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We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trap-
ping potential, for a wide range of interaction strengths across a Feshbach resonance. We show that this hy-
drodynamic phenomenon is for all interaction strengths fully described by a microscopic kinetic model with no
free parameters. The success of this description crucially relies on taking into account the reduced thermalising
power of elastic collisions in a strongly interacting gas, for which we derive an analytical theory. We also per-
form time-resolved measurements that directly reveal the dynamics of the energy transfer between the different
expansion axes.

Elliptic flow, the collisional redistribution of energy be-
tween axes during expansion of a fluid, is a canonical ex-
ample of hydrodynamic behaviour. Commonly discussed in
the context of heavy-ion collisions [1], it has become a cru-
cial probe of the strongly interacting quark-gluon plasma pro-
duced in these experiments. Due to the complicated micro-
scopic physics, such systems are often described in terms of
macroscopic (coarse-grained) quasi-equilibrium local quanti-
ties such as density and flow velocity. In this approach, the
microscopic physics is encapsulated in phenomenological pa-
rameters such as viscosity.

Ultracold atomic gases offer an excellent testbed for study-
ing the collective behaviour in interacting fluids, in large part
because the two-body interactions, characterised by the s-
wave scattering-length a, can be tuned via magnetic Fesh-
bach resonances [2]. Most famously, atomic gases can show
anisotropic expansion due to superfluid hydrodynamics [3, 4].
However, for sufficiently strong interactions they can also dis-
play pronounced elliptic flow in their normal state, above the
critical temperature for superfluidity. This effect has been ex-
tensively studied in normal degenerate Fermi gases [5–13]. In
normal Bose systems, elliptic flow has been observed for rel-
atively weak interactions [14, 15] and in dipolar [16] gases,
but a systematic study as a function of the interaction strength
has been lacking. Of particular interest is the hydrodynamic
behaviour of the unitary Bose gas [17–21], in which a → ∞
and the interactions are as strong as theoretically allowed.

In this paper, we study the elliptic flow of a normal atomic
Bose gas, released from an anisotropic harmonic trap (see
Fig. 1), for a wide range of interaction strengths across a Fes-
hbach resonance, and a wide range of trap anisotropies. We
show that despite being a quintessentially hydrodynamic phe-
nomenon, elliptic flow in our system can in all interaction
regimes be described by a microscopic kinetic model with no
phenomenological parameters. To explain our observations
for a → ∞, it is crucial to take into account not only the
unitarity-imposed limitations on the scattering rate, but also
on the effectiveness of collisions in transferring energy be-
tween the expansion axes, for which we derive an analytical
theory. Exploiting the possibility to turn the interactions on
and off at any point during the gas expansion, we also perform

FIG. 1. Elliptic flow in a normal atomic Bose gas. Hydrodynamic be-
haviour is seen in the inversion of a cloud’s spatial aspect ratio during
time-of-flight (ToF) expansion, after release from an anisotropic har-
monic trap. The sketch on top illustrates an anisotropic density pro-
file of a trapped gas, whose parameters are given in the left panel of
Fig. 2. The bottom panels show absorption images of the cloud after
10 ms of expansion, for two different interaction strengths. A quasi-
ideal gas (left) expands essentially isotropically, while a strongly in-
teracting one (right) shows a pronounced aspect-ratio inversion. Note
that the trapped-gas cartoon is not to scale; for these experiments the
aspect ratio of the trapped cloud was η = 24.

time-resolved experiments that directly reveal the dynamics of
the energy transfer between the expansion axes.

Our experimental setup is described in [22]. We work with
39K atoms trapped in a cylindrically-symmetric optical har-
monic potential, with a tuneable trap anisotropy η = ωz/ωr,
where ωz,r are the axial and radial trapping frequencies. We
use two internal (spin) states, |↑〉 = |F = 1,mF = 1〉 and
|↓〉 = |F = 1,mF = 0〉, labelled in the low-field basis, and
tune the ↑↑ scattering length a using the magnetic Feshbach
resonance centred at 402.70(3) G [24]. The ↓↓ scattering
length is negligible (< 10 a0, where a0 is the Bohr radius)
for all relevant magnetic field strengths. The peak phase-
space density in our trapped clouds, D = n0λ

3, is <∼ 0.1
(see Fig. 2 legends), so they are well described by gaussian
real- and momentum-space distributions; here n0 is the num-
ber density in the centre of the cloud and λ = h/

√
2πmkBT
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FIG. 2. Spatial aspect ratio of the cloud after expansion, wz/wr , for various interaction strengths across a Feshbach resonance, and different
trap geometries. For each data set (panel) the inset cartoons (not to scale) indicate the trap geometry characterised by η = ωz/ωr , the ratio of
axial and radial trapping frequencies in our cylindrically symmetric harmonic trap. The legends also show the trapped-cloud atom number N ,
temperature T , and peak phase-space densityD. In each panel we show three different theoretical curves, corresponding to progressively more
refined models. In red we show the theory for a weakly interacting gas, in blue a theory that accounts for the unitarity-imposed limitations on
the elastic scattering rate, and finally in green our theory that also takes into account the reduced ability of collisions to transfer momentum in
a strongly interacting Bose gas (see the text for details). The shading of the theoretical curves reflects the variations and uncertainties in N and
T , and also the atom-number uncertainty due to small (< 8%) three-body losses during the expansion.

is the thermal wavelength, with T the temperature and m the
particle mass [23].

We prepare a quasi-ideal equilibrium gas in |↓〉 [24], then
release the cloud from the trap and simultaneously transfer it
to |↑〉 with a radio-frequency (RF) π−pulse [25]. This 34-µs
pulse is very short compared to our characteristic millisecond
expansion timescale, set by ωmax = max[ωr, ωz] (see Fig. 2
legends). Hence, our RF spin flip acts as an essentially instan-
taneous interaction switch, and from the start of the expan-
sion the (local) rate of elastic collisions is γel = n〈σh̄k/m〉,
where n is the density, σ = 8πa2/(1+k2a2) is the (unitarity-
limited) scattering cross section, h̄k is the relative momentum
of the particles, and 〈. . . 〉 denotes a thermal average. Finally,
after 10 ms of ToF we image the cloud radially (see Fig. 1),
and extract its axial and radial gaussian widths, wz,r [26]. We
normalise the measured aspect ratio to that obtained by repeat-
ing the experiment with the quasi-ideal |↓〉 gas (i.e., omitting
the RF spin-flip pulse), which removes small (few percent)
systematic anisotropies due to imaging artefacts and the non-
infinite ToF.

In Fig. 2 we show the aspect ratio wz/wr measured for
various scattering lengths across the Feshbach resonance, and
(in different panels) for widely different trap geometries, from
strongly oblate (η = 24) to strongly prolate (η = 0.08). For
all our values of η, we observe the expected quasi-isotropic
expansion for weak interactions, and the cloud expands most
anisotropically at unitarity, where the elastic scattering rate is
maximal.

Hydrodynamic behaviour should be pronounced if the ini-
tial scattering rate in the cloud centre, γ0el = n0〈σh̄k/m〉, is
much larger than the expansion rate ωmax [27]. In our unitary
clouds, γ0el/ωmax varies between 5 (for the η = 24 data) and
as much as 24 (for the η = 1.5 data), consistent with the ob-
served pronounced elliptic flow. At the same time, sinceD �
1, even at unitarity the mean free path ` ∼ (n0λ

2)−1 ∼ λ/D
is much larger than the de Broglie wavelength of the parti-
cles (λ) and the typical interparticle distance n−1/30 ∼ `D2/3.

This means that particles still have a well-defined momentum
and we can primarily consider their pairwise interactions. We
thus model our experiments using the Boltzmann equation for
the semi-classical phase-space distribution f(r,v, t), which
gives the occupation of the phase-space element correspond-
ing to spatial position r and velocity v:

∂f

∂t
+ v · ∂f

∂r
= −γr(f − fle). (1)

The left-hand side of Eq. (1) is the convective derivative of f ,
while the right-hand side is the Boltzmann collision integral
in the relaxation-time approximation, which assumes that f
relaxes to its local equilibrium value fle at a rate γr; the (in-
stantaneous) fle corresponds to an isotropic, thermal momen-
tum distribution in the zero-momentum frame for all the par-
ticles at a given r, with the same local kinetic energy density
as for f [28]. For a cloud released from an anisotropic trap,
this local thermalisation results in a transfer of energy from
the low-ω direction(s) to the high-ω one(s) [28]. By adopting
a gaussian ansatz for f , one can obtain and solve equations
of motion for its real- and momentum-space widths, which
fully define the phase-space distribution; in this approach γr
becomes a global variable that can be related to the elastic
collision rate averaged across the cloud, γel [28, 29].

We compare our data to three different theoretical curves,
indicated by different colours in Fig. 2, which correspond
to progressively better models for γr. The red curve shows
the weakly-interacting theory [28], where one approximates
σ = 8πa2, so γel = (8πa2h̄/m) 〈nk〉 and for this case it
was shown that γr = (4/5)γel [29]. This approach works
well for relatively weak interactions, but as expected fails at
and near unitarity, since it unphysically assumes σ → ∞ for
a → ∞. The blue-curve calculation properly takes into ac-
count the unitary saturation of the scattering cross-section,
so γel = (8πh̄a2/m)

〈
nk/(1 + k2a2)

〉
, but we still assume

γr = (4/5)γel and still overestimate the cloud anisotropy at
and near unitarity.
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The reason for this is that the ratio γr/γel is also affected
by the k-dependence of the cross-section σ. For weak interac-
tions (λ/|a| � 1) the cross-section is k-independent, whereas
at unitarity σ ∝ k−2 and is therefore larger for scattering of
particles with a small relative velocity. Hence, a greater frac-
tion of collisions contributing to the total γel occurs between
particles with small relative momenta. Such collisions are not
effective in thermalising the gas, and consequently the ratio
γr/γel is reduced. This effect was previously discussed in the
context of in-trap cross-dimensional thermalisation, and it was
numerically found that the thermalisation rate at fixed γel is
suppressed by a factor of up to 4 [30–32].

Here, we generalise the calculation of [29] to include the
k-dependence of σ and derive an analytic expression for
γr/γel valid at all interaction strengths. Writing γr/γel =
(4/5)g−1(α), where α = 2πa2/λ2, we get

g(α) = 6

∫ ∞
0

x3 e−x
2

1 + αx2
dx

[∫ ∞
0

x7 e−x
2

1 + αx2
dx

]−1
. (2)

For α = 0 we recover γr/γel = 4/5, while for α → ∞ we
get g = 3 and γr/γel = 4/15, meaning that relaxation requires
three times as many collisions. The resulting prediction for the
aspect ratio of the expanding cloud is shown in green in Fig. 2.
Without any free parameters, we capture the experimental data
excellently for all interaction strengths and for values of η dif-
fering by more than two orders of magnitude. We note that the
crossover from the collisionless to hydrodynamic regime was
also seen in the behaviour of the collective modes in a trapped
weakly-interacting gas; see Ref. [35] and references therein.
In those studies the gas density was tuned (at a fixed a) and
the crucial difference from our work is that the cross-section
was always in the k-independent weakly-interacting limit.

Finally, in the last part of the paper, we use our spin-flip
interaction switch to experimentally time-resolve the transfer
of energy between the different expansion axes and more di-
rectly reveal the underlying mechanism for the elliptic flow
(see Fig. 3). Here we focus on a unitary Bose gas and a
strongly oblate trap with η = 24. As before, at time t = 0
we release the cloud from the trap and turn on the interactions
by spin-flipping it from |↓〉 to |↑〉. However, now, after some
variable short interaction time, tint < tToF = 10 ms, we turn
off the interactions by spin-flipping the cloud back to |↓〉, and
thus suddenly interrupt the energy transfer. For the remain-
der of ToF the expansion proceeds ballistically and the final
shape of the cloud reflects the momentum distribution frozen
at t = tint.

The tint-dependent expansion energy along each direction is
characterised by an effective temperature, T eff

i , where i = r, z;
this global T eff

i corresponds to projecting the phase-space dis-
tribution onto the i momentum axis. In Fig. 3, we show
T eff
i (tint) that we approximately extract from the measured

cloud widths after ToF using

T eff
i ≈

m

kB

w2
i − w2

0,i

t2ToF
, (3)

where w0,i =
√
kBT/(mω2

i ) are the spatial sizes of the
trapped cloud; note that the relationship in Eq. (3) would

FIG. 3. Dynamics of the inter-axis energy transfer in the early stages
of the expansion. The top panel illustrates our experimental protocol
for obtaining time-resolved measurements of the momentum distri-
bution. In the bottom panel we show the effective temperature T eff

associated with motion along the axial (blue) and radial (red) direc-
tions during expansion of a resonantly-interacting gas (λ/a = 0)
released from a strongly oblate trap (η = 24); all the trapped-cloud
parameters are essentially the same as in the left panel of Fig. 2. In
purple we show the average temperature, (2T eff

r + T eff
z )/3, which

remains essentially constant. The green bands show numerical simu-
lations for our experimental parameters, with the band thickness re-
flecting the atom-number and temperature uncertainties. The dashed
lines show the predictions for an ideal experiment with infinite time
of flight.

be an exact equality for tToF → ∞. At the time of release
T eff
r = T eff

z , but as the expansion proceeds in the presence
of interactions, T eff

r (red) decreases and T eff
z (blue) increases.

The mean temperature, (2T eff
r +T eff

z )/3 (purple), remains con-
stant, confirming an elastic redistribution of energy between
the different axes.

We note that the energy redistribution process extends over
a characteristic timescale of ≈ 1 ms, which is notably longer
than the ideal-gas expansion timescale 1/ωz = 0.14 ms. One
reason for this is that during expansion at unitarity the drop in
the collision rate due to the drop in the density is countered
by an increase due to the reduction in the local spread of mo-
menta, which increases the unitarity-limited σ (for a related
discussion see also [7]).

Here we again compare the experimental data with our nu-
merical simulations (with γr/γel = 4/15) and find good agree-
ment without any free parameters. The green bands in Fig. 3
show simulations for our experimental protocol and parame-
ters; that is, we directly simulate the right hand side of Eq. (3)
rather than the exact T eff

i . For comparison, with dashed lines
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we also show simulations of the exact T eff
i , which would be

observed in an ideal experiment with tToF →∞, and find that
our measurements are close to these predictions.

In conclusion, we have studied elliptic flow in a normal
Bose gas with tuneable interactions, and have quantitatively
explained this quintessentially hydrodynamic behaviour us-
ing a microscopic kinetic model with no free parameters. Our
measurements show that the behaviour of a strongly interact-
ing gas is crucially affected by the reduction of the effective-
ness of elastic collisions in driving the system towards local
equilibrium, for which we have derived an analytical theory.
Finally, by studying the time-dependence of the expanding
cloud’s momentum distribution, we have directly revealed the
dynamics of the energy transfer between the expansion axes.
In the future it would be interesting to study the effects of
degeneracy on the hydrodynamic behavior of a Bose gas at
unitary.
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Appendix A: Derivation of g(α)

Here we outline the derivation of the scaling factor g(α)
between the rates of elastic scattering and phase-space relax-
ation. Essentially, we incorporate the momentum dependence
of the scattering cross-section, σ = 8πa2/(1 + k2a2), into
the derivation presented in [29], where the authors assumed

σ = 8πa2. For ease of following we explicitly refer to the
notation used in Ref. [29].

The phase-space relaxation rate, denoted γr in our main
text, is defined in Eq. (15) of [29] as τ−1 = −〈χ6Icoll〉/〈χ6〉.
Assuming σ = 8πa2, the authors calculated both τ and the
elastic scattering rate γcoll, denoted γel in our main text, and
found 1/τ = (4/5)γcoll.

The momentum dependence of σ affects both the elastic
scattering rate and the phase-space relaxation rate. The gen-
eralised scattering rate, valid for all interaction strengths, is

γcoll =

〈
n

8πa2

1 + a2k2
h̄k

m/2

〉
= γ0coll ×

∫ ∞
0

dx
x3e−x

2

1 + α2x2

[∫ ∞
0

dx x3e−x
2

]−1
= γ0coll × 2

∫ ∞
0

dx
x3e−x

2

1 + α2x2
, (A1)

where α = 2πa2/λ2 and γ0coll corresponds to the approxima-
tion α→ 0, equivalent to σ = 8πa2.

Similarly, the generalised τ is found by keeping the (k-
dependent) cross-section inside the integral over relative ve-
locity in Eq. (A4) of [29]. With this generalization, proceed-
ing as in [29] gives:

1

τ
=

1

τ0
×
∫ ∞
0

dx
x7e−x

2

1 + αx2

[∫ ∞
0

dx x7e−x
2

]−1
=

1

τ0
× 1

3

∫ ∞
0

dx
x7e−x

2

1 + αx2
. (A2)

We therefore obtain

γr

γel
≡ 1

τγcoll
=

4

5
g−1(α) , (A3)

where g(α) is as given in Eq. (2) in the main text.
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J. E. Thomas, Science 331, 58 (2011).

[10] E. Elliott, J. A. Joseph, and J. E. Thomas, Phys. Rev. Lett. 112,
040405 (2014).

[11] E. Elliott, J. A. Joseph, and J. E. Thomas, Phys. Rev. Lett. 113,
020406 (2014).

[12] J. A. Joseph, E. Elliott, and J. E. Thomas, Phys. Rev. Lett. 115,
020401 (2015).
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