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High precision radio-frequency, microwave and infrared spectroscopic measurements of the an-
tihydrogen molecular ion FI; (ppe™) compared with its normal matter counterpart provide direct
tests of the CPT theorem. The sensitivity to a difference between the positron/antiproton and elec-
tron/proton mass ratios, and to a difference between the positron-antiproton and electron-proton
hyperfine interactions, can exceed that obtained by comparing antihydrogen with hydrogen by sev-
eral orders of magnitude. Practical schemes are outlined for measurements on a single H,; ion in
a cryogenic Penning trap, that use non-destructive state identification by measuring the cyclotron
frequency and bound-positron spin-flip frequency; and also for creating an H; ion and initializing

its quantum state.

Violation of the CPT theorem, which postulates invari-
ance under the combined transformations of charge con-
jugation, parity and time-reversal would have profound
consequences for all quantum field theories and funda-
mental physics [1-4]. A consequence of CPT is that the
properties of fundamental particles and their antimatter
conjugates should be identical except for the reversal of
certain quantum numbers. This has led to much effort
to compare precisely the masses and magnetic moments
of the electron and positron [5-7], and of the proton and
antiproton [8-12], and even greater efforts to compare
the properties of hydrogen and antihydrogen [13-19].

In the case of antihydrogen (H), the aim is to mea-
sure the 1s1/5 to 2s;/p transition by two-photon (2E1)
laser spectroscopy, and the 1s;/, groundstate hyperfine
splitting (HFS) by microwave spectroscopy, as well as
to search for gravitational anomalies [20, 21]. For the
1s — 2s transition, the H-H comparison is sensitive to
the difference g(et)*m(et) —q(e™)*m(e™), where g(e*),
m(e*) are the respective charges and masses of the
positron and electron. While there is also sensitivity to
m(et)/m(p) — m(e”)/m(p) through the reduced mass
correction, this is decreased by a factor of 1/1836. In
the case of the HFS, the comparison is sensitive to a dif-
ference in the product of the positron(electron) and an-
tiproton(proton) magnetic moments. H has the attrac-
tion of the possibility of very high precision: for H, us-
ing cryogenically cooled beams, a fractional uncertainty
of 4 x 10715 has been achieved for the 1s — 2s transition
[22], and 2.7 x 107 for the 1s HFS transition [23]. How-
ever, besides the difficulties of making H, which currently
proceeds by combining antiprotons from the Antiproton
Decelerator (AD) at CERN [24] with positrons in nested
Penning traps [25], experiments with H suffer from the
difficulty that it must be isolated from ordinary matter.
Hence, spectroscopic experiments on H use weak, large
(2100 cm?) volume, neutral atom traps, such as the Ioffe-
Pritchard trap [26-28], or tenuous beams [19], which pose
difficulties for high precision. These include very low
densities, inhomogeneous magnetic fields, Doppler shifts,
and short transit times. So, although the first measure-

ments of the 1s — 2s [17] and 1s HFS [18] transitions
in H have already been made, and major improvements
can be expected from laser cooling [29, 30], the precision
achieved in hydrogen will not be reached for some years.

In contrast to the difficulties of confining antihydro-
gen, antiprotons (and normal matter ions) have long
been trapped [31, 32] and are now routinely manipu-
lated within [8, 33, 34] and between [11, 35, 36] cryo-
genic Penning traps for periods of many months, and
they can be tightly confined, and their motions precisely
monitored using image-current techniques [32, 37]. This
encourages consideration of testing CPT by performing
precise spectroscopy on the antihydrogen molecular ion
f[{ , the simplest antiprotonic ion with discrete energy
levels. Here it is shown, using non-destructive single ion
detection techniques, that high-precision measurements
on fI{ are possible. Specifically, methods are outlined
for the measurement of bound-positron spin-flip (Zee-
man) frequencies, Zeeman-hyperfine frequencies, and vi-
brational frequencies using Penning traps, that could en-
able tests of CPT using H, that are several orders-of-
magnitude more sensitive than can be obtained with bare
antiprotons or antihydrogen. This sensitivity advantage
is particularly great for measurements of the hyperfine
interaction, due to the long coherent interrogation times
enabled by a Penning trap; and for measurements of vi-
brational transitions, which are inherently ~ 10% more
sensitive to m(et)/m(p)—m(e™)/m(p) than 1s—2s spec-
troscopy in H and H.

Energy levels: The H) (H; ) ion in its ground elec-
tronic state 1soy(X?%}) is strongly bound (dissociation
energy Dy = 2.6507 eV), with 20 bound vibrational lev-
els (quantum number v) and 423 bound rotational lev-
els (quantum number N) [38-40]. The vibrational level
spacing is 65.7 THz for (v, N) = (0,0) to (1,0). The
number of bound rotational levels for each vibrational
level decreases from 35 for v = 0, to 2 for v = 19. The
rotational levels have para (ortho) exchange symmetry,
with total nuclear spin I = 0(1), for N even(odd). Be-
cause para-ortho transitions are strongly forbidden, the



N even and N odd ions are effectively separate species.
For N even, the HFS is due only to the electron-spin
molecular-rotation interaction. For odd N, the hyper-
fine structure is more complicated due to the additional
interactions involving nuclear spin. However, in the 1
to 10 tesla magnetic fields of typical Penning traps, the
Zeeman structure is in the strong-field regime, and the
individual substates can be identified by the projections
of the electron spin, total nuclear spin (if present), and
rotational angular momentum, Mg, M;, My. The Zee-
man splitting with respect to Mg is dominant.

Since electric dipole transitions are forbidden in a
homonuclear diatomic molecule, the ro-vibrational lev-
els mainly decay by electric quadrupole (E2) transitions
with selection rule AN = 0, 2. Excited vibrational lev-
els have mean lifetimes on the order of a week or longer
[41]. The rotational levels of v = 0 have mean lifetimes
of a few days for N around 30, increasing to 3300 years
for N =2 [42] (N = 0 to 2 spacing 5.22 THz), while the
radiative decay of N = 1 is forbidden. Hence H. (H, )
has an abundance of transitions with extremely narrow
radiative widths. This gives it an advantage for ultra-
high precision spectroscopy relative to H(H), whose only
metastable levels are the upper hyperfine level of the
ground state, and the 2s level, which has a lifetime of
about 1/8 sec. On the other hand, compared to H, and
to most atomic ions used for optical clocks, [43, 44], the
lack of any electric dipole transition poses challenges by
preventing direct laser cooling and state detection using
fluorescence.

Single Hy ion in a Penning trap: Here we focus on
measurements that can be carried out in Penning traps
that are compatible with current methods for trapping
antiprotons [35]. In a precision Penning trap [32, 37],
a set of cylindrically symmetric electrodes produces a
quadrupolar electrostatic potential aligned with a highly
uniform magnetic field. A single ion undergoes an axial
motion parallel to the magnetic field due to the electro-
static potential, and two circular motions perpendicular
to the magnetic field, the (modified) cyclotron motion
and the magnetron motion. Using image-current tech-
niques, the motions of a single ion can be cooled into
thermal equilibrium with a high quality-factor inductor
maintained at LHe temperature (4.2K) in time scales of
0.1 to 30 s. In the near future, by directly cooling the
inductor with a dilution refrigerator, e.g., see [45], or
by using laser-cooled alkaline-earth ions in an adjacent
trap with shared electrodes [46, 47], or laser-cooled an-
ions in the same trap [48, 49], the H, ion temperature
may be reduced by a further two to three orders of magni-
tude. Because of the difficulty of making H, ions, state
detection and preparation methods are devised that en-
able measurements on a single ﬁ{ to be repeated in-
definitely. In particular, they do not use annihilation or
photo-dissociation. In what follows, H, is referred to
with the understanding that the same measurements can

(and more easily) be made on H, .

Bound positron g-factor: The first of the proposed
measurements on H, , which also introduces the main
state detection technique, is the simultaneous measure-
ment of the bound-positron spin-flip frequency and ion
cyclotron frequency, whose ratio is proportional to the
positron g-factor. Although the measurement can be per-
formed on an H, in essentially any (v, N), it is simplest
to consider the case of N = 0, where there is no hyper-
fine structure. The Zeeman structure then consists of two
states with Mg = +1/2, separated by the spin-flip fre-
quency ~ 28.025 GHz/T due to the magnetic moment of
the positron, which, except for small bound-state correc-
tions, is the same as for the free positron. Besides initial
state preparation, which is discussed later, the method
is identical to that already developed with great success
for high precision measurements of the bound-electron g-
factor in 12C5* [50], which have now reached a fractional
uncertainty less than 3 x 107! [51, 52].

The apparatus consists of two adjacent Penning traps
in a magnetic field of typically 5 tesla, a “precision trap”
where the magnetic field is highly uniform, and where
the measurement is carried out; and an “analysis trap”,
where the magnetic field has an inhomogeneity with a
quadratic spatial dependence B ~ By + B22? [32]. In the
analysis trap the positron spin state Mg is determined
through the shift in axial frequency of the ion due the
interaction of its magnetic moment with the quadratic
field gradient. This is known as the continuous Stern-
Gerlach technique (CSG) [50, 53]. In contrast to the
extreme difficulty of detecting a spin-flip of a bare anti-
proton, which has a 650 times smaller magnetic moment
[10, 11, 54], the spin-flip of a bound positron produces
an easily detectable change in axial frequency, enabling
determination of Mg in 1 minute or less, in a magnetic
field with modest inhomogeneity [52]. In the precision
trap, the cyclotron frequency of the ion is measured by
monitoring the evolution of the phase of the classical cy-
clotron motion [55, 56], while microwaves are applied at
the expected spin-flip frequency, to make an attempt at
inducing a positron spin-flip.

The measurement protocol consists of making an at-
tempt at a spin-flip in the precision trap, while simul-
taneously measuring the cyclotron frequency, and then
transferring the ion to the analysis trap to determine
if a spin-flip had occurred in the precision trap. The
process is repeated to map out spin-flip probability as a
function of microwave drive frequency. Because the cy-
clotron frequency of the H, in the (v, N) = (v, 0) state,
fe = (1/27)Bq(Hy )/M(H, (v,0)), is measured simulta-
neously in the magnetic field B of the precision trap, the
ratio of spin-flip frequency, fs, to f. is independent of B
and is given by

fs _|ge(Hy (v,0)) q(e*) M(Hy (v,0))
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where g.(H, (v,0)) =~ 2.002, is the effective g-factor of
the bound positron (defined so that the magnetic mo-
ment is g.(H, (v,0))jip Mg, where fip = hg(et)/2m(e"),
with g(e™)/m(e™) the charge-to-mass ratio of the free
positron), and q(H, )/M (H; (v,0)) is the charge-to-mass
ratio of the H, ion, with allowance for the ro-vibrational
energy. If one assumes the equality of g(e™) and
—q(e™), of —q(Hy ) and q(Hy), and of g.(H; (v,0)) and
—ge(H (v,0)) [6], the H, to H, comparison is mainly
sensitive to m(e™)/m(p)—m(e~)/m(p). Although higher
precision can be obtained from vibrational spectroscopy
on ﬁ{, see below, an uncertainty of 3 x 107! for a
comparison of m(e)/m(p) between matter and antimat-
ter would already be competitive with the most precise
comparisons of the masses of the proton and antiproton
[8, 9] and of the electron and positron [5].

Ro-vibrational state and substate identification: Using
a double-resonance technique the CSG technique can be
applied more generally to determine the vibrational and
rotational state of a simple paramagnetic molecular ion
such as H, . In the case of even N, the Zeeman-hyperfine
energies of H, in the high magnetic field of a Penning
trap are given approximately by [40]

E(va;MSaMN;B) = E(U,N) _ge(vaN)BﬂBMS
+§T(U7N)BﬂBMN +/7(U7N)MSMN7 (2)

where ge(v, N) is the bound-positron g-factor, g,(v, N) is
the rotational g-factor, and (v, N) is the spin-rotation
coupling constant, and B is the magnetic field. Hence,
positron spin-flip transitions, which, in high B have the
selection rule AMg = £1, AMy = 0, have frequencies
given by the energy difference

AE(v, N, My; B) = 3.(v, N)Bjig — 5(v, N)My.  (3)

Now, while the dependence of g.(v,N) on v and N
is small, (v, N) has an easily resolvable dependence.
For example, (for H, ) (v, N) has the calculated val-
ues 42.162, 41.294, 39.572 and 38.748 MHz, for (v, N)
= (0,2), (0,4), (1,2), and (1,4), respectively [57]. Hence,
v, N, and My can be identified by determining the mi-
crowave frequency at which the positron spin-flip occurs,
and comparing it with a theoretical value corresponding
to the magnetic field, which can be determined from a
measurement of cyclotron frequency. In most cases, suffi-
cient resolution to identify the state could be achieved by
inducing the spin-flips in the analysis trap, despite its in-
homogeneous magnetic field. If My = 0, or if it is other-
wise necessary to resolve ambiguities, additional informa-
tion is obtained by inducing radio-frequency (RF) rota-
tional hyperfine-Zeeman transitions with selection rules
AMpy = +1, AMg = 0. These would be detected by
looking for a change in frequency of a subsequent positron
spin-flip. Examples of positron spin-flip transitions and
a Zeeman-hyperfine transition are shown in Fig. 1.

-1/2

2 +2
| +1
+1/2 (13
-2

FIG. 1. Examples of positron spin-flip (Zeeman) transitions,
1, 3, and a rotational Zeeman-hyperfine transition, 2, in H,,
for the case of N = 2 in a magnetic field of 5 T (not to
scale). Using the Breit-Rabi formula [60] and Zeeman and
Hyperfine coefficients from [57, 69], for v = 0, transitions 1,
2 and 3 have calculated frequencies of 140 082.6, 56.150, 140
040.4 MHz, respectively; and, for v = 1, 140 085.2, 54.499
and 140 045.6 MHz. This illustrates how My and v, (and
also, by extension M; and N) can be identified by measuring
the positron spin-flip frequencies, with additional information
given by measuring Zeman-hyperfine transition frequencies.
For H3 the level structure is the same, but with the signs of
Ms and My reversed.

The case for odd N with I = 1 is more complex, with
three times as many substates. Nevertheless, the My
state can be identified through the modification to the
positron spin-flip frequency due to the nuclear spin hy-
perfine interaction, which adds several terms to the effec-
tive Hamiltonian, including a term b(v, N)MgM;, where
b(v, N) is the Fermi-contact hyperfine constant. Again,
further identification results by inducing nuclear spin-flip
transitions, with selection rules AM; = +1, AMg = 0,
AMpy = 0. To minimize the time required for state iden-
tification, the microwaves or RF could be applied as pi-
pulses, at pre-calculated frequencies corresponding to the
expected v,N, My, M; states and the magnetic field.

A complementary method for detecting vibrational
transitions, which is especially useful for N = 0 where
the positron spin-flip frequency is insensitive to v, is to
make use of the dependence of the cyclotron frequency on
the vibrational mass-energy of the H, . This increases by
1.45, 2.81, and 4.09 x 10~ '? for transitions between v= 0
and 1, 2, and 3, respectively. Although small, such shifts
in cyclotron frequency are detectable, in a time scale of
minutes to an hour, as shifts in a cyclotron frequency ra-
tio [58, 59]. This can be implemented by comparison of
the cyclotron frequencies of the H, and a D~ ion in the
same precision trap, and then no analysis trap is needed.
Alternatively, use can be made of the sensitivity of fs/ f.
to the H, mass as shown in Eqn. 1., and then another
ion is not needed.



Hyperfine-Zeeman transitions and first-order field in-
dependent hyperfine transitions: Following from the
above, see Fig.1, precision RF spectroscopy can be car-
ried out on the rotational hyperfine-Zeeman AMy =
+1 transitions (for even and odd N), and nuclear-spin
hyperfine-Zeeman transitions AM; = +1 (for odd N),
by making a try at inducing these transitions in the pre-
cision trap, and then moving the ion to the analysis trap
and measuring the positron spin-flip frequency to detect
if a change in My or My occurred. The magnetic field in
the precision trap can be calibrated by measuring the cy-
clotron frequency simultaneously, or, by alternating with
measurements of positron spin-flips. By taking suitable
combinations of transitions, the interactions of the ro-
tational and nuclear spin magnetic moments, with the
external field (Zeeman), and with the positron spin mag-
netic moment (Hyperfine), can be separated [40]. Hence,
comparisons of the magnetic moments of the antiproton
and proton can be made, as has been done for the bare
particles [10, 11, 54], but with the advantage of faster
detection of the nuclear spin-flips; and also of the HF'S,
which additionally tests for equality of the antiproton
and proton magnetization distributions. Further, for cer-
tain AM; = =41 transitions, there are magnetic fields
where the hyperfine-Zeeman transition frequencies are
first-order independent of magnetic field. By adjusting
the magnetic field to the appropriate values and using
Ramsey type excitation schemes [60], this can be ex-
ploited to obtain measurements with fractional uncer-
tainties less than 10713 [61]. This fractional precision is
competitive with the most precise measurements of hy-
drogen HFS using masers [62] and is more than three or-
ders of magnitide higher than has currently been achieved
using a cryogenic beam [23].

Ro-vibrational transitions: In the context of ro-
vibrational spectroscopy of H, in an RF trap for fun-
damental constants and optical clocks, detailed analyses
have been made of transition probabilities and system-
atic uncertainties for both 2E1 and E2 transitions, show-
ing uncertainties can be controlled to the level of 10~1¢
or below [63-70]. While, for the highest precision, the
possibility of trapping and sympathetically cooling an
ﬁ{ in an RF trap and performing quantum logic spec-
troscopy [71-73] should also be pursued, in the following
it is shown that measurements in a Penning trap with
uncertainties below 107!° are already feasible.

As a specific example, consider the transition (0,2) to
(1,2), with AMg =0, AMy =0, and | Mg+ My| = 5/2,
i.e., between the stretched states, driven as an E2 tran-
sition at 65.4 THz by an ultra-stable laser. Assume that
the H, ion is in a 5 T precision Penning trap, with
axial (f,), trap-modified cyclotron (f.:) and magnetron
frequencies (f,,) near 1 MHz, 35 MHz and 14 kHz, re-
spectively; and that the axial and cyclotron motions are
cooled using image currents to 20 mK, and the magnetron

motion is cooled by magnetron-to-axial coupling [32, 74]

to 0.3 mK. For transverse laser irradiation, the ion’s
motion is then in the Lamb-Dicke regime with complete
suppression of the first-order Doppler shift on the carrier
[75]. The second-order Doppler shift leads to a Boltz-
mann distribution line shape with e~ width of 60 mHz,
consistent with a fractional uncertainty of 10715, As-
suming a laser linewidth < 0.1 Hz, the transition can be
induced using a 1 s pi-pulse with intensity of ~ 6uW
mm ™2, with a fractional light shift of < 10717 [66]. The
Stark shift, which is mainly due to the cyclotron motion
and is proportional to the ion’s temperature [76], is a fac-
tor of 1073 smaller than the second-order Doppler shift.
The Zeeman shift is 1.4 x 105 Hz T~! [65, 69]. But, since
a magnetic field stability of better than 10~ hour~! and
calibration to better than 10~? can be routinely achieved
in precision Penning traps, the resulting line broadening
and uncertainty are < 1 mHz. Likewise, the quadrupole
shift, which is also independent of the ion’s temperature,
and which can be estimated to be ~ 1.0 Hz T~2 [65], can
be calibrated using knowledge of f.:, f. and f,, to bet-
ter than 107¢. Hence, besides laser frequency stability
and metrology, the major limitation to precision is the
second-order Doppler shift.

Hz_ production and initial state selection: While it
may be possible to synthesize H, in existing or devel-
oping antimatter apparatuses using the p+ H — fl{ + v
[77, 78] or H(1s) + H(n > 2) — Hy + et [79, 80
reactions, H, can be created more robustly through
H* +p — H, + e*, by merging single cold H* ions
with a cold p plasma. Although H* (pete™) has not yet
been produced, this is a necessary goal of the ongoing
GBAR antihydrogen gravity experiment [21], in which
H* will be made by double charge exchange between
p and positronium, using pulsed p and positron beams
[81]. The GBAR design goal is for one H* to be cre-
ated per AD cycle every 2 minutes [21]. Injected into a
P plasma with density of 10 cm™3 at T ~ 100 K, con-
ditions already achieved [27, 28], an H, production rate
of 1.4 x 1073 s7! can be estimated [82, 83]. However,
because of the 180 times larger cross-section of the com-
peting H* +p — H + H, reaction [84, 85], an H, will
be produced on average once per 180 H™ injections, with
mixing times of ~10 s.

H* +p— H; +et is exothermic by 1.896 eV. Hence,
in a cool antiproton plasma the fl{ will be produced
with v < 8 and N < 27. By transferring to a higher field
(10T) Penning trap, and placing the ion in a large radius
(Z 4 mm) cyclotron orbit, the vibrational motion can be
Stark quenched to v = 0 through the induced electric
dipole moment [67], in a time scale ~ 1 week. Identifi-
cation of v, N, My, and M proceeds by transferring to
the analysis trap and determining the frequency of the
positron spin-flip transition, with manipulation of My
and M7 by hyperfine-Zeeman transitions. Reduction of
N (and also v, if necessary) can then be effected using
successive ro-vibrational transitions (v, N) to (v/, N —2),



again with state monitoring via the CSG technique in
the analysis trap. The processes of making, state initial-
ization, and measuring on a single H, may take many
weeks. However, such time scales are already common

for experiments on single ions in precision Penning traps
[11, 54, 58].

Conclusion: Precision measurements on H, can
provide tests of the CPT theorem that are more
sensitive than those achievable with antihydrogen or
the bare particles, particularly with regards to the
positron(electron)/antiproton(proton) mass ratio, and

the positron(electron) antiproton(proton) hyperfine in-
teraction. Practical schemes have been outlined for their
implementation based on single-ion Penning trap tech-
niques, including the continuous Stern-Gerlach effect and
measurement of cyclotron frequency for state identifica-
tion. The H+p — H, +e™ reaction has been identified
as a practical path for H, production.
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