂y(φ) = exp(−i(φ/2)Ŷ ), and R̂z(φ) =

exp(−i(φ/2)Ẑ). These are typically implemented with
optimized microwave pulses resonant with the qubit fre-
quency [53] or with a flux-bias line that tunes the qubit
energy [54]. We also assume that a particular two-qubit
entangling gate has been optimized to match the chip
geometry. We consider both the control-Z gate [55, 56],

ĈZ = |1〉〈1| ⊗ Ẑ + |0〉〈0| ⊗ 1̂, and the ZX -90 (cross-

resonance) gate [57, 58], ẐX90 = exp(−i(π/4)Ẑ⊗ X̂), as
the most actively used two-qubit gates for superconduct-
ing transmon chips.

Our task is to measure multitime correlators, such
as 2-point TOCs 〈B̂(t)Â(0)〉ρ or 4-point OTOCs

〈Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)〉ρ. We will show that these corre-
lators can be obtained exactly using temporal sequences
of generalized measurements of any strength. Such a
correlator generally has real and imaginary parts, which
must be measured separately. To access both parts of
such a correlator, we need two canonical types of mea-
surement that probe the dual aspects of a (dimensionless)

observable Â :

1. An informative measurement that causes a partial
collapse onto the basis of Â

2. A noninformative measurement that causes a
stochastic unitary rotation generated by Â

It will become clear how these measurements enable ac-
cess to real and imaginary parts, respectively, of a corre-
lator.

A. Canonical qubit measurements

As detailed in the appendix, provided that an n-qubit
operator Â squares to the identity, Â2 = 1̂, (e.g., as used

in [16, 31, 35, 36, 41–49]) both types of Â-measurement
can be implemented using a standardized coupling to a
single ancilla qubit. Such an observable has only two
eigenspaces corresponding to eigenvalues of ±1, so natu-
rally maps onto the two eigenstates of the ancilla qubit.
We provide implementation circuits using a CZ gate in
Figures 1 and 2 (see also [50–52]), as well as implemen-
tation circuits using an ZX -90 gate in Figures 3 and
4. Both gate implementations yield the same entangled
system-ancilla joint state prior to the ancilla collapse.

These procedures’ backaction on the system can be
compactly described by linear Kraus operators [59]. Be-
low, we derive these Kraus operators from minimal de-
scriptions of Figures 1–4:

1. Informative Measurement of Â:
Prepare the ancilla in the |x−〉 state, perform an

Â-controlled y-rotation of the ancilla through an
angle φ, then measure the ancilla in the z basis.

M̂
(A)
φ,± ≡ 〈z±| exp(−i(φ/2)Â⊗ Ŷ ) |x−〉 (1)

=
±1√

2

[
cos

φ

2
1̂± sin

φ

2
Â

]
2. Noninformative Measurement of Â:

Prepare the ancilla in the |x−〉 state, perform an

Â-controlled y-rotation of the ancilla through an
angle φ, then measure the ancilla in the y basis.

N̂
(A)
φ,± ≡ 〈y±| exp(−i(φ/2)Â⊗ Ŷ ) |x−〉 (2)

=
1√
2

[
cos

φ

2
1̂∓ i sin

φ

2
Â

]
e±iπ/4

The initial |x−〉 state ensures that a positive measure-

ment result correlates with the positive eigenspace of Â
after a positive rotation angle φ in the informative case
(e.g., see Figure 1). For clarity, we now replace the ±
notation with explicit labels, e.g., ±1 → (−1)1+a with
a ∈ {0, 1}, which will indicate the experimental outcome
obtained when measuring the indicated ancilla basis.

The informative measurement M̂
(A)
φ,a is a nonunitary

partial projection with a coupling-strength angle φ ∈
(0, π/2] that ranges from a near-identity transformation
(φ ≈ 0) to a full projection (φ = π/2). That the latter

is projective follows from the condition Â2 = 1̂, which
implies Â = Π̂+ − Π̂− and 1̂ = Π̂+ + Π̂− for eigen-

projections Π̂± of Â. In contrast, the noninformative

measurement N̂
(A)
φ,a is a measurement-controlled unitary

rotation, generated by Â, that is determined by the same
φ ∈ (0, π/2], ranging from a negligible rotation (φ ≈ 0)
to a maximal phase difference of π (φ = π/2). This
noninformative case is similar to a stochastic unitary ro-
tation. However, the experimenter knows, through the
result a, which of the possible unitaries occurs. For ex-
ample, stochastic trajectories of a superconducting qubit
undergoing a sequence of noninformative measurements
(also known as “phase backaction” [60]) may be unitar-
ily reversed with appropriate feedback [61, 62]. In both
the informative and the noninformative case, φ ∈ (0, π/2]
conveniently parametrizes the measurement strength, al-
lowing the tuning of the system backaction from weak
(φ ≈ 0) to strong (φ = π/2).

B. Qubit measurement identities

These canonical qubit measurements result in several
remarkable identities, which follow from the properties in
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Figure 1. (a) Quantum circuit using an optimized control-Z (CZ ) entangling gate to implement the generalized Â-measurement

M̂
(A)
φ,a = [cos(φ/2)1̂ − (−1)a sin(φ/2)Â]/

√
2. The (potentially n-qubit) unitary gate ÛA is chosen so that ÛAẐÛ

†
A = Â on the

target qubits. The y-rotation gate R̂y(ϕ) = exp[−i(ϕ/2)Ŷ ] rotates the ancilla qubit through an angle ϕ in the xz-plane
of the Bloch sphere. (b) Bloch-xz-plane detail of the ancilla evolution, showing each possible ancilla state in the entangled
superposition as a distinct colored arrow. The ancilla z-measurement result a = 0, 1 is correlated with the eigenstates of the
observable Â, with perfect correlation when φ = π/2. This correlation results in a partial collapse into the Â eigenstates. For
any correlation strength φ, the observable’s expectation value can be determined empirically by averaging the scaled values

αφ,a = (−1)a+1/ sinφ due to the operator identity
∑
a αφ,a M̂

†(A)
φ,a M̂

(A)
φ,a = Â.

Figure 2. (a) Quantum circuit using a CZ gate to implement the noninformative generalized Â-measurement N̂
(A)
φ,a =

[cos(φ/2)1̂ + i(−1)a sin(φ/2)Â]/
√

2, for comparison with Figure 1. The only difference is the added x-rotation gate R̂x(π/2) =

exp[−i(π/4)X̂] that rotates the ancilla qubit through an angle π/2 in the yz-plane. (b) Bloch-xz-plane detail of the ancilla

evolution. The added rotation moves the Â correlation to the xy-plane, so the z-measurement result a = 0, 1 is no longer
informative. Despite the lack of correlation, each result a enacts a conditional unitary, generated by Â, on the target.

Eqs. (A10), (A20) and (A21), derived in the appendix.
First, we define the rescaled value that the experimenter
should assign each observed ancilla outcome a ∈ {0, 1},

αφ,a ≡
(−1)a+1

sinφ
. (3)

The values αφ,a act as generalized eigenvalues of the ob-

servable Â [63, 64]. That is, Â can be decomposed into
the positive operator-valued measure (POVM) for the in-
formative measurement,∑

a=0,1

αφ,aM̂
†(A)
φ,a M̂

(A)
φ,a = Â. (4)

As a particularly important special case, when φ = π/2,
the values απ/2,a = (−1)1+a reduce to the eigenvalues

and the measurements are projective with M̂
(A)
π/2,a = Π̂a.

Since the probability of observing an outcome a

is P (a) = Tr(M̂
†(A)
φ,a M̂

(A)
φ,a ρ̂), the expectation value

of Â may be approximated by averaging the gen-
eralized eigenvalues over n trials of the experiment,∑n
k=1 αφ,ak/n →n→∞

∑
a αφ,aP (a) = 〈Â〉. The mean

squared error of this approximation is
∑n
k=1(αφ,ak −

〈Â〉)2/n2 ≤ (
∑n
k=1 α

2
φ,ak

/n)/n = 1/(n sin2 φ) since α2
φ,a

is the same for all a, which gives an upper bound on the
root-mean-squared (RMS) error of 1/(

√
n| sinφ|) for the

estimated mean. Strong measurements with φ = π/2
have the smallest RMS error. To guarantee the same
RMS error as for n strong measurement trials, less strong
measurements with φ < π/2 require n/ sin2 φ trials, but
also disturb the state correspondingly less.

Typically, determining complex quantities like opera-
tor correlators requires the use of weak measurements
(φ ≈ 0) to prevent state disturbance [36, 37]. In special
cases, however, relevant information may still be con-
tained in the collected measurement statistics in spite of
any state disturbance [39, 40, 65]. In the appendix, we
show that this is the case for qubits, where the following
remarkable identities that hold for any coupling-strength
angle φ, and thus enable the improved correlator mea-
surement protocols that are detailed in the following sec-
tions:
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Figure 3. (a) Quantum circuit using an optimized ẐX90 (ZX -90) entangling gate to implement the generalized Â-measurement

M̂
(A)
φ,a , for contrast with Figure 1. (b) Bloch xz-plane detail of the ancilla evolution.

Figure 4. (a) Quantum circuit using a ZX -90 gate to implement the noninformative generalized Â-measurement N̂
(A)
φ,a , for

comparison with Figure 2. (b) Bloch xz-plane detail of the ancilla evolution.

1. Anticommutator identities

∑
a=0,1

αφ,aM̂
(A)
φ,a ρ̂M̂

†(A)
φ,a =

{Â, ρ̂}
2

(5a)

∑
a=0,1

αφ,aM̂
†(A)
φ,a B̂M̂

(A)
φ,a =

{B̂, Â}
2

(5b)

2. Commutator identities

∑
a=0,1

αφ,aN̂
(A)
φ,a ρ̂N̂

†(A)
φ,a =

[Â, ρ̂]

2i
(6a)

∑
a=0,1

αφ,aN̂
†(A)
φ,a B̂N̂

(A)
φ,a =

[B̂, Â]

2i
(6b)

We show both the Schrödinger picture state-update
forms and the Heisenberg picture operator-update forms
for completeness and later convenience. For the pro-
jective case of φ = π/2, any nondemolition projective
measurement may be substituted for the ancilla measure-
ments, making the above identities widely applicable.

These key results show that both generative aspects of
an observable Â can be probed directly using its general-
ized eigenvalues: anticommutators generate nonunitary
collapse backaction, while commutators generate unitary
rotation backaction. We will see that the anticommu-
tators can be used to obtain the real parts of operator
correlators, while the commutators will additionally be
needed to obtain the imaginary parts.

C. Measurement sequence identities

Consider a sequence of m canonical system-qubit mea-
surements implemented with the ancilla-based proce-
dures established above. For each measurement k =
1, . . . ,m, an ancilla k will couple to an observable Âk,
which may differ from other observables in the sequence.
Depending on the basis measured on ancilla k, obtaining

the result ak ∈ {0, 1} will produce an effect K̂
(Ak)
φk,ak

∈
{M̂ (Ak)

φk,ak
, N̂

(Ak)
φk,ak

}. The probability of observing a partic-

ular sequence of results (a1, . . . , am) has the form

P (a1, . . . , am) = (7)

Tr(K̂
(Am)
φm,am

· · · K̂(A1)
φ1,a1

ρ̂K̂
†(A1)
φ1,a1

· · · K̂†(Am)
φm,am

).

That is, the measurement effects stack in a nested way.
Our main result follows directly:

Result: Averaging the generalized eigen-
values, αφk,ak , for a sequence of informa-
tive (noninformative) qubit-observable mea-

surements, M̂
(Ak)
φk,ak

(N̂
(Ak)
φk,ak

), yields an expec-

tation value of nested anticommutators (com-
mutators) involving the measured observables.

That is, averaging all M̂
(Ak)
φk,ak

measurements yields∑
a1,··· ,am∈{0,1}

αφ1,a1 · · ·αφm,am P (a1, . . . , am) = (8)

〈
{· · · {{Âm, Âm−1}, Âm−2} · · · , Â1}

2m−1

〉
ρ

,
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while replacing the first measurement with N̂
(A1)
φ1,ã1

yields

∑
ã1,··· ,am∈{0,1}

αφ1,ã1 · · ·αφm,am P (ã1, . . . , am) = (9)

〈
[· · · {{Âm, Âm−1}, Âm−2} · · · , Â1]

2m−2(2i)

〉
ρ

,

Similarly, any mixture of M̂
(Ak)
φk,ak

and N̂
(A`)
φ`,a`

measure-
ments nests the appropriate anticommutators and com-
mutators.

Remarkably, these results are exact for all
measurement-strength angles φk. This property is
specific to measurements of observables satisfying
Â2
k = 1̂. All decoherence terms arising from (i) the

collapses due to measurement or (ii) the dephasing
from random phase kicks cancel in the weighted sums.
Importantly, these correlator formulas remain valid for
strong measurements, wherein φ = π/2. Therefore, all
correlators that can be written in this form are readily
accessible to experiment.

The mean squared error for measurements of nested
(anti)commutators C like those above has an upper
bound

n1,...,nm∑
k1,...,km=1

(αφ1,a1k1
· · ·αφm,amkm

− C)2

(n1 · · ·nm)2
(10)

≤ 1

(n1 · · ·nm)(sin2 φ1 · · · sin2 φm)
,

where (n1, . . . , nm) are the numbers of statistical trials
for the measurements in the sequence. As expected, pro-
jective measurements with φk = π/2 have the minimum
statistical error. Compared to sequences of weak mea-
surements with φk ≈ 0, the number of trials required for
sequences of strong measurements to achieve the same
RMS error is greatly reduced.

III. APPLICATIONS

Consider measuring an operator B̂(t) = Û†t B̂Ût that

is evolved in the Heisenberg picture. Since B̂(t)2 =

Û†t B̂
2Ût, by unitarity, if B̂2 = 1̂, its Heisenberg-evolved

version also satisfies B̂(t)2 = 1̂. This means all results

derived in the preceding section can be applied to B̂(t).
Moreover, although the circuits in Figures 1–4 ostensibly
show coupling of the ancilla to single-qubit operators, any
combination of entangling unitary gates Û may be added
before and after, to create an effective ancilla coupling to
desired multiqubit operators.

Armed with these generalizations of the preceding re-
sults, we now consider two poignant examples: measuring
two-point TOCs and measuring four-point OTOCs.

Figure 5. Quantum circuit for measuring the time-ordered
correlator 〈B̂(t)Â〉ρS , with B̂(t) = Û†

t B̂Ût. The operators

Â and B̂ may act on any distinct combinations of the n
qubits. Using the generalized measurement procedures of any
strength from Figures 1 and 3, this circuit yields the distribu-
tion of results P (a, b), with a, b ∈ {0, 1}. Averaging this dis-

tribution yields
∑
a,b αφa,aαφb,bP (a, b) = Re〈B̂(t)Â〉ρS , with

αφa,a = (−1)1+a/ sinφa and similar for b. Replacing the first

measurement with N̂
(A)
φa,a

from Figures 2 and 4 and performing

the same weighted average of results yields Im〈B̂(t)Â〉ρS .

A. Measuring two-point TOCs

First, we consider the simple example of how to mea-
sure the two-point TOC 〈B(t)A〉ρ. Suppose one starts
the system in a state ρ̂, then applies a unitary evolution

Ût, then performs a measurement M̂
(B)
φ,b , then applies an

inverse unitary evolution Û†t to obtain Û†t M̂
(B)
φ,b Ûtρ̂(· · · )†.

We can group the evolutions and measurement together:

Û†t M̂
(B)
φ,b Ût =

±1√
2

[
cos

φ

2
1̂ + (−1)1+b sin

φ

2
(Û†t B̂Ût)

]
(11)

= M̂
(B(t))
φ,b ,

with a similar result for N̂
(B(t))
φ,b . That is, performing

the sequence of evolutions transforms the measurement
into an effective measurement of the Heisenberg-evolved

operator B̂(t). The linearity in B̂ of M̂
(B)
φ,b and N̂

(B)
φ,b al-

lows for this simplification. A further simplification is
obtained by noting that the cyclic property of the trace
makes any final temporal evolution irrelevant for the sta-
tistical average; that is, the final inverse unitary evolution
may be omitted if it is the last temporal evolution in the
protocol.

We can therefore measure the two-time correlator
with the following procedure: (1) Measure M̂

(A)
φa,a

. (2)

Evolve under Ût. (3) Measure M̂
(B)
φb,b

. (4) Average

the collected distribution P (a, b) of ordered result pairs
(a, b) with the generalized eigenvalues αφa,aαφb,b =
(−1)1+a(−1)1+b/(sinφa sinφb). This procedure yields
the average∑

a,b∈{0,1}

αφa,aαφb,b P (a, b) =

〈
{B̂(t), Â}

2

〉
ρ

(12)

= Re〈B̂(t)Â〉ρ,

which is the real part of the desired correlator. We illus-
trate this procedure in Figure 5.
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To find the imaginary part, only one change to the

above procedure is necessary: In step (1), measure N̂
(A)
φã,ã

instead, by changing the measured basis of the ancilla.
Following the rest of the procedure as before yields the
average

∑
ã,b∈{0,1}

αφã,ãαφb,b P (ã, b) =

〈
[B̂(t), Â]

2i

〉
ρ

(13)

= Im〈B̂(t)Â〉ρ.

Thus, both parts of the TOC may be obtained exactly
using sequential measurements of any strength (including
non-demolition projective measurements), without any
need for reversed temporal evolution. This special case
of our general qubit correlator results was also noted in
Ref. [66].

B. Measuring Pauli OTOCs

We can use the preceding results to measure a four-
point multiqubit Pauli OTOC directly in a manner simi-
lar to that of the TOC example in the preceding section.
The symmetry of the OTOC expression, combined with
the nice properties of the qubit Pauli operators, simplifies
the nested (anti)commutators to the desired form.

Structurally, an OTOC is the average of a group-
commutator between unitary group elements V̂ and

Ŵ (t), where the unitary Ŵ (t) = Û†t Ŵ Ût is evolved in

the Heisenberg picture, like the operator B̂(t) in the pre-
ceding TOC. Such a group commutator average has the
form

F (t) ≡ 〈Ŵ †(t)V̂ †Ŵ (t)V̂ 〉ρ (14)

and measures the mean perturbations of the group oper-
ations on each other, weighted by an initial state ρ̂. Such
an OTOC arises naturally from the positive Hermitian
square of the algebraic commutator〈

[Ŵ (t), V̂ ]†

(2i)∗
[Ŵ (t), V̂ ]

2i

〉
ρ

=
1− ReF (t)

2
≥ 0, (15)

which implies that ReF (t) ≤ 1.

At time t = 0, Ŵ (0) and V̂ are commonly chosen to
act on independent subsystems, so that they commute
and F (0) = 1. If, under unitary dynamics, ReF (t) < 1,

we can infer Ŵ (t) has evolved to act nontrivially on the

subsystem acted upon by V̂ , such that Ŵ (t) and V̂ do
not share a common eigenbasis and thus do not com-
mute. If the evolution is such that the Ŵ (t) and V̂
nearly commute at later times, F (t) will experience re-
vivals near unity. However, nonintegrable Hamiltonian
evolution can “scramble” local information from one sub-
space throughout the whole joint space such that oper-
ators on initially distinct subspaces fail to commute for

very long times. Such sustained noncommutation pre-
vents revivals in F (t), making an extended absence of
revivals a qualitative witness for dynamical information
scrambling [1–29].

As an important special case of unitary operators for
n-qubit systems, we will focus on separable products of
Pauli operators B̂(t) and Â, using notation consistent

with the previous section. For example, Â and B̂(0)
could be local Pauli operators at opposite ends of a spin
chain with nonintegrable dynamics, which is a typically
considered case where an OTOC gives interesting results
[36]. Unitary operators of this class are Hermitian, so

satisfy Â2 = B̂(t)2 = 1, as required to use our main
qubit-measurement results. The form of the OTOC then
simplifies to a 4-point correlator 〈B̂(t)ÂB̂(t)Â〉ρ similar
to the preceding two-point TOC.

Consider the following measurement procedure: (1)

Measure M̂
(A)
φa,a

. (2) Evolve under Ût. (3) Measure M̂
(B)
φb,b

.

(4) Evolve backwards under Û†t . (5) Measure M̂
(A)
φ′
a,a

′ .

(6) Evolve under Ût. (7) Measure M̂
(B)
φ′
b,b

′ . (8) Average

the collected distribution P (a, b, a′, b′) of ordered result
quadruples (a, b, a′, b′) with the generalized eigenvalues
αφa,aαφb,bαφa′ ,a′αφb′ ,b

′ (defined in Eq. (A10)). This pro-
cedure yields the average∑

a,b,a′,b′∈{0,1}

αφa,aαφb,bαφa′ ,a′αφb′ ,b
′ P (a, b, a′, b′)

=

〈
{{{B̂(t), Â}, B̂(t)}, Â}

23

〉
ρ

=
1 + Re〈B̂(t)ÂB̂(t)Â〉ρ

2

= 1−

〈
[B̂(t), Â]†

(2i)∗
[B̂(t), Â]

2i

〉
ρ

. (16)

That is, the average is precisely the complement of the
Hermitian square of the commutator between Â and
B̂(t), which contains the real part of the desired 4-point
OTOC. We illustrate this procedure in Figure 6.

As with the TOC, changing only step (1) to measure

N̂
(A)
φã,ã

instead yields the average∑
ã,b,a′,b′∈{0,1}

αφã,ãαφb,bαφa′ ,a′αφb′ ,b
′ P (ã, b, a′, b′)

=

〈
[{{B̂(t), Â}, B̂(t)}, Â]

22(2i)

〉
ρ

=
Im〈B̂(t)ÂB̂(t)Â〉ρ

2
, (17)

which contains the imaginary part of the same OTOC.
We again emphasize that these results hold exactly for
measurements of any strength.

Compared to the TOC measurement-protocol, there
is a notable difference. Although we have omitted the
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Figure 6. Quantum circuit for measuring the out-of-time-ordered correlator F (t) = 〈B̂(t)ÂB̂(t)Â〉ρS , with B̂(t) = Û†
t B̂Ût.

Similarly to Figure 5, this circuit yields the distribution of results P (a, b, a′, b′), with a, b, a′, b′ ∈ {0, 1}. Averaging this
distribution produces

∑
a,b,a′,b′ αφa,aαφb,bαφa′ ,a′αφb′ ,b

′P (a, b, a′, b′) = (1+ReF (t))/2, with αφa,a = (−1)1+a/ sinφa and similar

for b, a′, b′. Replacing the first measurement with N̂
(A)
φa,a

and performing the same weighted average of results yields ImF (t)/2.

final reverse time evolution from the protocol as before,
we must perform one reverse time evolution, in step (4).
The need for this reverse evolution makes measuring the
OTOC more challenging.

Controllable qubit circuits based on gates can invert
the gate sequence to reverse the evolution. If the time
evolution is difficult to precisely reverse directly, a possi-
ble workaround is to introduce a time-reversal ancilla by
the following extension of the Hamiltonian (inspired by
the quantum-clock protocol [31]):

ĤS 7→ ĤS ⊗ Ẑ. (18)

If the time-reversal ancilla is in the state |1〉, time will
effectively flow forward for the system as normal. If the
ancilla is in the state |0〉, time will seem to flow back-
wards for the system. This single-ancilla extension ex-
changes the difficulty of reversing ĤS with the difficulty
of coupling ĤS to an ancilla operator Ẑ.

IV. CONCLUSION

The sequential measurement circuits shown in this pa-
per enable the exact determination of the expectation
values of nested (anti)commutators for multiqubit ob-
servables that square to the identity. This is a useful
class of observables relevant for multiqubit quantum sim-
ulations. Two-point TOCs and four-point OTOCs are
special cases of this nested (anti)commutator structure,
making them readily accessible to experiments with su-
perconducting transmon qubits. Extensions to k-point
OTOCs [36, 41, 67–69] are straightforward, but may re-
quire decomposing the k-point OTOC into several terms
of nested (anti)commutators that could each be measured
in separate experiments. Notably, measurements of any
coupling strength may be used, including standard non-
demolition projective measurements that minimize the
statistical error.

The method presented here improves upon the orig-
inally proposed sequential-weak-measurement approach
for obtaining OTOCs [35, 36]. The perturbation terms
now exactly cancel, avoiding the accumulated error from
measurement invasiveness entirely. Moreover, using
stronger measurements permits smaller statistical ensem-
bles and less data processing. These advantages make
the signal-to-noise ratio of the sequential-measurement
approach now comparable to other methods to obtain an
OTOC with strong measurements, e.g., the interferomet-
ric method in Ref. [30] and the quantum-clock method in
Ref. [31]. The sensitivity of this method to experimental
imperfections of the OTOC itself still requires analysis
[47–49, 70, 71].

Although the present method is particularly useful for
qubit-based simulations, the weak measurements pro-
posed in Refs. [35, 36] apply to a wider class of non-
qubit OTOCs. Weak measurements also enable access to
a more fundamental quasiprobability distribution (QPD)
behind the OTOC [36], which we have not explored in
this work. The QPD is more sensitive to measurement
disturbance, so requires more finesse to measure with
arbitrary-strength measurements, as we will elucidate in
future work.
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Appendix A: Generalized Measurement Review

For completeness, we provide a full derivation of how
ancilla-based measurement procedures work in a general
way. We then specialize those results to qubits to show
precisely where the qubit-specific simplifications arise.

1. System-ancilla coupling

Suppose one wishes to measure a (dimensionless) ob-

servable Â on a system using an ancilla detector. One
enacts a coupling gate that entangles the system’s Â-
eigenbasis with the detector, then measures the detector.
The essential part of such a gate has the form

Ûφ = exp

[
−iφ

2
Â⊗ D̂

]
, (A1)

where φ is an interaction angle that dictates the coupling
strength, and D̂ is a (dimensionless) detector observable.

To see why this form creates the desired entanglement,
we write the spectral expansion Â =

∑
λA

λA |λA〉〈λA|
and interpret the interaction as conditionally evolving
the detector state by a distinct eigenvalue-modified angle
φλA dependent on the eigenstate |λA〉 that the system
occupies:

Ûφ =
∑
λA

|λA〉〈λA| ⊗ exp

[
−iφ λA

2
D̂

]
. (A2)

That is, the entangling gate is a controlled-unitary gate
conditioned on the eigenbasis of Â.

If we enact this gate on initially uncorrelated system
and detector states ρ̂S⊗|ψ〉〈ψ|, then measure a particular
detector basis to obtain the result |a〉

ρ̂S ⊗ |ψ〉〈ψ| → Ûφ [ρ̂S ⊗ |ψ〉〈ψ|] Û†φ (A3)

→
[
〈a| Ûφ |ψ〉 ρ̂S 〈ψ| Û†φ |a〉

]
⊗ |a〉〈a|

≡
[
K̂

(A)
φ,a ρ̂SK̂

†(A)
φ,a

]
⊗ |a〉〈a| .

The detector decouples from the system after the mea-
surement yields |a〉. The resulting backaction on the sys-
tem is encapsulated in the Kraus operators [59]

K̂
(A)
φ,a = 〈a| exp

(
−iφ

2
Â⊗ D̂

)
|ψ〉 , (A4)

which are partial matrix elements of the joint interaction
Ûφ. These Kraus operators effectively condition the in-
teraction on definite detector states. For the purposes of
the main text, we use notation that makes explicit the

dependence of K̂
(A)
φ,a upon the observable Â, the interac-

tion angle φ, and the measured detector basis |a〉, but
leave implicit the dependence upon the initial detector
state |ψ〉 and the coupling observable D̂, which are kept
fixed in practice.

Using the spectral expansion of Â as before, we find

K̂
(A)
φ,a =

∑
λA

[
〈a| e−iφλAD̂/2 |ψ〉

]
|λA〉〈λA| , (A5)

so we can interpret the measurement as conditionally
weighting each eigenstate of Â with a complex factor de-
termined by the detector pre- and postselection 〈a| |ψ〉,
as well as the coupling generator D̂ and the angle φ.
Factoring out the unperturbed detector amplitudes 〈a|ψ〉
produces the expansion K̂

(A)
φ,a = 〈a|ψ〉

∑
λA
mλA

φ,a |λA〉〈λA|
in terms of the detector modular values [72]

mλA

φ,a ≡
〈a| e−iφλAD̂/2 |ψ〉

〈a|ψ〉
(A6)

that completely determine how the amplitude of each
|λA〉 is affected by the measurement. (If 〈a|ψ〉 = 0, with

the numerator of mλA

φ,a nonzero for some a and λA, mλA

φ,a
diverges, indicating that the interaction can no longer
be interpreted as a multiplicative correction to the prior
amplitude. One must return to the form in Eq. (A5).)

Generally, the detector modular values mλA

φ,a depend

upon all powers of D̂, according to the Taylor expansion
of the exponential,

mλA

φ,a =

∞∑
n=0

(−iφλA/2)n

n!
D(n)
w,a, (A7)

where

D(n)
w,a ≡

〈a| D̂n |ψ〉
〈a|ψ〉

(A8)

are the nth-order weak values [37] of the detector observ-

able D̂. As we emphasized in Ref. [38], the perturbative
series expansion in Eq. (A7) is entirely specified by these
weak values.

2. Calibrating the measurement

The probability of the detector result a is the trace of
Eq. (A3):

P (a) = TrS(K̂
†(A)
φ,a K̂

(A)
φ,a ρ̂S) (A9)

= |〈a|ψ〉|2
∑
λA

∣∣∣mλA

φ,a

∣∣∣2 〈λA| ρ̂S |λA〉 ,
which implies 〈A〉 =

∑
a αaP (a) and the identity

Â =
∑
a

αa K̂
†(A)
φ,a K̂

(A)
φ,a , (A10)

provided that there exist generalized eigenvalues αa that

satisfy the matrix equation ~λ = C~α, where ~λ = [λA], ~α =

[αa], and [C]λA,a = |〈a|ψ〉|2 |mλA

ψ,a|2. A natural choice for
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such generalized eigenvalues is ~α0 ≡ C+~λ, where C+ is
the Moore-Penrose pseudoinverse, if it exists [63, 64].

Hence, we find the general condition for being able to
“measure the system observable Â” in an informational
sense using the ancilla detector: if Eq. (A10) can be con-
structed by some choice of values αa, the detector can
be calibrated to measure Â. The generalized eigenvalues
αa are the values that the experimenter should assign to
the empirical measurement outcomes for their statistical
average to produce 〈A〉.

3. Weak measurements

In the case of weak coupling, the quantity (φλA) is suf-
ficiently small for each λA (and the nth-order weak val-

ues D
(n)
w,a are sufficiently well-behaved [73]) to truncate

this series expansion to linear order, yielding mλA

φ,a =

1 − i(φλA/2)Dw,a, where we notate Dw,a ≡ D
(1)
w,a by

convention. In this regime, the measurement’s complete
detector-dependence is approximately reduced to only
the first-order weak value, and the Kraus operator lin-
earizes:

K̂
(A)
φ,a = 〈a|ψ〉

[
1̂− iφ

2
Dw,a Â+O(φ2)

]
. (A11)

It is this effective linearity in the weak regime that per-
mits weak measurements to approximately determine
multitime correlators like the OTOC, as well as quantum
state amplitudes [74] and Kirkwood-Dirac quasiproba-
bilities [75, 76] in related protocols. In particular, the
change in state to order φ,

K̂
(A)
φ,a ρ̂SK̂

†(A)
φ,a

P (a)
− ρ̂S ≈ (A12)[

Re(Dw,a)
[Â, ρ̂S ]

2i
+ Im(Dw,a)

(
{Â, ρ̂S}

2
− 〈A〉ρ̂S

)]
φ,

is sensitive to the commutator and/or the anticommuta-

tor of Â with ρ̂S . Most importantly, relative influence
can be controlled by a judicious choice of the detector
weak values by manipulating the pre- and postselection
states 〈a| |ψ〉.

4. Qubit detector and system

In the special case of a qubit detector, with a normal-
ized Pauli observable D̂ = dxX̂ + dyŶ + dzẐ satisfying

the identity D̂2 = (d2x+d2y+d2z)1̂ = 1̂, the modular values
in Eq. (A6) simplify to all orders in φ,

mλA

φ,a = cos
φλA

2
− i sin

φλA
2

Dw,a, (A13)

and become completely determined by the first-order de-
tector weak values Dw,a. The Kraus operators conse-
quently reduce to a simpler form

K̂
(A)
φ,a = 〈a|ψ〉

[
cos

φÂ

2
− i sin

φÂ

2
Dw,a

]
. (A14)

If the system observable Â also satisfies Â2 = 1̂, as for
tensor products of n-qubit Pauli operators, the Kraus
operators become linear in Â to all orders in φ:

K̂
(A)
φ,a = 〈a|ψ〉

[
cos

φ

2
1̂− i sin

φ

2
Dw,aÂ

]
. (A15)

This simplification allows one to achieve similar results
to those in the weak-measurement regime using any cou-
pling strength. In particular, one has the exact expres-
sion

K̂
(A)
φ,a ρ̂SK̂

†(A)
φ,a

P (a)
− ρ̂S = cφ,a Re(Dw,a)

[Â, ρ̂S ]

2i
(A16)

+ cφ,a Im(Dw,a)

[
{Â, ρ̂S}

2
− 〈A〉ρ̂S

]

+ cφ,a
sin2 φ

2 |Dw,a|2

sinφ

[
Âρ̂SÂ− ρ̂S

]
with a normalization prefactor

cφ,a =
sinφ

1 + sinφ〈A〉ImDw,a + sin2 φ
2 (|Dw,a|2 − 1)

(A17)

that generally depends on Â. In addition to the commu-
tator and anticommutator terms that persist in the weak
regime, the third term of Eq. (A16) is a decoherence term

(in Lindblad form [77]) that preserves the eigenbasis of Â,
which is the state collapse that scales with measurement
strength.

5. Canonical qubit measurements

In the main text, two strategic choices of detector
configurations simplify the expressions in Eqs. (A15)
and (A16) further. First, we set the interaction rota-

tion to D̂ = Ŷ , to confine the detector states to the
Bloch sphere’s xz-plane. Second, we set the initial state
|ψ〉 = |x−〉 to be unbiased with respect to z in that plane.
Third, we choose one of two measured detector bases to
select strategic detector weak values that are either imag-
inary or real with magnitude 1:

1. 〈a| = 〈z±| =⇒ Dw,a = ±i

K̂
(A)
φ,a → M̂

(A)
φ,± =

±1√
2

[
cos

φ

2
1̂± sin

φ

2
Â

]
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2. 〈a| = 〈y±| =⇒ Dw,a = ±1

K̂
(A)
φ,a → N̂

(A)
φ,± =

1√
2

[
cos

φ

2
1̂∓ i sin

φ

2
Â

]
e±iπ/4

The overall phase factors are included for completeness

but always cancel in practice.

The (unnormalized) state updates then reduce to con-
venient forms:

M̂
(A)
φ,±ρ̂SM̂

†(A)
φ,± =

1

2

[
ρ̂S ± sinφ

{Â, ρ̂S}
2

+ sin2φ

2

(
Âρ̂SÂ− ρ̂S

)]
(A18)

N̂
(A)
φ,±ρ̂SN̂

†(A)
φ,± =

1

2

[
ρ̂S ± sinφ

[Â, ρ̂S ]

2i
+ sin2φ

2

(
Âρ̂SÂ− ρ̂S

)]
. (A19)

Though these expressions retain the decoherence term, it
is a constant with respect to the detector outcome, while
the terms of interest alternate in sign with the detector
outcome. As a result, if one assigns values to the detector
outcomes that also alternate in sign, then the system
operations of interest can be perfectly isolated using any
coupling strength φ:

∑
±

(
±1

sinφ

)
M̂

(A)
φ,±ρ̂SM̂

†(A)
φ,± =

{Â, ρ̂S}
2

, (A20)

∑
±

(
±1

sinφ

)
N̂

(A)
φ,±ρ̂SN̂

†(A)
φ,± =

[Â, ρ̂S ]

2i
. (A21)

The operational identities in Eqs. (A20) and (A21) en-

able the methods in the main text. Sequential measure-
ments nest the appropriate anticommutators and com-
mutators, provided that all measurement outcomes are
correctly averaged with alternating signs. In contrast, if
early measurements in a sequence are marginalized over,
the decoherence term will become important and require
correction.

As a final note, Eq. (A20) is related to the preceding

notion of measuring Â informationally using Eq. (A10).
Indeed, the average in Eq. (A10) is the adjoint form of the
operator update in Eq. (A20), provided that no subse-
quent measurements are performed. This relation makes
it clear that the values αφ,± = ±1/ sinφ in the sum are

the generalized eigenvalues needed to measure Â.
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