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Abstract 

Here we create an effective electric field force for photon in a synthetic frequency lattice to control 

the spectrum of light. The frequency lattice is created based on an optical waveguide modulator in 

which the dynamic index modulation can induce photonic transitions between adjacent lattice sites. 

We show that the wave vector mismatch during photonic transitions and periodic distribution of the 

modulation phase can be mapped into a linear-varying and a periodically-driven gauge potential, 

which gives rise to a constant and a harmonic oscillating force, respectively. Under different 

combinations of the constant and oscillating forces, we can realize the effects of frequency Bloch 

oscillations, anharmonic Bloch oscillations, Super-Bloch oscillations and directional frequency shift. 

With an appropriate choice of the magnitude of the oscillating force, we also achieve dynamic 

localization in the frequency domain. The realization of effective force provides a new mechanism to 

control the spectrum of light, which may find applications in frequency perfect imaging, efficient 

shifting and precise transduction. 
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I. INTRODUCTION 

Photon is a neutral particle that does not couple to an external applied electric or magnetic field. 

Nevertheless, there has been significant recent works seeking to synthesize an effective electric and 

magnetic field that couple to photons [1-12]. In particular, an effective electric field for photons in 

real space can be achieved either by introducing photonic scalar potential in gradient-index or curved 

waveguide arrays [8-11], or through photonic gauge potential by controlling the modulation phases 

in dynamically modulated systems [12]. Moreover, there are also recent efforts to create effective 

electric field in the synthetic frequency dimension, by considering either a single or an array of 

micro-ring resonators undergoing dynamic modulations [13-15]. In these dynamically modulated 

micro-ring resonators, the effective force in frequency dimension is induced by the frequency 

detuning between the modulation frequency and the frequency spacing of adjacent resonant modes. 

This effective force can lead to Bloch oscillations in the frequency domain [14, 16-19], which 

provides a new capability to control the spectrum of light. However, in practice, the scheme in [14, 

16] requires ring resonator structure with high quality factors in order to ensure that frequency 

conversion can occur in the duration of cavity lifetime. 

In this work, we propose an alternative mechanism to achieve an effective electric field force in 

a synthetic frequency dimension by using a waveguide modulator structure. The structure consists of 

a phase modulator in a waveguide with a travelling wave modulation profile. The modulation can 

induce photonic transitions between different guided modes in the same photonic band, and thus 

creating a synthetic frequency dimension. We show that a constant force can arise, due to the 

mismatch between the modulation wave vector and the wave vector difference of adjacent modes 

going through a photonic transition. A harmonic oscillating force can also emerge as the modulation 

phase exhibits a periodic distribution in the propagation direction. With precise designs of the 

constant and oscillating force, we can realize the effects of frequency Bloch oscillations (BOs), 

anharmonic Bloch oscillations (ABOs) [20-22], Super-Bloch oscillations (SBOs) [23-27] and 

directional shift [28, 29]. By choosing specific magnitudes for the oscillating force, both frequency 

SBOs and directional shift can be completely suppressed, giving rise to the effect of frequency 

dynamic localization [9-12, 30, 31]. Compared to the temporal evolution of frequencies in ring 

resonators, the frequencies in the waveguide structure evolve in space rather than in time. So all the 
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effects could be more readily to observe since high-quality factor resonator is not required. Moreover, 

as the waveguide structure does not rely on the precisely designed resonances, the force here can be 

applied to arbitrarily input spectra, including both discrete and continuous ones. 

 

II. THE MAIN RESULTS 

A. Effective electric field force in synthetic frequency lattice 

We start by considering the synthetic frequency lattice created in an optical waveguide modulator, as 

shown in Fig. 1(a). Differing from traditional travelling-wave phase modulator with two uniform 

strip electrodes [32-34], the phase modulator here consists an electrode array, such that the spatial 

distribution of the index modulation phase can be arbitrarily controlled. The instantaneous refractive 

index is thus n(z, t) = n0 + Δn⋅cos[Ωt − qmz + φ(z)], where n0 is the background index, Δn, qm and φ(z) 

are the amplitude, wave vector and phase spatial distribution of the modulation profile, respectively. 

As shown schematically in Fig. 1(b), the modulation can create a discrete frequency lattice with a 

lattice constant Ω, giving rise to the photonic intraband transitions between adjacent guided modes 

with frequency ωn = ω0 + nΩ and wave vectors βn = β0 + nq (n = 0, ±1, ±2,…). Here the wave vector 

mismatch is denoted by Δq = q − qm. an(z) represents the amplitude of nth-order mode, which is 

governed by the coupled-mode equation (see appendix A) 

( )1
[ ( ) ] [ ( ]

1
)( ( ) ( ) ,) i z q z i z q zn

n ni a z a z a z
z

C e e+Δ ⋅ − +Δ
+

⋅
−

∂ +=
∂

φ φ                     (1) 

where C = Δnk0/2 denotes the coupling strength between adjacent modes and k0 is the vacuum wave 

number. It shows in Eq. (1) that there exists a nonreciprocal, z-dependent phase shift of φ(z) + Δq·z 

accompanying photonic transitions, which flips the sign as the transition direction is reversed. This 

nonreciprocal phase shift is a photonic analogue of Peierls phase [1-3, 35-40], which can be mapped 

into a time-varying gauge potential and is responsible for the effective force in the frequency lattice. 

Similar to spatial lattice, the lattice in frequency space as described by Eq. (1) can also support 

Bloch modes. The eigen Bloch mode in frequency lattice is an infinite width frequency comb an(z) = 

a0exp(inφ0)exp(ikzz), where a0 is the amplitude and kz is the collective propagation constant along z 

direction. φ0 = kω(0)Ω with kω(0) being the initial Bloch wave vector along the frequency dimension. 

Substituting an(z) into Eq. (1), we can obtain the z-dependent band structure for the frequency comb 
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        [ ( )] 2 cos[ ( ) ],zk k z C k z= − Ωω ω                               (2) 

with the z-dependent Bloch wave vector given by 

        
( )( ) (0) ,z q zk z k + Δ ⋅= −

Ωω ω
φ

                               (3) 

In the waveguide system, the propagation coordinate z acts as “time” t [41] with z = ct, where c is 

light speed in the waveguide. By choosing c = 1 for photons [42], the z-dependent Bloch momentum 

is thus equivalent to a time-dependent Bloch momentum kω(t)Ω = φ0 − φ(t) − Δq⋅t. Analogous to the 

situation where an electron experiences a momentum shift by interacting with an external applied 

vector potential [42, 43], here the shift of Bloch momentum indicates the presence of an effective 

gauge potential Aeff(t) = φ(t) + Δq⋅t applied in the frequency lattice. This time-varying gauge potential 

corresponds to an effective electric field force of Feff(t) = − ∂Aeff(t)/∂t = − Δq − ∂φ(t)/∂t [44, 45], or 

equivalently a z-dependent effective force 

                                   
( )( ) ,eff
zF z q

z
∂= −Δ −

∂
φ

                                  (4) 

The force consists of a constant and a z-dependent component, which are induced by the wave vector 

mismatch during photonic transitions and the spatial distribution of modulation phase, respectively. 

Due to the enormous degrees of freedom in choosing the format of the force, we can thus realize 

versatile transport dynamics in the frequency lattice. Specifically, with a periodic distribution for the 

modulation phase, the force can possess both dc and ac driving components. In the following, we 

will present several effects such as frequency BOs, ABOs, SBOs, directional shift and dynamic 

localization, which are realized under different combinations of the dc and ac driving forces. 

 

B. Periodically oscillatory motions in the frequency lattice 

One intriguing phenomenon in lattice structure exposed to external electric field is Bloch oscillation, 

which can be realized by applying a constant electric field force along the lattice structure. Here, we 

can realize frequency-space Bloch oscillations by applying only a constant force in the frequency 

lattice. This can be achieved by choosing a uniform phase distribution φ(z) = φ such that Fdc = − Δq. 

Consider a finite-width frequency comb input with an initial Bloch momentum φ0, the frequency- 
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space group velocity is periodic, which is given by vg,ω(z) = − ∂kz[kω(z)]/∂kω(z) = 2CΩsin(φ − φ0 + 

Δqz). The frequency shift is thus Δω(z) = ∫z 
0vg,ω(z')dz', with the center-of-mass trajectory described by 

                       0 0
2ω( ) [cos( ) cos( )],Cz qz

q
ΩΔ = − − Δ + −

Δ
φ φ φ φ                        (5) 

The envelope of the frequency comb experiences a cosine trajectory in the ω-z plane, manifesting the 

typical characterizations of Bloch oscillations. The corresponding oscillation period is ZB = 2π/|Δq|, 

which is inversely proportional to the magnitude of the applied force. The oscillation amplitude is 

2CΩ/|Δq|, indicating that the frequency shift is limited to |Δω|max = 4CΩ/|Δq| in the whole oscillation 

process. Moreover, the frequency shift direction can be controlled either by initial phase difference φ 

− φ0 or the direction of applied force through changing the sign of the mismatched wave vector. In 

particular, under the wave vector matching condition as Δq = 0, the effective force will vanish, and 

hence there is no longer any oscillation. 

It is straightforward to extend frequency BOs to other kinds of oscillatory motions through the 

superposition of constant forces. As a representative example, we consider the effect of frequency 

anharmonic Bloch oscillations (ABOs) [20-22], which can be realized by superimposing two 

commensurate constant forces in the frequency lattice. To achieve this goal, we adopt two 

commensurate sinusoidal modulation waves in the waveguide modulator 

0 11 cos( ) cos( , )) ( ,llm mtn z t n n nq z l t lq zΩ − + Ω −Δ+Δ += + φ φ               (6) 

where Ω, lΩ are the frequencies of the fundamental and l-th modulation waves, which correspond to 

the wave numbers of qm and lqm for the two modulation waves, respectively. Here l is an arbitrarily 

chosen integer. Δn1, Δnl, φ1, φl are the respective modulation amplitudes and initial phases. The two 

modulation waves can induce respectively the nearest-neighbour and l-th order long-rang couplings 

in the frequency lattice, contributing simultaneously to the frequency evolution (see appendix B) 

1
1 0 1 0 0 0

22ω( ) [cos( ) cos( )] [cos( ) cos( )],l
l l

CCz qz l l qz l
q q

ΩΩΔ = − − Δ + − + − − Δ + −
Δ Δ

φ φ φ φ φ φ φ φ    (7) 

where C1 = Δn1β0/2n0 and Cl = Δnlβ0/2n0. The period of frequency ABOs is the same with frequency 

BOs, which equals to ZB = 2π/|Δq|. It shows in Eq. (7) that the frequency ABOs can be regarded as 

the superposition of two independent frequency BOs driven by two commensurate constant forces of 

F1 = − Δq and Fl = − lΔq. The total frequency conversion direction is thus determined by the two 
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modulation phases and directions of the two forces. 

In parallel with the frequency-space BOs and ABOs, frequency-space Super-Bloch oscillations 

(SBOs) can also be achieved by superimposing a constant and a harmonic oscillating force in the 

frequency lattice. Consider only one modulation wave with the modulation phase exhibiting a cosine 

spatial distribution φ(z) = φ + Δφmcos(Qmz + φm), where φ, Δφm, Qm and φm are the background, 

amplitude, wave vector and initial phase of the modulation phase spatial distribution, respectively. 

The z-dependent effective force is thus Feff(z) = − Δq + QmΔφmsin(Qmz + φm). Since SBOs stem from 

the beat between BOs and the ac driving force [23-27], the mismatched wave vector Δq should be 

slightly detuned from the integer multiples of Qm, that is Δq = mQm + ΔQ. Here m is an integer and 

ΔQ is the detuned wave vector. The z-dependent group velocity in the frequency lattice is thus 

, 0( ) 2 sin[ ( ) cos( )],g m m m mv z C mQ Q z Q z= Ω − + + Δ + Δ +ω φ φ φ φ                (8) 

Usually for very slight wave vector detune ΔQ << Qm, the term “ΔQz” is slowly varying and can be 

considered as constant in an ac driving period of 2π/Qm. So the average periodic group velocity in an 

driving period reads (see appendix B) 

                , 0
πv ( ) 2 ( ) sin[ ( )],
2g m m mz C J Qz m= Ω Δ Δ + − + −ω φ φ φ φ                  (9) 

where Jm is the mth-order Bessel function. The average center trajectory of the frequency comb is 

0 0
2 ( ) π πω( ) cos[ ( )] cos[ ( )] ,

2 2
m m

m m
C Jz m Qz m

Q
Ω Δ ⎧ ⎫Δ = − + − − Δ + − + −⎨ ⎬Δ ⎩ ⎭

φ φ φ φ φ φ φ    (10) 

So the frequency comb also experiences a cosine trajectory in the ω-z plane. The period of frequency 

SBOs is ZSB = 2π/|ΔQ|, which is inversely proportional to the detuned wave vector ΔQ. Compared to 

BOs, the oscillation amplitude and period of SBOs are enlarged by Jm(Δφm)Δq/ΔQ and Δq/ΔQ times, 

respectively. Similarly, as the detuned wave vector vanishes with ΔQ = 0, the period of SBOs will 

become infinity, the oscillation breaks down, even though both the dc and ac forces still exist. 

 All the theoretical analysis above can be verified by numerical simulations of the frequency 

evolutions. The results are shown in Fig. 2 which are obtained by solving the coupled-mode equation 

of Eq. (1). In the simulations, we choose a slab waveguide with background dielectric constant εd = 

4.58 (n0 = 2.14) and thickness d = 0.5 μm. The modulation amplitude and frequency are Δε = 5 × 

10−3 and Ω/2π = 20 GHz, both of which are attainable with state-of-the art experimental techniques 
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[33, 46, 47]. The central input optical wavelength is chosen as the telecommunication wavelength λ0 

= 1.55 μm and the modulation wave wavenumber is qm = 2q. So the wave vector mismatch is |Δq| = 

|q − qm| = 0.93 mm−1, corresponding to a Bloch oscillation period ZB = 2π/|Δq| ~ 6.76 mm. Figure 2(a) 

shows the spectral evolutions of BOs for a finite-width frequency comb input an(0) = 

a0exp[−(nΩ/W)2]exp(inφ0), where W and φ0 are the width of the Gaussian envelope and initial Bloch 

momentum, respectively. By choosing W = 5Ω and φ − φ0 = π/2, the frequency comb exhibits a 

cosine trajectory in ω-z plane, which agrees perfectly with the theoretical prediction of Eq. (4) (also 

denoted by the red solid line, same below). Interestingly, under a single frequency input, as shown in 

Fig. 2(b), the spectrum evolution manifests a breathing pattern and exhibits “self-focusing” at integer 

multiples of Bloch period ZB. This can be interpreted in terms of Fourier analysis. A single frequency 

can be regarded as the superposition of all Bloch-mode frequency combs over the entire Brillouin 

zone. With all frequency combs sharing the same oscillation period, there will exist nodes at integer 

multiples of ZB, leading to the emergence of “frequency self-focusing”. 

Figures 2(c) and 2(d) show the dynamics of frequency ABOs under a frequency comb and a 

single frequency input, respectively. In the simulations, we choose l = 2 such that both the nearest- 

and next-nearest couplings are induced in the frequency lattice. The spectral evolutions of ABOs are 

thus the interference pattern of two sets of BOs. For a frequency comb input shown in Fig. 2(c), we 

choose W = 8Ω, equal coupling strengths C1 = C2 and same modulation phases φ1 − φ0 = φ2 − φ0 = π, 

the spectral evolution can thus trace out the superposition of two cosine trajectories. For a single 

frequency input, as shown in Fig. 2(d), the spectral evolution also exhibits a breathing pattern, but 

with a waist emerging at half oscillation period of ZB. Again, the spectrum also manifests the effect 

of “self-focusing” at integer multiples of ZB. Figures 2(e) and 2(d) show the dynamics of frequency 

SBOs under a frequency comb and a single frequency input, which manifest an enlarged cosine 

trajectory and breathing pattern, respectively. By choosing W = 50Ω, Δφm = π/2, φ − φ0 = φm − φ0 = 0 

and ΔQ = Δq/20, we have ZSB = 20ZB, the SBOs period is enlarged by 20 times compared to that of 

BOs. Similar to BOs, frequency SBOs can also exhibit “frequency self-focusing” at integer multiples 

of ZSB, which can be flexibly controlled by varying the detuned wave vector. Generally, any periodic 

oscillatory motions can realize frequency self-imaging for arbitrarily input spectra due to their 

periodic revival nature. In appendix C, we simulate the self-imaging processes for both discrete and 

continuous spectra, all of which agree well with the theoretical predictions. It should be mentioned 
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that the spectral imaging process is perfect without any resolution limitation since it relies on the 

periodically oscillatory motions. This is different from the spatial imaging process for which the 

resolution is basically constrained by the diffraction limit [48, 49]. As such, the frequency perfect 

imaging can find applications in signal reshaping and spectral reconstructions for both optical 

communication and signal processing. 

 

C. Directional transport and dynamic localization in the frequency lattice 

In contrast to the above periodically oscillatory motions of frequency BOs, ABOs and SBOs, 

directional transport is another typical form of motion in which the wave packet can extend across 

the whole lattice [28, 29]. To realize frequency directional transport, we can remove the dc force with 

Δq = 0 and apply only the ac force Fac(z) = QmΔφmsin(Qmz + φm). In one ac driving period of 2π/Qm, 

the input frequency comb exhibits a constant average group velocity 〈vg,ω〉 = 2CΩJ0(Δφm)sin(φ − φ0) 

in the frequency lattice, corresponding to a directional frequency shift (see appendix B) 

                             0 0ω( ) 2 ( ) sin( ) ,mz C J zφ φ φΔ = Ω Δ −                          (11) 

where J0 is zeroth-order Bessel function. As the ac force vanishes with Δφm = 0, we have Δω(z) = 

2CΩsin(φ − φ0)z, the spectral evolution will degrade into the force-free discrete diffraction of a Bloch 

mode in the waveguide array [33, 50-52]. So the effect of ac force is the renormalization of coupling 

coefficient, with C replaced by J0(Δφm)C. The corresponding frequency shift is also renormalized by 

the multiplicative factor of J0(Δφm). As the ac force Δφm is fixed, the direction of frequency shift can 

be continuously tuned by the phase difference φ − φ0, as shown in Fig. 3(a). Particularly for φ − φ0 = 

0 or π shown in Fig. 3(b), the spectral shift will vanish. While for φ − φ0 = ± π/2 shown in Figs. 3(c) 

and 3(d), the frequency comb experiences maximum blue and red shifts. For a single frequency input, 

as shown in Fig. 3(d), the frequency manifests a linear diffraction with a cone-like pattern. Since a 

single frequency input represents the excitation of all Bloch modes in the entire Brillouin zone, all 

directions of frequency diffraction will emerge. The boundary of the cone-like pattern is determined 

by the maximum red and blue shifts for frequency combs with φ − φ0 = ± π/2. Specifically, the 

cone-like pattern can be equivalently described by the average amplitude spectrum 

[ ]0 0( ) 2 ( ) ,n n ma z a J CJ z〈 〉 = Δφ                           (12) 

The original and equivalent average amplitude spectra evolutions for a single frequency input are 
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shown in Figs. 3(e) and 3(f), which can agree well with each other. Particularly for a vanished ac 

force Δφm = 0, we have |〈an(z)〉| = a0|Jn(2Cz)|, the frequency evolution will also degrade into the 

force-free discrete diffraction pattern for a single site excitation in the waveguide arrays [33, 50-52]. 

In particular, both frequency SBOs and directional shift can be completely suppressed with an 

appropriate choice of the magnitude of the ac force. For frequency directional shift shown in Fig. 4, 

the maximum frequency shift in an ac driving period follows the 0th-order Bessel function of Δφm. 

As Δφm is chosen as the zeroes of J0 function, as indicated in Eq. (11), the spectral shift for each 

frequency comb vanishes, giving rise to the effect of frequency dynamic localization. In inserted Fig. 

4(a), we input a single frequency and choose Δφm = 2.40483 (first zero of J0), the frequency 

manifests complete suppression of diffraction in the propagation process. For frequency SBOs as 

denoted in Eq. (10), when Δφm is chosen as the zeroes of mth-order Bessel function, the oscillation 

amplitude of SBOs will also become zero. The maximum frequency shift of SBOs for different Δφm 

is shown by the blue curve in Fig. 4 where we choose m = 1. In the inserted Fig. 4(b), we choose the 

first zero of J1 with Δφm = 3.83171 and input a single frequency, the oscillation is completely 

suppressed, which can also lead to the effect of frequency dynamic localization. 

 

III. CONCLUSIONS 

In summary, we realize an effective electric field force for photon in a frequency lattice created with 

a periodically-driven waveguide modulator. The force contains a constant and a harmonic oscillating 

component, with which we realize the effects of frequency BOs, ABOs, SBOs, directional shifting, 

and dynamic localization. All the effects can provide new capabilities to precisely and efficiently 

control the spectrum of light. Frequency BOs, ABOs, and SBOs can be used in frequency perfect 

imaging for arbitrarily input spectra while frequency directional shift and dynamic localization may 

find applications in precise spectral shifting and transduction. Finally, due to the universality of 

synthetic electric field, all the effects demonstrated here can be readily generalized to other classical 

wave systems, enabling the precise spectral control for acoustic, mechanical and matter waves. 
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APPENDIX A: COUPLED-MODE EQUATION IN THE FREQUENCY LATTICE 

In appendix A, we derive the coupled-mode equation in the frequency lattice. For the waveguide 

modulator driven by a sinusoidal RF signal, the instantaneous refractive index is given by 

0 cos[ ( )]( , ) ,mn z zt ztn qn Ω += −+ Δ ⋅ φ                          (A1) 

Here we assume the modulation is uniform in the transverse direction. The instantaneous dielectric 

modulation thus reads 

cos[ (, ],( )) d mt q zz t zΩ+ Δ ⋅ += −ε ε ε φ                          (A2) 

where εd = n0
2, Δε = 2n0Δn. The quadratic term Δn2 is neglected here since Δn << n0. The modulation 

can create a frequency lattice in the TE0 band, with the electric field distribution given by 
( )( , , ) ( ) ( ,) n ni t z

n n
n

E x z t a z x e −=∑ ω βψ                           (A3) 

where ωn = ω0 + nΩ and βn = β0 + nq (n = 0, ±1, ±2,…) are the frequency and propagation constant 

of nth-order TE0 mode. ψn(x) is the transverse mode profile. The electric field distribution satisfies 

2
2

2 2

1( , , ) [ ( , ) ( , , )] 0,E x z t z t E x z t
c t

∂∇ − =
∂

ε                      (A4) 

Substituting Eqs. (A2) and (A3) into (A4), we can obtain 

{ }
2 2 2 2

2 2 2 2 2 2( , , ) ( , , ) cos[ ( )] ( , , ) ,d
mE x z t E x z t t q z z E x z t

x z c t c t
⎛ ⎞∂ ∂ ∂ Δ ∂+ − = Ω − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

ε ε φ     (A5) 

By applying the slowly varing amplitude approximation, the left side of Eq. (A5) is 

( )( )2 ( ) ,n ni t zn
n n

n

a zi x e
z

−∂−
∂∑ ω ββ ψ                            (A6) 

By denoting ωn ± Ω = ωn±1, βn ± q = βn±1, the right side of Eq. (A5) is 
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( )

( )
1 1
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[ ( )] [ ( )] ( )

2

2
( ) ( ) ( ) ( )( ) ( )

2

( ) (2 [ ( ) ] 2
1 1

1 ( ) ( )
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1 ( ) ( )
2

1 ( ) ( )
2

m m n n

n n m n n m

n n n

i t q z z i t q z z i t z
n n

n

i t i q z i t i q zi z i z
n n

n

i t z ii z q z
n n n n

e e a z x e
t

a z x e e e e e e
t

a z x e e e+ +

Ω − + − Ω − + −

+Ω − + −Ω − − −

− +Δ ⋅
+ −

∂ ⎧ ⎫+⎨ ⎬∂ ⎩ ⎭
∂= +
∂

= − +

∑

∑

φ φ ω β

ω β ω βφ φ

ω β ωφ

ψ

ψ

ψ ω ω( )1 1 ) [ ( ) ] ,nt z i z q z

n

e− −− − +Δ ⋅∑ β φ

       (A7) 

where Δq = q − qm is the mismatched wave vector. By substituting (n±1) by n, we have 
1 1( ) ( )2 2

1 1 1( ) ( ) ( ) ( ) ,n n n ni t z i t z
n n n n n n

n n
a z x e a z x e± ±− −

± =∑ ∑ m m
ω β ω βψ ω ψ ω                 (A8) 

Since Ω << ω0, the mode profiles satisfy ψn±1(x) ≈ ψn(x), we can obtain the coupled-mode equation 

( )[ ( ) ] [ ( ) ]
1 1

( ) ( ) ( ) ,i z q z i z q zn
n n n

a zi C e a z e a z
z

+Δ ⋅ − +Δ ⋅
− +

∂ = +
∂

φ φ                  (A9) 

where the coupling strength between the nth and (n±1)th-order mode is given by 

2
0

2
0

,
4 2

n
n

n

nC
c n

Δ ⋅ Δ= =ε ω β
β

                                   (A10) 

Since Ω << ω0, we can neglect the dispersion of coupling strength and denote Cn = C. To solve the 

coupled-mode equation of Eq. (A9), we can truncate the order to the maximum n = M. By demoting 

|ϕ(z)〉 = [a1(z), a2(z),…, aN(z)]T with N = 2M + 1, we can thus cast the coupled-mode equation into a 

time-dependent Schrödinger equation 

( )
( ) ( ) ,

z
i z z

z
∂

=
∂

H
ϕ

ϕ                                 (A11) 

where the z-dependent matrix H(z) is given by 

[ ( ) ]

[ ( ) ] [ ( ) ]

[ ( ) ]

[ ( ) ]

[ ( ) ]

0 0 0 0
0 0 0

0 0 0 0
( ) ,

0 0 0 0
0 0 0 0

i z q z

i z q z i z q z

i z q z

i z q z

i z q z

Ce
Ce Ce

Ce
z

Ce
Ce

− +Δ ⋅

+Δ ⋅ − +Δ ⋅

+Δ ⋅

− +Δ ⋅

+Δ ⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

H

L

L

L

M M M O M M

L

L

φ

φ φ

φ

φ

φ

  (A12) 

The dynamics of frequency BOs, SBOs, directional shift and dynamic localization can be obtained 

by solving Eq. (A11) numerically. 
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APPENDIX B: FREQUENCY ABOS, SBOS, DIRECTIONAL SHIFT AND DYNMICAL 

LOCALIZATION 

To induce frequency ABOs, as demonstrated in the main text, there should exist two commensurate 

sinusoidal wave modulations 

0 11 cos( ) cos( , )) ( ,llm mtn z t n n nq z l t lq zΩ − + Ω −Δ+Δ += + φ φ              (B1) 

with the corresponding coupled-mode equation given by 

1 1 ( ) ( )( ) ( )
1 1 1

( ) [ ( ) ( )] [ ( ) ( )],l li l qz i l qzi qz i qzn
n n l n l n l

a zi C e a z e a z C e a z e a z
z

+ Δ − + Δ+Δ − +Δ
− + − +

∂ = + + +
∂

φ φφ φ     (B2) 

The corresponding z-dependent band structure thus reads 

1 1[ ( )] 2 cos( ) 2 cos( ),z l lk k z C k qz C lk l qz= − Ω − − Δ − Ω − − Δω ω ωφ φ          (B3) 

with the z-dependent group velocity given by 

, 1 1( ) 2 sin( ) 2 sin( ),g l lv z C k qz C lk l qz= − Ω Ω − − Δ − Ω Ω − − Δω ω ωφ φ          (B4) 

The corresponding frequency shift is 

1
1 0 1 0 0 0

22ω( ) [cos( ) cos( )] [cos( ) cos( )],l
l l

CCz qz l l qz l
q q

ΩΩΔ = − − Δ + − + − − Δ + −
Δ Δ

φ φ φ φ φ φ φ φ   (B5) 

Then we consider frequency SBOs, the z-dependent group velocity along frequency dimension is 

  

0

0

, 0

π π π          2 sin[( ) ( ) ( ) sin( )]
2 2 2
π π π           = 

( ) 2

2 sin[( ) ( )]cos[ sin( ) ( )]
2 2 2

          

sin[ ( ) cos( )]

m m m m m m

m m m m

g m m m m

m m

v z C mQ

C Qz m m Q z Q z

C Qz m Q z m Q

Q z

z

z Q

= Ω − + Δ + − +

= Ω

+ − − Δ + −

Ω − + Δ + − Δ + − −

− + + Δ + Δ

−

+

+ −

ω

φ φ φ φ φ φ

φ φ φ φ φ

φ φ φ

φ

φ

0
π π π2 cos[( ) ( )]sin[ sin( ) ( )],
2 2 2m m m m m mC Qz m Q z m Q zΩ − + Δ + − Δ + − − + −φ φ φ φ φ φ

  (B6) 

Since ΔQ << Qm, the term “ΔQz” is slowly varing and can be considered as constant in the period of 

2π/Qm. By denoting θ = Qmz +φm − π/2, we can obtain average group velocity in the frequency axis 
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2π/

, ,0

2π/

0 0

2π/

0 0

   ( ) ( )
2

π π π= 2 sin[( ) ( )] cos[ sin( ) ( )]
2 2 2 2

π π π2 cos[( ) ( )] sin[ sin( ) ( )]
2 2 2 2
1 2 si

2

m

m

m

Qm
g g

Qm
m m m m m m

Qm
m m m m m m

Qv z v z dz

Q C Qz m Q z m Q z dz

Q C Qz m Q z m Q z dz

C

′ ′=

′ ′ ′Ω − + Δ + − Δ + − − + −

′ ′ ′− Ω − + Δ + − Δ + − − + −

= Ω

∫

∫

∫

ω ωπ

φ φ φ φ φ φ
π

φ φ φ φ φ φ
π

π

3π
2
π0
2
3π
2
π0
2

0

πn[( ) ( )] cos[ sin( ) ]
2

1 π2 cos[( ) ( )] sin[ sin( ) ]
2 2

2 ( )sin[ ( )],
2

m

m

m

m

m m

m m

m m m

Qz m m d

C Qz m m d

C J Qz m

+

−

+

−

− + Δ + − Δ −

− Ω − + Δ + − Δ −

= Ω Δ Δ + − + −

∫

∫

φ

φ

φ

φ

φ φ φ φ θ θ θ

φ φ φ φ θ θ θ
π

πφ φ φ φ

(B7) 

Here we utilize the identities as follows. For arbitrary x, ϕ, the identities are 

2

2

1 cos[ sin( ) ] ( ),
2
1 sin[ sin( ) ] 0,

2

mx m d J x

x m d

+

+

⎧ − =⎪⎪
⎨
⎪ − =
⎪⎩

∫

∫

ϕ π

ϕ

ϕ π

ϕ

θ θ θ
π

θ θ θ
π

                       (B8) 

The frequency shift is 〈Δω(z)〉 = ∫z 
0〈vg,ω(z')〉dz', leading to the frequency center trajectory 

0 0
2 ( ) π πω( ) cos[ ( )] cos[ ( )] ,

2 2
m m

m m
C Jz m Qz m

Q
Ω Δ ⎧ ⎫Δ = − + − − Δ + − + −⎨ ⎬Δ ⎩ ⎭

φ φ φ φ φ φ φ      (B9) 

Next, we consider frequency directional shift with Δq = 0, the z-dependent average group velocity in 

a period of 2π/Qm is given by 

   

{ }

2π/

, 0

2π/

0 00

2π/

0 0

0

20
1

   v ( )
2

2 sin( )cos[ cos( )] cos( )sin[ cos( )]
2

2 sin( )

2 sin[ cos( )]

( ) 2 ( 1) ( )cos[2 ( )]
2

m

m

Qm
g

Q

m m

m
m m m m m m

nm
m n m m m

m

n

Qz z dz

Q C Q z Q z dz

Q

C Q

C J J n Q z
∞

=

′ ′=

′ ′ ′= Ω − Δ + + − Δ +

⎧ ⎫′= Ω − Δ

Ω −

+ − Δ +⎨

+

⎬

+ Δ

⎩ ⎭

∫

∫

∑

ω π

φ φ φ φ φ φ φ φ
π

φ φ φ φ φ

φ φ

π

φ φ

2π/

0 2 10
1

0 0

2 cos( ) 2 ( 1) ( )cos[2 ( )]
2
2 ( )sin( ),

m

m

Q

Q nm
n m m m

n

m

dz

Q C J n Q z dz

C J

∞

−
=

′

⎧ ⎫′ ′− Ω − − Δ +⎨ ⎬
⎩ ⎭

= Ω Δ −

∫

∑∫φ φ φ φ
π

φ φ φ

(B10) 

So the center-of-mass of the frequency comb exhibits a line trajectory which is given by 

0 0ω( ) 2 ( )sin( ) ,mz C J zΔ = Ω Δ −φ φ φ                         (B11) 

For a single frequency input with initial electric field distribution Ein(t) = a0exp(iω0t), the dynamic 
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index modulation imposes a time-varying phase factor on the optical mode, and the z-dependent 

instantaneous electric field is given by 

{ }0 0( , ) exp( ) exp 2 cos[ cos( )] ,m m mE z t a i t i Cz t Q t= Ω + + Δ +ω φ φ φ           (B12) 

So the average electric field distribution in a period of ac force 2π/Qm is 

0

0 0 0

0 0 0

1   ( , ) ( , )

exp( )exp[ 2 ( )cos( )]

exp( ) ( ) [2 ( )]exp[ ( )],

T

m

n
n m

n

E z t E z t dt
T

a i t i CzJ t

a i t i J CzJ in t
∞

=−∞

′ ′〈 〉 =

= Δ Ω +

= Δ Ω +

∫

∑

ω φ φ

ω φ φ

               (B13) 

By using Fourier analysis, we can obtain the average amplitude spectrum at coordinate z 

[ ]0 0( ) 2 ( ) ,n n ma z a J CJ z〈 〉 = Δφ                             (B14) 

 

APPENDIX C: APPLICATIONS IN SPECTRAL PERFECT IMAGING 

As demonstrated in the main text that BOs, ABOs and SBOs can all realize frequency self-focusing 

for a single frequency input. In appendix C, we exploit these effects to find applications in spectral 

perfect imaging. In principle, any oscillatory motion can be used for imaging applications due to the 

periodic revival nature. As particular examples, we choose frequency BOs, ABOs for demonstrations 

and input single frequency, frequency comb and continuous Gaussian spectra, respectively. We also 

perfect first-principle numerical simulations by using COMSOL Multiphysics to further verify these 

results. To save the computational time, we choose a high modulation frequency of Ω/2π = 4 THz 

and large modulation amplitude of Δε = 0.5, both of which are different from those in the main text. 

It should be mentioned that different choices of modulation parameters have no influence on the 

physics underneath. 

For discrete spectrum input, we firstly consider a single frequency and choose L = ZB. As shown 

in Fig. 5(a), the single frequency is converted to a frequency comb in the first half period and 

recoveries to a single frequency in the second half, thus manifesting the phenomenon of spectral 

self-imaging. In Fig. 5(b), the input frequency comb also experiences the perfect imaging after 

tracing out an entire cosine trajectory. Figures 5(c) to 5(d) show the frequency ABOs under a single 

frequency and a frequency comb input, both of which can exhibit spectral self-imaging effects. The 
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first-principle simulated and the theoretical spectra at z = 0, ZB/4, ZB/2, 3ZB/4 and ZB are incorporated 

in Fig. 5, which can agree well with each other. 

For a continuous input spectrum, we choose an ultra-short pulse with a Gaussian envelope 
20( )

0 0( , ) A ( )cos(ω ) ,
t t

ta x t x t e
−−
Δ= ψ                             (C1) 

where A and ψ0(x) are the amplitude and transverse profile of the TE0 mode at the carrier wave 

frequency ω0. t0 and Δt are the time delay and width of the Gaussian pulse, respectively. The 

ultra-short Gaussian pulse has a spectrum of Gaussian shape, which is given by 
20( )

(ω, 0) ,a z A e
−

−
Δ′= =%

ω ω
ω                                 (C2) 

where A′ is a constant coefficient. The width of the Gaussian spectrum is thus  

2 ,
t

Δ =
Δ

ω                                        (C3) 

The continuous spectral evolutions for frequency BOs are shown in Fig. 6. The modulation phase 

with respect to the pulse arrival time is φ = 0, π, −π/2, π/2, for all of which the Gaussian spectra can 

be perfectly reconstructed by propagating one BOs period of ZB. For φ = 0 shown in Fig. 6(a), the 

Gaussian spectrum experiences a red shift and bandwidth expansion in the first half period and then a 

time-reversed process in the second half, ultimately restoring to the initial spectrum. While for φ = π 

shown in Fig. 6(b), the spectrum evolution is mirror symmetric with that for φ = 0. For φ = −π/2 and 

π/2, as shown in Figs. 6(c) and 6(d), the spectrum exhibits a red (blue) shift in the first half period 

and then a blue (red) shift in the second, both of which are perfectly reconstructed at z = ZB. Actually, 

the effect of frequency self-imaging is independent of the format of the input spectrum, which can be 

applicable to any kind of input spectrum. 
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FIG. 1. (a) Schematic diagram of the waveguide modulator with periodic electrodes. The substrate is 

constituted with a LiNbO3 slab waveguide with thickness d = 0.5 μm, background dielectric constant 

εd = 4.58 (n0 = 2.14) and dielectric modulation amplitude Δε = 5 × 10−3. (b) Photonic intraband 

transitions in TE0 band (blue curved arrows). The red and blue curves represent TE0 and TE1 bands 

with the gray region denoting the light cone. Both frequencies and wavenumbers are normalized with 

respect to a = 1 μm. We choose ω0/(2πc/a) = 0.6451 (λ0 = 1.55 μm) and Ω/2π = 20 GHz. Δq = q − qm 

is the wave vector mismatch with qm and q being the modulation wavenumber and wavenumber 

difference between adjacent order modes. ±φ(z) is the z-dependent, nonreciprocal phase shift 

accompanying photonic transitions. 
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FIG. 2. (a) (b) Spectral evolutions of frequency BOs for a frequency comb (a) and a single frequency 

(b) input. The width of Gaussian envelope is W = 5Ω. The modulation length is L = 3ZB/2 with black 

dashed lines denoting z = ZB. The modulation phase with respect to the initial Bloch momentum is φ 

− φ0 = π/2. (c) (d) Spectral evolutions of frequency ABOs for a frequency comb (c) and a single 

frequency (d) input. The parameters are W = 8Ω, C1 = C2 and φ1 − φ0 = φ2 − φ0 = π. (e) (f) Spectral 

evolutions of frequency SBOs for a frequency comb (e) and a single frequency (f) input. We choose 

W = 50Ω, Δφm = π/2, φ − φ0 = φm − φ0 = 0. The wave vector of ac force is Qm = Δq − mΔQ with m = 1 

and ΔQ = Δq/20, thus we have ZSB = 20ZB. The modulation length is L = 3ZSB/2 and the black dashed 

lines denote z = ZSB. The red solid lines denote the theoretical trajectories. 
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FIG. 3. (a) Output spectral evolution under a frequency comb input as φ − φ0 varies from 0 to 2π as L 

= 3ZSB/2. We choose W = 100Ω, Qm = Δq − mΔQ with m = 1 and ΔQ = Δq/20 such that ZSB = 20ZB. 

The blue, red and black dashed lines denote φ − φ0 = π/2, 3π/2 and π, respectively. (b)-(d) Spectral 

evolutions for a frequency comb input with φ − φ0 = 0, 3π/2, and π/2, respectively. The red solid lines 

denote the respective theoretical trajectories. (e) (f) The original and equivalent amplitude spectral 

evolutions under a single frequency input. The red solid lines denote the theoretical results. 

 



22 

 

FIG. 4. The maximum frequency shift Δω versus Δφm for both frequency directional shift (red) and 

SBOs (blue), respectively. We choose L = ZSB with other parameters kept the same with those in FIG. 

2. Inserted a, spectral evolution for frequency directional shift under a single frequency input as Δφm 

= 2.40483 (red circle a). Inserted b, spectral evolution for frequency SBOs as Δφm = 3.83171 (blue 

circle b). The blue circle c and red circle d denote Δφm = π/2, which represent the cases in FIG. 2 and 

FIG. 3, respectively. 
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Fig. 5. (a) (b) Theoretical and numerical spectral evolutions of frequency BOs for a single frequency 

and a frequency comb input. Here we choose Ω/2π = 4 THz, Δε = 0.5 with other parameters kept the 

same with those in Fig. 2. (c) Theoretical and numerical spectral evolutions of frequency ABOs 

under a single frequency and a frequency comb input. The red dashed lines and black circles 

represent the numerical and theoretical spectra at z = 0, ZB/4, ZB/2, 3ZB/4 and ZB, which are obtained 

by first-principle simulations using COMSOL and by solving the coupled-mode equation of Eq. (1). 
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Fig. 6. Theoretical and numerical spectral evolutions of frequency BOs under an single ultra-short 

pulse input. We choose ω0/2π = 193.4 THz (λ0 = 1.55 μm), t0 = 50 ps and Δt = 50 fs, and thus the 

Gaussian spectral width is Δω/2π = 40 THz. The modulation phase with respect to the pulse arrival 

time is φ = 0, π, −π/2, π/2 in (a) (b) (c) and (d), respectively. The red solid lines denote the numerical 

spectra distribution at z = 0, ZB/4, ZB/2, 3ZB/4, which are obtained by using COMSOL Multiphysics. 


