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Abstract

We theoretically investigate strongly-enhanced vibrational-mode-selective two-step excitation by

ultrabroadband frequency-entangled photons. A diatomic molecule having three sets of vibronic

states is used to evaluate the excitation efficiency of the two-step excitation. We show that the

photon entanglement has little influence on the populations of intermediate vibrational modes of

intermediate states but selectively increases the population of a single vibrational mode of excited

states, resonant with the total energy of the entangled photons. For an ultrashort pulse close to a

monocycle with high degree of entanglement, the population of the vibrational mode is enhanced

2500 times as large as that by uncorrelated photons and the selectivity nearly reaches unity. Our

results indicate that the two-step excitation with ultrabroadband frequency-entangled photons can

achieve highly-selective and strongly-enhanced excitation of a single vibrational mode.
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I. INTRODUCTION

Two photon process has a wide application to various leading-edge techniques, such as

two-photon microscopy [1], three-dimensional optical storage memory [2], and coherent con-

trol of molecular processes [3]. Generally, two-photon process is divided into two types,

namely, two-step excitation (TSE), in which each of two photons is absorbed sequentially

by intermediate and excited states, and two-photon absorption (TPA), in which two pho-

tons are simultaneously absorbed by excited states via virtual excitation of intermediate

states. In particular, TPA driven by entangled photons has been extensively investigated

in recent years since the non-classical linear intensity dependence of excitation was theo-

retically predicted [4, 5] and experimentally demonstrated [6] in the 1990s. Applications of

entangled photons to TPA are now extending to various next-generation technologies such

as quantum optical spectroscopy [7–13], quantum coherent tomography [14, 15], molecular

coherent control by non-classical light [16, 17], and quantum plasmonics [18]. Though an

efficient TPA requires the simultaneous absorption of two photons, the entangled photons

automatically satisfy this condition because they have an inherent coincidence based on

the quantum correlation which does not exist in the classical light. Consequently, though

seemingly contradictory, TPA by low-intensity light with high two-photon flux density can

be realized with entangled photons.

In order to maximally exploit the TPA with entangled photons, ultrabroadband

frequency-entangled photons are desired. Fortunately, by using the chirped quasi-phase-

matching technique [19], we can experimentally obtain entangled photons with a frequency

range of ∼ 160 THz [20]. However, at the same time, the wider bandwidth of entangled

photons raises an emerging problem such that intermediate states are really excited as a con-

sequence of the broad frequency band and hence TSE via the real excitation of intermediate

states occurs. For the applications based on TPA, such as quantum coherent tomography

and virtual state spectroscopy, this situation might be unfavorable because the real excita-

tion of intermediate states might decrease the quantum efficiency of the target molecular

process induced in the excited states.

Generally, the population obtained from TSE is often much larger than that obtained from

TPA. Therefore, TSE is preferable for the molecular processes such as photoionization and

photodissociation, because they require only high excitation of high-energy levels. However,
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conventional studies of the two-photon excitation using entangled photons focus almost

only on TPA and few studies on TSE by entangled photons have been reported. This is

because the inherent coincidence of the entangled photons is perfectly suited to TPA and

the coincidence of photons is seemingly unsuitable for TSE because in TSE each of the

two photons is sequentially absorbed. However, in our previous work [21], we have shown

that the entangled photons can enhance the efficiency of not only the TPA but also the

TSE. Although the analysis is restricted to a simple three-level system, the population of

an excited state is enhanced a thousand times as large as that by uncorrelated photons. If

the molecular process via the real excitation of molecular vibrational states can be strongly

enhanced by using entangled photons, the application range of the entangled photons will

be much broader.

In this study, we analyze in detail the TSE for a molecular system by using ultrabroad-

band frequency-entangled photons in terms of how photon entanglement can enhance the

population of molecular vibronic states. By taking a diatomic molecule Na2 as an example,

we show that photon entanglement has little influence on the populations of intermediate

vibrational modes but highly selectively increases the population of a single vibrational

mode of excited states, which is resonant with the total energy of the entangled photons.

For an ultrashort pulse close to a monocycle with high degree of entanglement, the pop-

ulation of the vibrational mode is enhanced 2500 times as large as that by uncorrelated

photons and the selectivity nearly reaches unity. These results indicate that the highly-

efficient vibrational-mode-selective excitation can be realized by the TSE with ultrabroad-

band frequency-entangled photons.

The rest of this paper is organized as follows. In Sec. II, a theoretical model of the

one-dimensional input-output photon field interacting with Morse oscillators is introduced

and the formulation of the entangled photons is given. In Sec. III, we analyze in detail the

quantum dynamics of TSE driven by the entangled photons and the dependence of TSE

efficiency on the spectral width of the entangled photons. In Sec. IV, we summarize and

discuss our results.
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II. MODEL

A. One-dimensional input-output photon field interacting Morse oscillators

As a theoretical model, we consider a one-dimensional input-output photon field inter-

acting with a molecular system, as depicted in Fig. 1. The incident entangled photons

propagate along the r-axis from r < 0 and interact with the molecular system positioned at

r = 0. The molecular system consists of three sets of vibronic states with vibrational modes

v: the ground state |g〉, the intermediate states {|mv〉}v, and the excited states {|ev′〉}v′,
where for the ground state we consider only the lowest vibrational mode v = 0, assuming

a supersonic molecular beam, and omit v. The eigenenergies of these vibronic states are

denoted by ωg, ωmv
, and ωe

v′
. We consider only the transitions between |g〉 and {|mv〉}v

and between {|mv〉} and {|ev′〉}v′ , as denoted by the arrows in Fig. 1, and the direct transi-

tion from |g〉 to {|ev′〉}v′ by one photon and the vibrational relaxations within {|mv〉}v and

{|ev′〉}v′ are ignored on the assumption of a ultracold molecule, for simplicity.

For the molecular system, we adopt a diatomic molecule and approximate the adiabatic

potential curve by the Morse potential because we can analytically obtain the vibrational

eigenfunctions [22]. The Morse potential for the vibronic states of ℓ is defined as

Vℓ(x) = Dℓ({1− exp[−(x− xℓ0)/aℓ]}2 − 1), (1)

where ℓ implies g, m, or e. x is the displacement of internuclear separation from the equi-

librium position of x0. D and a are the depth and range of the potential, respectively. The

eigenenergies in the potential, ωg, ωmv
, and ωe

v′
, are given by

ωℓv = ǫℓ + ωℓ(v + 1/2)− ωℓχ(v + 1/2)2 (2)

with ωℓ = (2Dℓ/a
2
ℓµ)

1/2 and χ = (8a2ℓDℓµ)
−1/2, where ǫ denotes the minimum of the potential

energy, χ characterizes the anharmonicity of the Morse potential, and µ is the reduced

mass of two nuclei. The corresponding vibrational eigenfunctions are given by ξv(y) =

Nj,v exp(−y/2)yj/2−vLj−2v
v (y) with y = (j + 1) exp [−(x− x0)/a] and j = 2a(2µD)1/2 −

1, where the index of ℓ is omitted to avoid a complicated description. L represents the

generalized Laguerre polynomials and N is the normalized coefficient given by Nj,v = [v!(j−
2v)/aΓ(j − v + 1)]1/2, where Γ is the gamma function.
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In the actual calculations, a Na2 molecule is used by reference to Refs. [23, 24] because the

multiphoton ionization has been analyzed in detail and the Morse parameters are already

given. In this study, the Morse parameters used are as follows: ǫg = 0, Dg = 0.7466 eV,

ag = 2.2951aB, and xg0 = 5.82aB for |g〉 (11Σ+
g ); ǫm = 1.8201 eV, Dm= 1.0303 eV, am =

3.6591aB, and x
m
0 = 6.87aB for |m〉 (11Σ+

u ); ǫe = 3.7918 eV, De= 0.5718 eV, ae = 3.1226aB,

and xe0 = 7.08aB for |e〉 (21Πg); where aB is the Bohr radius. µ = 19800 is used in the units

of electron mass. The calculation results of ωg, ωmv
, and ωe

v′
for the Na2 molecule are shown

in Fig. 1, where ωmv
and ωm

v′
are described up to v = 140 and v′ = 89, respectively.

For the optical transition, we adopt the Franck-Condon approximation. When the time

scale of the light-molecule interaction is shorter than that of molecular vibration, the optical

transition rate between the two vibronic states can be approximated by the product of the

electric-dipole transition rate and the Franck-Condon factor. The Franck-Condon factor is

given by

Fv,ν =

∣

∣

∣

∣

∫

dx ξlν(x)ξ
ℓ
v(x)

∣

∣

∣

∣

2

. (3)

F0,v ≡ Fv for the transition between |g〉 and {|mv〉}v and Fv,v′ for the transition between

{|mv〉}v and {|ev′〉}v′ are shown in Figs. 2(a) and (b), respectively. For the intermediate

states {|mv〉}v, the vibrational states from v = 0 to v = 140 are bound states. However,

the bound states up to v = 20 mainly contribute to photon absorption from |g〉. For the

excited states, the vibrational states from v = 0 to v = 89 are bound states. Similarly to the

intermediate states, the transition between {|mv〉} and {|ev′〉} mainly occurs in a specific

range of v ≈ v′. Thus, though many vibrational modes exist, only a part of the total modes

contributes to the actual optical transitions.

B. Hamiltonian and quantum dynamics

In the calculation of quantum dynamics, we omit the degrees of freedom of polarization

of light by assuming linearly-polarized light for simplicity. Setting natural units of ~ = c = 1

and using the dispersion relation of ω = ck = k, the Hamiltonian of the whole system can
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be expressed as

Ĥ =

∫

dk kâ†(k)â(k) +
∑

v′

ωe
v′
|ev′〉〈ev′ |+

∑

v

ωmv
|mv〉〈mv|

+
∑

v

∫

dk(γmv
Fv/π)

1/2
[

|mv〉〈g|â(k) + â†(k)|g〉〈mv|
]

+
∑

v,v′

∫

dk(γe
v,v′
Fv,v′/π)

1/2
[

|ev′〉〈mv|â(k) + â†(k)|mv〉〈ev′ |
]

, (4)

where â(k)
[

â†(k)
]

is the annihilation (creation) operator of a photon with energy k. γmv
is

the relaxation rate between |g〉 and |mv〉 and γe
v,v′

is the relaxation rate between |mv〉 and
|ev,v′〉. In this study, we set γ = γmv

= γe
v,v′

= 6 MHz, for simplicity, and the Franck-Condon

factor can be simply introduced by multiplying γ.

The dynamics of the whole system can be calculated from the Schrödinger equation,

d

dt
|Ψ(t)〉 = −iĤ|Ψ(t)〉 (5)

with a superposition state of |Ψ〉, given by

|Ψ〉 = 2−1/2

∫

dk

∫

dk′ψ2p(k, k
′)â†(k)â†(k′)|0〉|g〉+

∑

v

∫

dkψm
1p(k, v)â

†(k)|0〉|mv〉 (6)

+
∑

v′

ψe
0(v

′)|0〉|ev′〉,

where ψ2p(k, k
′) is the two-photon joint amplitude of the incident pulse at |g〉, ψm

1p is the

one-photon state at |m〉, and ψe
0 is the zero-photon state at |e〉. The argument t of ψ is

omitted for simplicity. The initial state of the whole system |Ψ(0)〉 is given by the first term

in Eq. (6), i.e., ψm
1p(k) = ψe

0 = 0, and the whole wave function is normalized to be 〈Ψ|Ψ〉 = 1.

From Eqs. (4), (5), and (6), the Schrödinger equations for ψ can read

d

dt
ψ2p(k, k

′) = −i (k + k′)ψ2p(k, k
′)− i

∑

v

2−1/2γv
{

ψm
1p(k, v) + ψm

1p(k
′, v)

}

, (7)

d

dt
ψm
1p(k, v) = −i (k + ωmv

)ψm
1p(k, v)− i21/2γv

∫

dk′ψ2p(k, k
′)− i

∑

v′

γv,v′ψ
e
0(v

′), (8)

d

dt
ψe
0(v

′) = −iωe
v′
ψe
0(v

′)− i
∑

v

γv,v′

∫

dkψm
1p(k, v), (9)

where γv = (γmv
Fv/π)

1/2 and γv,v′ = (γeFv,v′/π)
1/2. The populations of vibronic states are

calculated e.g. by 〈e′v〉 = |〈0|〈e′v|Ψ(t)〉|2 = |ψe
0|2.
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C. Frequency-entangled photons with energy-anticorrelation

In order to describe the two-photon joint amplitude ψ2p(k, k
′), we first define a spatiotem-

poral one-photon wavepacket ϕ(r), choosing a Gaussian form for simplicity. Similarly in Sec.

II B, we use natural units of ~ = c = 1. According to Ref. [16], ϕ(r) is given by

ϕ(r) ∝ exp{−(r − r0)
2/σ2

r + ik0(r − r0)}, (10)

where r0 is the spatial center position of wavepacket at t = 0, σr is the coherent length of the

wavepacket, and k0 is the central energy of the photon pulse. The one-photon wavepacket in

the k representation, ϕ(k), can be obtained by Fourier transforming ϕ(r) to the frequency

domain, given by

ϕ(k)e−ikr0 =
1√
2π

∫ ∞

−∞

drϕ(r) exp(−ikr) (11)

with ϕ(k) ∝ exp{−(k − k0)
2/4σ2} where σ = σ−1

r is the spectral width of the wavepacket.

Using the one-photon wavepacket, we can now describe the two-photon joint amplitude

ψ2p(k, k
′). For comparison, we consider two photon pairs, namely, uncorrelated photon pair

and entangled photon pair with energy anticorrelation. Since uncorrelated photon pair has

no correlation between the two photons, the two-photon joint amplitude can be described

simply by the product of one-photon wavepackets, given by

ψ2p(k, k
′) = ϕ(k)ϕ(k′)e−ikr0e−ik′r0. (12)

On the other hand, for the entangled photon pair with energy anticorrelation, ψ2p(k, k
′) can

be described as

ψ2p(k, k
′) = ϕ(k)δ(k + k′ − 2k0)e

−ikr0e−ik′r0. (13)

δ(k + k′ − 2k0) ensures the quantum-mechanical energy anticorrelation of the two photons:

one photon with an energy k = k0 −∆ is accompanied by the other photon with an energy

k′ = k0+∆, conserving the total energy of 2k0. By Fourier transforming to the time domain,

this property implies that the photon pair inherently has a time coincidence. Experimentally,

this photon state can be obtained, e.g. from the spontaneous parametric down-conversion.

Generally, the energy anticorrelation of experimentally-created entangled photons, e.g.

from the spontaneous parametric down-conversion, is not the Dirac δ function as in Eq. (13)

but has a linewidth due to spontaneous emission. In this study, we replace the δ function

7



by a Gaussian form, defined as φ(k) = (σ2
sπ)

−1/4 exp(−k2/4σ2
s), so that φ(k) corresponds to

the δ function in the limit of σs → 0. For the parametric down-conversion, σs is determined

by the pulse width of pump light. Though σs ≈ 100 kHz can be experimentally achieved

by using a narrow-spectrum cw laser, we use σs =500 GHz or 100 GHz in the following

calculation to reduce the computational task.

III. RESULTS

In this section, we analyze the TSE by frequency-entangled photons in terms of how

photon entanglement can enhance the population of molecular vibronic states and how

the excitation efficiency depends on the spectral width σ. In the following calculation, we

numerically solve the Eqs. (7), (8), and (9) by discretizing the photon fields. Concretely,

continuous photon fields are discretized by converting from (δk)−1
∫

dk and (δk)1/2â(k) to
∑

k and âk, respectively, where δk = 2π/R is the mode spacing and R is the length of

calculation region. We use δk = 100 GHz to reduce computational task and the total

number of photon modes is then 49014001 (7001 modes per photon), which corresponds to

3.5 times of the full width of 2σ = 200 THz. The central energy of entangled photons is set to

2k0 = ωv′=18 (≈ 4.0024 eV). For vibrational modes, all the bound states are considered. The

discretized Schrödinger equations are solved by using the 4th-order Runge-Kutta method.

We first calculate the dynamics of intermediate states in TSE. For comparison, the pop-

ulations for uncorrelated and entangled photons are shown in Fig. 3, where the vibrational

modes up to v = 15 are plotted. The parameters for Na2 are the same as those in Fig. 2

and for incident photons σ = 10 THz and σs = 500 GHz are used. The horizontal axis rσ is

the spatial center position of the incident photons normalized by the pulse width σr = σ−1.

When the incident photons reach r = 0, the molecular system absorbs one photon and the

intermediate states are excited. For both uncorrelated and entangled photons, 〈mv〉 does

not decrease to zero after the incident photons have passed by the molecule and remains

almost constant. This is a well-known TSE process where the intermediate states are re-

ally excited. However, there is a little difference between the uncorrelated and entangled

photons in absorbing photon; the photon in the entangled photons is slowly and resonantly

absorbed by the molecule, whereas for uncorrelated photons the oscillation of population,

commonly found in near-resonant absorption, appears. Interestingly, though there is thus
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a little difference in absorbing photon, the resultant populations of 〈mv〉 are almost the

same for uncorrelated and entangled photons. This implies that the quantum entanglement

between two photons have little influence on the population in the one-photon absorption

from |g〉 to {|mv〉}v.
Figure 4 shows the population dynamics of excited states 〈ev′〉 in the TSE. The calcu-

lation parameters are the same as those in Fig. 3. For the uncorrelated photons (Fig. 4a),

many vibrational modes are simultaneously excited owing to short pulse excitation with

a spectrally broad bandwidth. The maximum population is achieved for v′ = 12 in spite

of the resonant excitation of the vibrational mode of v′ = 18. This is because that the

Franck-Condon factors Fv,v′=18 are very small for v < 12 and Fv=10,v′=12 becomes large as

can be seen in Fig. 2. For the entangled photons (Fig. 4b), however, the resonant excitation

of the vibrational mode of v′ = 18 is highly selectively excited and strongly enhanced. For

the present parameters, 〈ev′=18〉 is enhanced approximately 60 times as large as that by

uncorrelated photons. If we define a mode selectivity as S = 〈ev′=18〉/
∑

v′〈ev′〉, S reaches

up to S ≈ 0.9999 for entangled photons, whereas S = 0.0396 for uncorrelated photons. In

general, selective excitation of molecular vibronic states requires detailed Franck-Condon

analysis and pulse shaping techniques. Using entangled photons, however, high selectivity

and enhancement of excitation efficiency can thus be easily and concurrently achieved.

According to the previous studies for an atomic system [25, 26], the enhancement by

entangled photons can be further increased by both broadening the spectral width σ and

by narrowing σs, corresponding to strengthening the quantum correlation between the two

photons. Figure 5 shows the dependence of the enhancement ζ on σ for the range from 5 to

100 THz, where ζ is defined by the ratio of the population obtained from entangled photons

to that obtained from uncorrelated photons. The parameters are the same as those in Figs. 3

and 4 except for σs = 100 GHz. The symbol � denotes ζ for the vibrational mode of v′ = 18.

Similarly to the result for a simple three-level system in Ref. [21], large enhancement can

be achieved; ζ exhibits a linear dependence with σ and reaches 2500 at σ = 100 THz for

the present parameters. The symbol ◦ denotes ζ for the total population of the vibrational

modes in the excited states. In contrast to the case of v′ = 18, ζ slightly decreases in the

range from 5 to 20 THz, and then linearly increases from 20 THz. The value of ζ for the

total population is considerably smaller than that for v′ = 18: for the present parameters ζ

= 30 at σ = 100 THz. Though not shown, the selectivity S for entangled photons exceeds
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0.9995 for all the range from 5 to 100 THz. Thus highly-efficient vibrational-mode-selective

TSE can be realized with ultrabroadband frequency-entangled photons.

We refer to why the σ-dependence of ζ for the total population suddenly changes at

σ = 20 THz. This is because that the vibrational number of v yielding the maximum 〈mv〉
changes with the increase in σ. Since the total energy of entangled photons is 2k0 ≈ 4.0024

eV, the central energy of one photon is k0 ≈ 2.0012 eV, which is nearly resonant to ωv=13.

As can be seen in Fig. 2(a), the value of Fv=13 is not so large and hence the maximum

population of intermediate states is obtained at smaller v yielding larger Fv for σ < 20

THz. For example, for σ = 10 THz, the maximum 〈mv〉 is obtained at v = 10 as shown in

Fig. 3. For σ ≥ 20 THz, however, the spectral width of photons covers the peak of Fv and

hence 〈mv〉 always becomes maximum at v = 7. Consequently, ζ of the total population

monotonically increases for σ ≥ 20 THz. Thus, σ-dependence of ζ slightly changes near the

peak value of the Franck-Condon factor.

Finally, we analyze how ζ depends on σs. Taking a parametric down-conversion as an

example, σs can be changed by varying spectral width of pump light. In this study, however,

we connect σs to the degree of entanglement, for generalization. The degree of entanglement

can be evaluated by using the entropy of entanglement, namely, relative entropy of entangle-

ment [27] or entanglement of formation [28]. Generally, relative entropy of entanglement is

used for mixed states not considered in this study, and therefore we adopt the entanglement

of formation. The entanglement of formation, E, is defined as

E = −Tr[ρ′ logd ρ
′] with ρ′ = Tr′[ρ] (14)

where ρ = |ψ〉〈ψ|photons is the density operator of input entangled photons, ρ′ indicates the

density operator partially-traced for one photon, and d is the dimension of ρ. Figure 6(a)

shows the dependence of E on σs for σ =50 THz. E exhibits drastic increase for smaller σs,

and at σs = 100 GHz, corresponding to Fig. 5, E ≈0.83 is achieved. The dependences of ζ

for v′ = 18 and S on E are shown in Fig. 6(b), where the data only for E = 0 is obtained

from uncorrelated photons and vibrational modes of intermediate and excited states are

cut off at v = 30 and v′ = 30 to shorten computation time. Both ζ and S increase very

gradually for E . 0.5, in which ζ is at most 10 and S is below 0.1. On the other hand, for

E & 0.5, both E and S drastically increase, and in particular ζ exceeds 1000 at E ≈ 0.83

and S becomes nearly unity for E & 0.77. Thus, strong enhancement and high selectivity
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are achieved for high E, and conversely this indicates that we cannot achieve large ζ and

high S at low E even for ultra broadband entangled photons.

IV. SUMMARY AND DISCUSSION

In summary, we have analyzed the enhanced vibrational-mode-selective TSE using the

ultrabroadband frequency-entangled photons. By taking a cold diatomic molecule Na2 as an

example, we have shown that photon entanglement has little influence on the populations

of vibrational modes of intermediate states but highly selectively increases the population

of a single vibrational mode of excited states, which is resonant with the total energy of

the entangled photons. The TSE excitation efficiency can be enhanced 2500 times by the

ultrabroadband frequency-entangled photons with spectral width of 2σ = 200 THz, whereas

the enhancement of the total population of excited states is at most 30 times. The selectivity

S of vibrational mode selection by the entangled photons nearly reaches unity for all the

range from σ = 5 to 100 THz. The strong enhancement and high selectivity occur when high

E is achieved. These results thus indicate that highly-efficient vibrational-mode-selective

excitation can be realized by using the ultrabroadband frequency-entangled photons with

high E.

From the results of this study, the enhancement of TSE by entangled photons is caused

by the energy anticorrelation in the frequency domain rather than the coincidence of two

photons in the time domain required in TPA. This fact is quite powerful for the application

to measurement methods, such as pump-probe method, Raman process, and frequency-

comb technique, because we can introduce and control the degree of freedom of time delay

(or phase) between the two photons constituting entangled photons. Combining these con-

ventional methods and vibrational-mode-selective excitation by ultrabroadband frequency-

entangled photons, new approaches for measuring molecular structure and wavefunction

might be promising.

Throughout this study, we have ignored the effects of vibrational relaxation on the TSE

process on the assumption of a cold molecule. If we consider the application of entangled

photons to molecular processes in real situations, we must consider the effects of vibra-

tional relaxation (phase and thermal relaxations). A straightforward way of including the

relaxation effects is to calculate the dynamics using quantum master equation. However, to
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accurately calculate the broadband frequency-entangled photons, an enormous number of

photon modes are required. Even in this study, we have used 49014001 modes for the entan-

gled photons, and hence the extension to the quantum master equation will be hard from

the viewpoint of computational task. The analysis using stochastic Schrödinger equation

might be useful because we can directly extend the method presented in this study.

Finally, we refer to the effects of emission rate γ. For low-intensity excitation, the popu-

lation is primarily determined by γ of the target energy level because induced absorption of

photons is negligibly small. Therefore, if we want to further increase the value of the popu-

lation of vibrational modes, we have to choose or design a molecule with large γ. Although

we can now utilize a high-intensity source of entangled photons, highly intense light might

lead to the deterioration and structural change of target molecular processes, and therefore

we have to choose a specific material with γ. One possible way of avoiding this restriction

is to utilize the nanoantenna effect as suggested in Ref. [18] and the cavity QED effects for

molecules as in Ref. [29, 30]. The former technique is summarized as indirect enhancement

of the absorption cross-section of molecules using the antenna effect of nanoparticles and the

latter is summarized as direct enhancement of γ of molecules through cavity QED effects.

These techniques can be directly and simply applied to the TSE by entangled photons. We

hope that our results in this study facilitate the applications of entangled photons to various

fields.
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FIG. 1: Schematic of a one-dimensional photon field interacting with Morse oscillators. The

eigenenergies ωmv
and ωe

v′
of vibronic modes are calculated up to v = 140 and v′ = 89, respectively.
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FIG. 2: (a) Fv as a function of v. (b) Contour plot of Fv,v′ as a function of v and v′.
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FIG. 3: The dynamics of 〈m〉 as a function of rσ: (a) uncorrelated photons and (b) entangled

photons with σ = 10 THz.

FIG. 4: The dynamics of 〈e〉 as a function of rσ: (a) uncorrelated photons and (b) entangled

photons with σ = 10 THz.
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FIG. 5: ζ as a function of σ. The square � is for the vibrational mode of v′ = 18 and the circle

◦ is for the total population of the excited state 〈e〉. The solid and dashed lines are to guide the

reader’s eye.

s
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FIG. 6: (a) E as a function of σs. (b) ζ and S as a function of E. The solid lines are to guide the

reader’s eye.
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