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Abstract

Generation of squeezed light and optomechanical instability for dissipative type of opto-

mechanical coupling is theoretically addressed for a cavity with the input mirror, serving as a

mechanical oscillator, or an equivalent system. The problem is treated analytically for the case of

resonance excitation or small detunings, mainly focusing on the bad cavity limit. A qualitative

difference between the dissipative and purely dispersive coupling is reported. In particular, it is

shown that, for the purely dissipative coupling in the bad cavity regime, the backaction is strongly

reduced and the squeezing ability of the system is strongly suppressed, in contrast to the case of

purely dispersive coupling. It is also shown that, for small detunings, stability diagrams for the

cases of the purely dispersive and dissipative couplings are qualitatively identical to within the

change of the sign of detuning. The results obtained are compared with those from the recent

theoretical publications.

PACS numbers: 42.50.Lc, 42.50.Wk, 07.10.Cm, 42.50.Ct
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I. INTRODUCTION

Cavity quantum optomechanics is a rapidly developing branch of quantum optics which

allows for exploration of fundamental issues of quantum mechanics and paves the way for

numerous applications, e.g. in high-precision metrology and gravitational-wave defection1.

The work horse of cavity optomechanics is the so-called dispersive coupling originating from

the dependence of the cavity resonance frequency on the position of a mechanical oscillator.

However as pointed out by Elste et al2, the dispersive coupling does not provide the complete

description of the optomechanical interaction. To fill the gap, those authors have introduced

the so-called dissipative coupling, which can be interpreted in terms of the dependence of

the cavity damping rate on the mirror position. Since then, manifestations of this coupling

have been addressed both theoretically3–9 and experimentally10–12.

Studying and harnessing this effect experimentally seems to be a tough task since it is

difficult to find a situation where the dissipative coupling can be distinguished from the

stronger dispersive coupling. Such situation was theoretically identified by Xuereb et al3

and later experimentally explored by Sawadsky et al12 in their setup based on a modified

Michelson-Sagnac interferometer where the relative strength of the dispersive and dissipative

coupling can be tuned so that the latter can be not dominated by the former. One should

note that though the dissipative coupling is a higher order effect compacted to that dispersive

the absolute value of the dissipative coupling constant of such device is not so small. Using

the results from Ref. 12, one finds that, for this device, the dispersive coupling constant on

average (far from some special points) obeys the standard estimate for an optomechanical

cavity1 while the dissipative coupling constant is smaller than the former by a factor, which

is about the amplitude transmission coefficient of the effective mirror, characterizing the

decay rate of the interferometer.

On the theoretical side, a number of interesting consequences of this coupling have been

revealed, e.g. a remarkable Fano effect due to the interference between the dispersive and

dissipative couplings2,3. For the case of dissipative coupling, detailed zero-temperature nu-

merical simulations of the optomechanical instability as well as of the squeezing and photon

correlation spectra have been done by Kilda and Nunnenkamp7. One of their results is an in-

teresting possibility of simultaneous squeezing and sideband cooling in the resolved-sideband

regime.
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As mentioned in the literature1,2, the bad cavity regime (cavity decay rate greater than

the mechanical frequency) is of special interest since, in this regime, the dissipative coupling

may provide the ground state cooling of a mechanical oscillator while that dispersive may

not2. A focussed finite-temperature analytical treatment of some manifestations of the

dissipative coupling in this regime was recently published by Qu and Agraval6. These authors

argued that the manifestations of the dissipative coupling they addressed (squeezing spectra

and stability conditions) can be quantitatively recovered from the corresponding results

for dispersive coupling by replacing the coupling constant of the dispersive coupling with

that of the dissipative coupling. However, some equations and results from Ref. 6 are in

a conflict with other publications. Specifically, the stability criterion offered in that paper

is incompatible with the results of simulations by Kilda and Nunnenkamp7. There is also

discrepancy in the Langevin equations and input-output relations between Ref. 6 and Refs.

2,3.

In view of the above, it seems reasonable to revisit analytically the squeezing generation

and the stability conditions of a system with dissipative optomechanical coupling. This is

the subject of the present paper, where we focus on the bad cavity limit. We have addressed

the problem in terms of the Hamiltonian originally introduced by Elste et al2, which is the

one exploited in all theoretical papers on the topic. The Hamiltonian describes a one-sided

cavity with the input mirror serving as a mechanical oscillator, as well as equivalent systems,

including the Michelson-Sagnac interferometer-based setup3,12.

Our analysis demonstrates that, in the bad cavity regime, the purely dissipative coupling

manifests itself qualitatively different from the dispersive one. Namely, in this regime,

the backaction due to the dissipative coupling is strongly reduced, vanishing in the limit

∆ω/γ → 0 where ∆ω and γ are the frequency band of interest around the laser frequency

and the cavity decay rate, respectively. Specifically, in this regime, the dissipative coupling

constant is effectively multiplied by a factor of the order ∆ω/γ. This effect reveals an

additional weakness of the optomechanical interaction in this regime.

Our analytical calculations also provide an explanation for the qualitative difference be-

tween the optomechanical stability diagrams for the purely dispersive and purely dissipative

coupling cases7. None of our results supports those published by Qu and Agraval6.

The paper is organized as follows. First, we address, in the simplest terms, the afore-

mentioned reduction of the oscillator-cavity coupling for dissipative case in the bad cavity
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limit. Then, we address the implications of this reduction for the squeezing ability of the

optomechanical cavity, controlled solely by the dissipative coupling. We finish the paper

with the stability analysis of the system. Throughout the presentation we illustrate how the

behavior of the system controlled by purely dissipative coupling can be mapped onto the

system controlled by purely dispersive coupling and then utilize the well known results for

the latter system.

II. REDUCTION OF BACKACTION FORCE IN ONE-SIDED CAVITY

We start from the Hamiltonian originally introduced by Elste et al2, which describes a

one-sided cavity with the input mirror, serving as a mechanical oscillator, and equivalent

systems

H = ~ωca
+a+ ~ωmb

+b−~gωa
+a(b++b)− i~

√

γ

2πρ

∑

q
(a+cq − c+q a)[1− gγ(b

++b)/γ],

(1)

where ~ is the Planck constant, ωc, γ, and a are the resonance frequency, decay rate, and

the ladder Bose operator of the cavity field, respectively, while ωm and b are the resonance

frequency and the ladder Bose operator for the mechanical oscillator. cq are ladder operators

for the electromagnetic bath (the bath Hamiltonian is omitted), ρ is its density of states in the

frequency range of interest [per unit frequency]. Here gω and gγ are the coupling constants for

the dispersive and dissipative interactions, respectively. The mechanical oscillator is assumed

to be coupled to a thermal bath (the Hamiltonian containing the degrees of freedom of the

thermal bath is also omitted).

The cavity is driven with a laser light of the frequency ωL. Assuming the Markovian

bath, one derives in a standard way the Langevin equations describing both the dispersive

and dissipative couplings, which (in the frame rotating with the laser frequency) read

∂a

∂t
+ {γ/2 + i[ωc − ωL]}a =

√
γAin + (b+ + b) [gγ(a−Ain/

√
γ) + igωa] (2)

∂b

∂t
+
(γm

2
+ iωm

)

b =
√
γmbin −

gγ√
γ
(a+Ain −A

+
ina) + igωa

+a. (3)

where Ain is the operator of the input electromagnetic field and bin is the operator of

the thermal mechanical noise. We assume the driving laser field to be strong so that the

operators a , b , and Ain consist of constant [in the rotating reference frame] classical parts,

a0, b0, A0, and operator parts, δa , δb , and δAin, describing fluctuations.
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We are particularly interested in the fluctuations for the case of purely dissipative cou-

pling, i.e. at gω = 0 and gγ 6= 0. The equations describing the fluctuations are routinely

obtained by linearization of Eqs. (2) and (3). In the notations where δ′s are dropped from

δa , δb, and δAin for simplicity, these equations read2:

∂a

∂t
+ {γ/2− i∆}a =

√
γAin + gγ(a0 − A0/

√
γ)(b+ + b) (4)

∂b

∂t
+
(γm

2
+ iωm

)

b =
√
γmbin + Fdiss (5)

where ∆ = ωL − ωc and the operator of the backaction force (to within a factor of some

physical dimension) has a form (c.f. Eq.(5) from Ref. 2):

Fdiss = − gγ√
γ
(a∗0Ain + A0a

+ −A
+
ina0 −A∗

0a). (6)

Here Ain describes the vacuum noise

[Ain(t),A
+
in(t

′)] = δ(t− t′) [Ain(t),Ain(t
′)] = 0 < A+

in(t)A
+
in(t

′) >= 0, (7)

< ... > and [..., ...] denoting the ensemble averaging and the commutator, respectively.

The set of equations (4)-(6) should be appended with the steady state equation for a0:

{γ/2− i∆}a0 =
√
γA0. (8)

Now we would like to demonstrate, in the simplest situation, an important result of this

paper. Namely, that the backaction due to the dissipative coupling is strongly suppressed

in the bad cavity regime. For simplicity, we consider the lowest approximation in optome-

chanical coupling constants, though, as will be shown in Subsect.III B, the same conclusion

holds for an arbitrary strength of optomechanical couplings.

Let us evaluate the backaction force in the case where the detuning and the time derivative

(in Eqs. (4)) are neglected, the requirement, equivalent to the bad cavity limit. By setting

a0 real and taking into account that A0 ≈
√
γa0/2 we find

Fdiss ≈ − gγ√
γ
a0[Ain −A

+
in − (a− a+)

√
γ/2]. (9)

Now taking into account that, to within our approximations, Eq.(4) yields

Ain −A
+
in ≈ (a− a+)

√
γ/2, (10)

5



we see that Eq.(9) implies a strong reduction of the backaction force in the bad cavity limit.

This is in a sharp contrast with the backaction force due to the dispersive coupling, which,

in the lowest order in the coupling constant, according to (3) reads:

Fdisp = igωa0(a+ a+) ≈ i
2gωa0√

γ
(Ain +A

+
in). (11)

One can readily trace the origin of this difference. In the case of dissipative coupling, the

vacuum electromagnetic noise reaches the mechanical oscillator via two channels: from the

cavity field and directly (see Eq.(9)). In the bad cavity regime, a distractive interference

between those channels takes place, resulting in the backaction force reduction. At the same

time, in the case of dispersive coupling, nothing similar can happen because now the vacuum

electromagnetic noise reaches the mechanical oscillator via the only channel - the cavity

field (see Eq.(11)). Evidently, the above effect entails a reduction of squeezing ability of the

dissipative coupling in the bad cavity limit since it is the backaction that provides mixing of

the quadratures of the output light, leading to squeezing of the optimized quadrature. We

will address this issue in detail in Subsect.III B below.

III. SQUEEZING

In this section, we compare the squeezing abilities of the dispersive and dissipative cou-

plings for a single-ended cavity with a mechanical oscillator as the input mirror (or an

equivalent system) in the bad cavity limit. To make presentation more transparent we con-

sider the case of a resonance excitation of the cavity. In Subsect.IIIA we reproduce the

well known result for the dispersive coupling as a benchmark. In Subsect.III B we map the

squeezing problem for the case of the dissipative coupling onto that for the dispersive one

and, without further calculations, we recover the results for the dissipative coupling from

those obtained in Subsect.IIIA.

A. Dispersive coupling

To obtain the squeezing spectrum of the generalized quadrature of the light backscattered

from the cavity, we perform the Fourier transforms on all operators describing fluctuations
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and obtain for the frequency components, e.g.

a(ω) =
1√
2π

∫

dteiωta(t) (12)

a+(ω) =
1√
2π

∫

dte−iωta+(t). (13)

We introduce the following quadrature operators

Q(ω) = [b(ω) + b+(−ω)]/2 P(ω) = −i[b(ω)− b+(−ω)]/2

X(ω) = [a(ω) + a+(−ω)]/2 Y(ω) = −i[a(ω)− a+(−ω)]/2

Xin(ω) = Ain(ω) +A
+
in(−ω) Yin(ω) = −i[Ain(ω)−A

+
in(−ω)],

where the Fourier components of the noise operators satisfy the relationships:

〈Xin(ω)Xin(ω
′)〉 = 〈Yin(ω)Yin(ω

′)〉 = i〈Yin(ω)Xin(ω
′)〉 = (14)

−i〈Xin(ω)Yin(ω
′)〉 = δ(ω + ω′).

Note that, following Ref. 13, for convenience of calculations, we use non-identical definitions

of the quadratures for the field in the cavity and for those outside it.

Starting from the standard linearized Langevin equations for fluctuations in the optome-

chanical cavity controlled by the dispersive coupling, e.g. from Ref.4, we rewrite those in

the quadrature variables (rotating reference frame), dropping the frequency argument ω

wherever it is not confusing:

(γ/2− iω)X =

√
γ

2
Xin (15)

(γ/2− iω)Y =

√
γ

2
Yin +GωQ (16)

χ(ω)−1Q =
√
γmW+GωX (17)

χ(ω)−1 =
1

ωm

[

ω2
m − ω2 − iγmω

]

(18)

Gω = 2gωa0 (a0 is set real). (19)

Restricting ourselves to the high-temperature case T ≫ ~ωm, in Eq.(17), we introduce the

mechanical noise in the simplest Markovian form via the operator W(ω), which satisfies the

relationship:14

〈W(ω)W(ω′)〉 ≈ (nth + 1/2)δ(ω + ω′) nth ≈ T/ωm, (20)
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T being the temperature in the energy units. Here we have also neglected the small renor-

malization of the mechanical frequency when passing from b to Q operators.

The squeezing of the backscattered light in the dissipative coupling regime is evaluated

by the variance of the generalized quadrature

Z(ω, θ) = Xout(ω) cos θ +Yout(ω) sin θ (21)

where Xout and Yout are defined by the standard input-output relations

Xin +Xout = 2
√
γX (22)

Yin +Yout = 2
√
γY. (23)

Taking the bad cavity limit γ ≫ ωm and keeping in mind that, in the situation of interest,

|ω| and ωm are of the same order, the above formulae readily yield the explicit input-output

relations

Xout = Xin (24)

Yout = Yin +
4Gω√

γ
χ(ω)

[√
γmW+

Gω√
γ
Xin

]

. (25)

Then, straightforward calculations yield

< Z(ω, θ)Z(ω′, θ) >= δ(ω + ω′)SZZ(ω, θ) (26)

SZZ(ω, θ) = 1 +M sin2 θ +N sin θ cos θ (27)

M = 16nbaγ
2
m|χ(ω)|2(nth + nba + 1/2) (28)

N = 8nbaγmRe[χ(ω)]. (29)

Here

nba =
G2

ω

γmγ
(30)

is the optomechanical cooperativity or, alternatively, the noise added by the backaction to

the intrinsic noise of the mechanical oscillator (normalized to the number of mechanical

quanta).

Since it is the even part of the spectral power density that is used for characterization of

squeezing, hereafter, for this variable we will keep only the frequency-even parts.
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The result of minimization of the spectral power density of the generalised quadrature

SZZ(ω, θ) with respect to the ”mixing” angle θ, Sm(ω), reads

Sm(ω) = 1− N2/2√
M2 +N2 +M

. (31)

The results of further minimization (with respect to ω) can be presented in a transparent

form if we focus on the frequency range close to the mechanical frequency. Specifically for

δ = ωm − ω satisfying the following inequalities

|δ| ≪ ωm (32)

and
|δ|/γm

nth + nba + 1/2
<< 1. (33)

These inequalities allow us to neglect the N2-term under the square root in Eq.(31) and

present this equation in the form

Sm(ω) =
nth + 1/2

nba + nth + 1/2
+

nba

nba + nth + 1/2

Im[χ(ω)]2

|χ(ω)|2 (34)

Keeping in mind that in the frequency range of interest

Im[χ(ω)]2

|χ(ω)|2 ≈ 1

1 + (2δ/γm)2
,

Eq. (34) can be further simplified to get:

Sm =
nth + 1/2

nba + nth + 1/2
+

nba

nba + nth + 1/2

1

1 + (2δ/γm)2
. (35)

This equation implies that, in the potentially quite wide frequency range defined by the

conditions

1 ≪ |δ|/γm ≪ nth + nba, ωm/γm,

the squeezing parameter of the optimized generalized quadrature approaches a limiting value

of

S0 =
nth + 1/2

nba + nth + 1/2
. (36)

.

This result is consistent with the well known result by Fabre et al15.
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B. Dissipative coupling

Now we keep all settings used in the previous Subsection the same, except we consider

the dissipative coupling instead of the dispersive one. The linearized Langevin equations for

this system in terms of the ladder operators can be found in Refs. 2,4. We rewrite these

equations in the quadrature variables:

(γ/2− iω)X =

√
γ

2
Xin +GγQ (37)

(γ/2− iω)Y =

√
γ

2
Yin (38)

χ(ω)−1Q =
√
γmW+Gγ(Y−Yin/

√
γ) (39)

where

Gγ = gγa0. (40)

The difference between the structure of the above mechanical equation and that for the

dispersive coupling, Eq.(17), is clearly seen: in the mechanical equation corresponding to

dissipative coupling, we observe a direct contribution of the vacuum noise, which is responsi-

ble for the strong suppression of the backaction in the bad cavity limit, discussed in Sect. II.

The input-output relations3 also differ from those for the dispersive coupling by an explicit

appearance of the mechanical variable:

Xin +Xout = 2
√
γX− 4√

γ
GγQ Yin +Yout = 2

√
γY. (41)

Based on the above equations, we find the following explicit input-output relations, keep-

ing only the lowest non-vanishing terms in ω/γ:

Yout = Yin (42)

Xout = Xin +
4Gγβ(ω)√

γ
χ(ω)

[√
γmW+

Gγβ(ω)√
γ

Yin

]

β(ω) =
2iω

γ
. (43)

Relation (25) is worth commenting on. The small factor ω/γ enters this relation two

times: inside and outside the brackets. Its first appearance describes the backaction reduc-

tion discussed in terms of Langevin equations in Sect.II. The second appearance describes

the reduced ability of the system to read the position of the oscillator. This is a result of

cancelation due to the presence of the Q operator in the input-output relations (41). Thus,
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for measurements, we cannot profit from the reduction of the backaction since the infor-

mative signal is also reduced. Such symmetry is well-expected since if the signal were not

reduced it would mean a possibility of backaction-free measurements, which, for the system

considered, are forbidden by the Heisenberg uncertainty principle.

Comparing this set of equations with the set (25) and (24), we note that those sets are

equivalent to each other to within swapping

X ⇔ Y Gω ⇔ Gγβ(ω).

This correspondence implies that the well known results reproduced in the previous Sub-

section, Eq.(34), can be, with a proper modification, applied to the system with the dissi-

pative coupling. Specifically, we can write

Sm =
nth + 1/2

nba1 + nth + 1/2
+

nba1

nba1 + nth + 1/2

Im[χ(ω)]2

|χ(ω)|2 . (44)

where

nba1 =
G2

γ

γmγ

(

2ω

γ

)2

, (45)

plays a role of the optomechanical cooperativity.

There exists one more difference between the dispersive and dissipative system: swapping

X ⇔ Y leads to the permutation cos θ ⇔ sin θ in Eq.(27). That means that, after the

substitution Gω ⇔ Gγβ(ω), the expressions for the maximal squeezing are identical, but the

expressions for the optimal angle are not.

Similarly to the previous case, we thus find that, in the frequency range defined by

conditions

1 ≪ δ/γm ≪ nth + nba1, ωm/γm δ = |ω − ωm|,

the squeezing parameter of the optimized generalized quadrature approaches a limiting value

of

S0 =
nth + 1/2

nba1 + nth + 1/2
. (46)

.

The result for the optomechnical cooperativity of the system, (45), in combination with

(44) suggests that the bad cavity regime is unfavorable for the squeezing ability of the

system.

Our results are in a conflict with those obtained by Qu and Agraval6 for squeezing in the

dissipative system at resonance in the bad cavity limit. In the notations of our paper, the
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FIG. 1. Stability diagram for a one-sided cavity with the input mirror, serving as mechanical oscil-

lator, or an equivalent system, according to Kilda and Nunnenkamp7. Dark areas show instability

intervals in terms of the normalized detuning ∆/ωm (∆ = ωL − ωc - detuning, ωm- mechanical

frequency). (a)- purely dissipative coupling, (b) - purely dispersive coupling. In notations of our

paper, the model settings are Gω = 1.2γ, Gγ = −0.3γ, γm/ωm = 10−5, γ/ωm = 0.3; γ - decay rate

of the cavity, γm - mechanical decay rate.

result by Qu and Agraval misses the important factor of β(ω) in the definition of nba1. It

does not seem feasible to fully clarify the origin of this disparity. However, one problem is

clearly seen in Ref. 6: the vital term with the Q operator in the input-output relations (41)

is neglected.

IV. STABILITY

For the case of purely dispersive coupling, the stability of a one-sided cavity with the

input mirror serving as the mechanical oscillator has been treated by many authors (see

e.g. Ref. 15). At the same time, for the case of purely dissipative coupling, described by

Hamiltonian offered by Elste et al2, the stability problem was addressed only recently: nu-

merically by Nunnenkamp with coworkers4,5,7 and analytically by Qu and Agraval6, in the

bad cavity limit. According to the numerical calculations7 (see Fig.1a), the system with

purely dissipative coupling is unstable with respect to small red detuning, in contrast to

the small-blue-detuning instability for the dispersive coupling (see Fig.1b). In contrast, ac-

cording to analytical calculations by Qu and Agraval6, a small blue detuning can destabilize

both systems, while a small red detuning is safe.

To resolve this disparity, we show how, in the limit of small detunings, the instability

problems for those two couplings can be mapped onto each other.
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For the dispersive system the instability problem reduces to the analysis of the linear set

of equations following, e.g. from Ref. 7:

Ẋ = −γ

2
X−∆Y

Ẏ = ∆X− γ

2
Y+GωQ

Q̇ = ωmP

Ṗ = GωX− ωmQ− γmP.

(47)

where the dot means the time derivative. (In this section, the bold-type letters are used

for the time-dependent operators, not their Fourier transforms as in the previous sections.)

The application of Routh-Hurwitz criterion16 for small detuning (only linear terms in ∆ are

kept) readily yields the stability condition:

∆

ωm

<

(

γ

Gω

)2
γ

ωm

Q

[

1 + 4Q

(

ωm

γ

)3

+ 16

(

ωm

γ

)4
]

Q = γm/ωm, (48)

here we have also neglected γm compared to other frequency-units parameters. This relation

is consistent with the well known results from Ref. 15. It also complies well with the results

of modelling by Kilda and Nummenkamp7, yielding the instability threshold ∆
ωm

= +4∗10−3,

c.f. Fig.1b. On the practical side, this condition means that the system is formally stable

at the resonant excitation, however, a small blue detunings jeopardize its stability.

For the dissipative coupling, using the results from Ref. 7, we find, in the linear approxi-

mation in detuning ∆17, a similar set of equations for the stability analysis:

Ẋ = −γ

2
X−∆Y+GγQ

Ẏ = ∆X− γ

2
Y

Q̇ = ωmP

Ṗ = GγY− ωmQ− γmP.

(49)

Comparing the instability problem given by Eq.(47) with that given by Eq.(49) we clearly

see that those two are equivalent to each other to within swapping

Gω ⇔ Gγ ∆ ⇔ −∆.

13



The transformation ∆ ⇔ −∆ explains the complimentarily of the instability regions seen

in Fig.1a and b. Specifically, it implies that, in contrast to the dispersive-coupling system,

in the dissipative-coupling system, small red detunings lead to instability, in contrast to the

result obtained by Qu and Agraval6.

V. DISCUSSION AND CONCLUSIONS

We have theoretically addressed the squeezing generation and optomechanical instability

due to dissipative coupling for a one-sided optomechanical cavity or an equivalent system.

The Hamiltonian introduced by Elste et al2 has been used as the starting point of the

analysis. We have focused on the case of the resonance or small (compared to the decay

rate) detuning and the bad cavity regime. We have identified a remarkable qualitative

difference in the manifestations of the purely dissipative and purely dispersive couplings.

We have shown that, in this regime, for the purely dissipative coupling, the backaction is

strongly reduced while the squeezing ability of the system is strongly suppressed, in contrast

to the case of purely dispersive coupling. This implies that, for the dissipative coupling

system, this regime is extremely unfavorable for the squeezing purposes. Our results also

provide qualitative explanation for the numerical results on the optomechanical instability

obtained by Nunnenkamp and coworkers4,5,7. Specifically, we have demonstrated that, for

small detuning, the stability diagrams for the cases of purely dispersive and purely dissipative

coupling are complimentary.

Our results for the case of purely dissipative coupling apply to the setup based on a

modified Michelson-Sagnac interferometer3, where the relative strength of the dispersive

and dissipative coupling can be tuned so that the purely dissipative-coupling regime becomes

experimentally feasible12.
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