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We present first-principles calculations of the linear and nonlinear susceptibilities of N2, O2, and
air in the mid-infrared wavelength regime, from 1 − 4 µm. We extract the frequency-dependent
susceptibilities from the full time-dependent dipole moment that is calculated using time-dependent
density functional theory. We find good agreement with curves derived from experimental results
for the linear susceptibility, and with measurements for the nonlinear susceptibility up to 2.4 µm.
We also find that the susceptibilities are insensitive to the laser intensity even in the strong field
regime up to 5 × 1013 W/cm2. Our results will allow accurate calculations of the long-distance
propagation of intense MIR laser pulses in air.

I. MOTIVATION

The propagation of ultrashort, intense laser pulses in
gaseous media has been extensively studied in the visi-
ble and near infrared wavelength regions [1]. The non-
linear optical phenomena associated with these pulses
arise from a combination of the medium’s linear opti-
cal properties (dispersion) and intensity-dependent non-
linear processes, such as Kerr self-focusing and ioniza-
tion. With the new availability of ultrashort pulse laser
sources in the mid-infrared (MIR, 2 − 4 µm) we enter a
new frontier in ultrafast science, where many applications
in strong field physics benefit greatly from an increase of
the quiver energy of the electron in the longer wavelength
laser field [2]. However, there are still many open ques-
tions regarding the roles of various nonlinear processes
that drive the long range propagation of MIR pulses. It
has been proposed that the relative influence of disper-
sion, self-focusing, and ionization may be different than
those for near-infrared wavelengths [3]. Therefore, an
accurate description of the linear and nonlinear optical
properties of common gases in the atmosphere is crucial
for predictive modeling of the long-range propagation of
MIR laser pulses.

The linear optical properties of molecular nitrogen N2

and molecular oxygen O2 in the visible spectrum have
been known since the 1960’s [4–6] and have typically been
modeled empirically in the visible region using Sellmeier-
like equations. Newer measurements [7–9] have helped
improve and extend the modeling up to 2 µm. The non-
linear optical properties of these species have also been
measured [10, 11] up to 2.4 µm. Of particular interest
is the value of the nonlinear index coefficient n2, where
the total index of the medium n has a dependence on
the instantaneous intensity of the laser I through rela-
tion n = n0 + n2I. Experiments [12, 13] and simulations
[3] utilizing MIR laser wavelengths call for new inves-
tigations on the linear and nonlinear properties of the
constituents of air above 2.4 µm.

Multiple theoretical approaches have been proposed for
determining these optical properties. A Kramers-Krönig

transformation of the multiphoton absorption rate led
to the prediction of the dispersion of n2 for noble gases
in the mid-infrared [14, 15]. Ab-initio multiconfigura-
tion self-consistent field (MCSCF) cubic response theory
calculations were performed to extract hyperpolarizabil-
ity and subsequently the frequency dependence of n2 for
multi-ionized noble gases [16] and for N2 [17]. Calcula-
tions of the nonlinear response of O2 in the mid-infrared
seem to be relatively unexplored.

In this paper we calculate the linear and nonlinear op-
tical properties of N2 and O2 molecules for wavelengths
ranging from 1−4 µm. This is done using time-dependent
density functional theory (TDDFT), as implemented in
the software package Octopus [18, 19], to calculate the
multi-electron dipole response to a short, intense laser
pulse. From the resulting dipole spectrum, it is possi-
ble to extract the linear and nonlinear optical properties
of both gas species. We find that the extracted values
for the linear index n0 and nonlinear index n2 of both
species are independent of the laser intensities with the
range 1010 − 5 × 1013 W/cm2 and that the values are
in good agreement with published experimental data be-
tween 1 − 2.4 µm. We infer the linear and nonlinear
optical properties of air from corresponding calculations
for its constituents.

The outline of the paper is as follows. Section II details
the calculation of the time-dependent dipole moment us-
ing TDDFT. Section III describes how the macroscopic
linear and nonlinear susceptibilities are extracted from
the microscopic time-dependent dipole moment. In Sec-
tion IV the results of the calculated linear and nonlinear
refractive indices are presented and compared to available
experimental data, followed by a summary in Section V.

II. SIMULATIONS

We simulate the multi-electron dynamics of N2 and O2

using TDDFT as implemented in the open source soft-
ware package Octopus [18]. Non-relativistic Kohn-Sham
density functional theory allows an interacting many-
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electron system to be represented by an auxiliary sys-
tem of non-interacting electron densities where both sys-
tems have the same ground state charge density. The
Hamiltonian of the non-interacting system is written as
the sum of the kinetic energy operator T and the Kohn-
Sham potential VKS : H = T + VKS [ρ(r, t)]. The Kohn-
Sham potential is a functional of the electron density ρ
that is separated into VKS [ρ] = Vext + VH [ρ] + VXC [ρ],
where Vext is the external potential arising from the nu-
clei and the laser field, VH is the Hartree potential rep-
resenting electrostatic interaction between electrons, and
VXC is the exchange-correlation operator that contains
all non-trivial interactions. The exact form of VXC is
unknown and is therefore approximated to various levels
of sophistication. For time-dependent calculations of the
molecules interacting with the laser field, the adiabatic
approximation is made and assumes that the exchange-
correlation potential is time independent.

The simulations take place in two steps. The first is to
determine the ground state through minimizing the total
energy of the system. Convergence of the ground state
energy to obtain a realistic value of the ionization poten-
tial Ip is important, since the energies of the high-lying
occupied molecular orbitals determine much of the opti-
cal properties of the molecule. Once a suitable ground
state has been found, the second step is a time-dependent
calculation of the dipole moment of the total electronic
response of the molecule as it interacts with the MIR
laser pulse.

To achieve an accurate convergence to the ground
state, each molecule requires a different set of simulation
parameters. For the two molecular simulations, the de-
fault pseudo-potentials provided with Octopus are used
and both molecules live on a cylindrical grid with di-
mensions length = 30, radius = 15, and a grid spacing
= 0.3 (atomic units are used throughout unless other-
wise specified). The grid spacing is such that the ground
state energy is converged, using convergence criterion pa-
rameter ConvRelDens = 1e-7, which in our calculations
also leads to the convergence of the dipole spectrum in
the region of interest. The large length is necessary to
avoid boundary effects since long wavelength pulses can
accelerate the electrons far from the origin during the
time-dependent portion of the simulation [2, 20]. Since
only the lower order harmonic response is needed for cal-
culating the first- and third-order susceptibilities of the
medium, the simulation parameters are chosen such that
the dipole spectrum is converged up to and including
harmonic 7.

For N2 it is sufficient to run Octopus simulations in
spin-unpolarized mode, which places two electrons in
each orbital. This effectively forces the same energy
on both spin-up and spin-down electrons, reducing the
computational cost by half. For N2, a bond length of
2.068 was found to minimize the total energy of the sys-
tem. The exchange-correlation (XC) functionals in the
local density approximation (LDA) [21–23] work quite
well with the addition of the self-interaction correction

ADSIC [24]. From this configuration, the ground state
orbital energies match closely to the experimentally mea-
sured ones [25] (Table I).

MO Occ Exp Sim

2σg 2 1.533 1.299

2σu 2 0.7717 0.7029

1πu 4 0.6273 0.6760

3σg 2 0.5726 0.5953

TABLE I. N2 molecular orbitals (MO), occupation numbers
(Occ), and energies for experimental (Exp) and calculated
(Sim) values (atomic units).

The ground state of O2, commonly known as triplet
oxygen, contains two unpaired, spin-up electrons occupy-
ing two πg molecular orbitals. Therefore, it is necessary
to run Octopus in spin-polarized mode, where spin-up
and spin-down electrons are placed in their own orbitals
and allowed to evolve independently in energy.

For O2, a bond length of 2.2866 was found to
minimize the energy of the system. Using the
GGA exchange-correlation functionals (XCFunctional =
gga x lb + gga c tca) [26, 27], we find good agreement
between the calculated and measured orbital energies [28]
(Table II). A number of other exchange-correlation func-
tionals with varying levels of complexity were explored,
including LDA and hybrid functionals ([box]3lyp, PBE0,
M05), but none of these other options produced a ground
state with an ionization potential Ip within 15% of the
measured value.

MO Occ Exp Sim (up, dn)

2σg 2 1.697 1.452, 1.387

2σu 2 1.096 0.9445, 0.8770

1πu 4 0.7218 0.7323, 0.6664

3σg 2 0.7273 0.7252, 0.6658

1πg 2 0.4436 0.4688, 0.3966

TABLE II. O2 molecular orbitals (MO), occupation numbers
(Occ), and energies for experimental (Exp) and calculated
(Sim, spin-up and spin-down) values (atomic units).

For the time-dependent calculation, we calculate the
response to a few-cycle, linearly polarized, MIR laser
pulse given by

E(t) = E0 sin10(ωt/2Nc) sin(ωt) , (1)

where the field strength E0 =
√

2I0/ε0c varies through
the peak intensities I0 = 1010 − 1014 W/cm2, Nc = 8
roughly corresponding to 1.5-2 cycles under the enve-
lope, and ω = 2πc/λ with wavelengths λ corresponding
to 1−4 µm. In order to minimize artifacts from portions
of the electron density nearing the edges of the computa-
tional box, a complex absorbing potential (CAP) is added
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using the following parameters: AbsorbingBoundaries
= cap, ABWidth = 3, and ABCapHeight = -0.2. The
maximum ionization yield over the range of intensi-
ties and wavelengths in this work is on the order of
10−5. This value is calculated from the final value
of the electron density which decreases due to absorp-
tion of electron density that reaches the edge of the
computational domain. The method of time propaga-
tion is Approximated Enforced Time-Reversal Symmetry
(TDPropagator = aetrs) with a step size of dt = 0.04.
A sin2 window is applied to the end of time-dependent
dipole moment to facilitate calculation of the spectrum.

III. CALCULATION OF SUSCEPTIBILITIES

The goal of the time-dependent calculations is to ex-
tract the susceptibility of a bulk gaseous medium contain-
ing an ensemble of randomly-oriented molecules. There-
fore time-dependent simulations are performed for many
angles θ = [0◦, 15◦, 30◦, . . . , 90◦] between the molecular
axis and laser polarization. The dipole spectra are calcu-
lated using the Fourier transform of the time-dependent
dipole moments (Figure 1).
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FIG. 1. The spectral amplitude of the laser pulse and the
induced dipole moment of an N2 molecule for two molecular
orientations. 0◦ indicates that the polarization of the laser
is aligned along the molecular axis, while for 90◦ they are
perpendicular.

The resulting magnitude of the dipole spectra at the
fundamental laser frequency is found to have a cos2(θ)
dependence even at a peak laser intensity of I0 = 1014

W/cm2. Given the cos2(θ) dependence, it is possible to
compute the polarization spectrum of an ensemble of ran-
domly oriented molecules using a linear combination of
the dipole spectra for parallel and perpendicular orienta-
tions of the molecules:

P̂ (ω) = ρ

(
1

3
d̂‖(ω) +

2

3
d̂⊥(ω)

)
, (2)

where ρ is the neutral density of molecules. For N2, ρ =
2.688 × 1025 m−3 and for O2 ρ = 2.505 × 1025 m−3 at

atmospheric pressure and room temperature. We note
that this linear combination is typically valid only in the
limit of low intensity laser pulses [29]. However, due to
the low amount of ionization (a ground state population
reduction of ≈ 10−5) that occurs for mid-infrared pulses
even up to 1014 W/cm2, we find that Eq. (2) is a good
approximation.

The total susceptibility of the media, which includes
both linear and nonlinear components, can be calculated
by dividing the full polarization response spectrum P̂ (ω)
by the laser’s spectrum E(ω):

χ(ω) =
P̂ (ω)

ε0Ê(ω)
. (3)

To extract the components of χ(ω) corresponding to the
linear χ(1)(ω) and nonlinear χ(3)(ω) properties of the
medium, we employ a procedure that separates the linear
and nonlinear responses spectrally.

In laser pulse propagation simulations the time-
dependent polarization P (t) of the medium is calculated
as a power series expansion of odd harmonics of the field
E(t). For example, considering up to 5th order nonlinear
processes, the polarization is

P (t) = ε0

[
χ(1)E(t) + χ(3)E3(t) + χ(5)E5(t)

]
. (4)

We relate the expansion Eq. (4) to the various harmon-
ics in the dipole spectrum using the Fourier transform,
yielding a set of equations where each polarization spec-
tra P̂ (nω) can be written as a sum of linear and nonlinear
contributions up to order χ(5):

1

ε0

[
P̂ (ω) + P̂ (3ω) + P̂ (5ω)

]
= χ(1)Ê1(ω) + χ(3)Ê3(ω) + χ(5)Ê5(ω)

+������
χ(1)Ê1(3ω) + χ(3)Ê3(3ω) + χ(5)Ê5(3ω)

+������
χ(1)Ê1(5ω) +������

χ(3)Ê3(5ω) + χ(5)Ê5(5ω) ,

where the quantities Ên(ω) represent the Fourier trans-
form of powers of the field En(t). Terms containing no
signal at a particular frequency are set to zero; for exam-
ple there is no 3rd harmonic in the fundamental field and
therefore E1(3ω) = 0. Collecting terms of the same har-
monic order yields a set of equations where the frequency
dependent susceptibility of each order can be written in
terms of the calculated molecular polarizations P and
field spectra E:

χ(5)(ω) =
P̂ (5ω)

ε0Ê5(5ω)
(5)

χ(3)(ω) =
P̂ (3ω)

ε0Ê3(3ω)
− χ(5) Ê5(3ω)

Ê3(3ω)
(6)

χ(1)(ω) =
P̂ (ω)

ε0Ê1(ω)
− χ(3) Ê3(ω)

Ê1(ω)
− χ(5) Ê5(ω)

Ê1(ω)
(7)
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Since these susceptibilities result from a time-dependent
interaction between the molecules and a short laser pulse,
they are generally valid for a range of frequencies near
the central frequency. We will demonstrate this in more
detail in the results section.

Conceptually, the subtraction procedure in Eqs. (5)-
(7) corresponds to, for example, eliminating the contri-
bution to the third harmonic yield from the fifth order
process that involves absorbing four laser photons and
emitting one, etc. The procedure is general and does
not depend on the particular shape of the field E(t) be-
cause the resulting spectral shape E(ω) is divided away
in calculating the susceptibilities. It also avoids division
by small values since the polarization at each harmonic
order is divided by a spectral field component that also
contains a signal at that particular harmonic. However,
we note that this perturbative approach is limited to in-
tensity and wavelength regimes where ionization is small.

In practice, it is only necessary to consider nonlin-
ear processes up to χ(5) in order to extract intensity-
independent values for χ(1) and χ(3). The magnitude
of the nonlinear contribution to the fundamental and
third harmonic polarizations drops off quite rapidly as
the harmonic order increases and becomes negligible for
harmonic orders 7 and above. We obtain intensity-
independent susceptibilities over the wavelength range
of 2 − 4 µm for peak intensities up to 1014 W/cm2. For
wavelengths between 1− 2 µm, the extracted χ(3) begins
to show a small intensity dependence for peak intensity
values above 5 × 1013 W/cm2 due to a non-negligible
amount of ionization. Intensity limitations of a pertur-
bative approach of modeling the total susceptibility of a
medium has also been observed in ab-initio calculations
of atomic hydrogen [30].

Using the expressions for susceptibility in Eqs. (5)-(7),
the linear refractive index is

n0(ω) =
√

1 + αχ(1)(ω) , (8)

where α is a scaling factor described in more detail below.
The nonlinear refractive index is

n2(ω) =
3

4

χ(3)(ω)

ε0cn20(ω)
. (9)

The scaling factor α (α = 1.055 for N2 and α = 1.034
for O2) is included to facilitate graphical comparison be-
tween the calculated values of this work and experimental
values. The percentage adjustment of the linear suscep-
tibility is consistent with the percentage difference be-
tween the calculated and measured values of Ip for both

species, ∆I
{N2}
p = 3.9% and ∆I

{O2}
p = 5.7%, where the

simulations have overestimated the binding energy of the
highest energy electrons, resulting in a weaker response
to the laser field. All values of the linear and nonlinear
index that appear in this work contain the scaling factor
α as described in Eqs. (8)-(9).

IV. RESULTS

In Figure 2a, the calculated values of the linear index
n0 for N2 are compared to the curve derived from exper-
imental data (Peck and Khanna 1966 [4])

n(λ) = 1 + 6.497378 × 10−5 +
3.0738649 × 10−2

λ−20 − λ−2
, (10)

where λ
{n0,N2}
0 = 0.0833 µm and is valid from 0.4679

to 2.0586 µm. Despite the stated upper limit of 2 µm,
Eq. (10) fits the calculated values remarkably well up
to 4 µm. The data points marked with dots are ex-
tracted from χ1 evaluated at the central frequency of
the laser pulse. The thin dashed lines extending from
each data point shows the frequency dependence of the
linear index, extracted from frequencies slightly above
and below the central frequency. It is interesting to note
that wavelength dependence extracted from each time-
dependent calculation agrees with the overall wavelength
dependence to within less than 0.1%.

In Figure 2b, the nonlinear index is compared to ex-
perimental data (Zahedpour 2015 [11]) and is also found
to be in very close agreement. Since there is a decreasing
spectral trend of the calculated values of n2, it is inter-
esting to compare its curve to the prediction provided by
a generalized Miller’s rule for third order susceptibilities.
Two formulations have been proposed in the literature.

The first is χ(3)(ω) = χ(3)(ω0)
[
χ(1)(ω)/χ(1)(ω0)

]4
pro-

posed by Ettoumi et al. [31] where ω0 corresponds to
a reference value (e.g. 2 µm). The second is χ(3)(ω) =
δχ(1)(3ω)χ(1)(ω)3 proposed by Bassani et al. [32] where
the factor δ = 2.841 × 10−13 m2/V2 is determined by
performing a least-squares fit of the simulation data. In
Figure 3, these predictive curves of n2 are plotted along
with the values calculated in this work.

It is clear that both predicted curves underestimate
the dispersion of n2 at long wavelengths compared to
our calculated values, since both are “flatter” at long
wavelengths. This finding is consistent with that of Ref.
[6] which pointed out that Miller’s rule tends to under-
estimate the strength of the dispersion, and that there
is not in general a strong correlation between the linear
and nonlinear dispersion properties over a wide range of
gases.

We find that the calculated values of n2 are well fitted
by a Sellmeier-like equation

n2(λ) =
P−1

λ−20 − λ−2
, (11)

where P {N2} = 14.63 GW and λ
{n2,N2}
0 = 0.3334 µm. As

seen in Figure 3, Eq. (11) captures the dispersion of n2
well, though it does force a singularity at λ = 0.333 µm.

In Figure 4, the calculated values for the linear index
n0 for O2 are compared to the experimentally derived
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FIG. 2. The calculated (Sim) optical properties of N2 com-
pared to experimental values (Exp). (a) The calculated index
of refraction n0 is compared to the curve Eq. (10). (b) The
nonlinear refractive index n2 compared to experimental data
[11].

curve (Zhang 2008 [8], Kren 2011 [9])

n(λ) = 1 + 1.181494 × 10−4 +
9.708931 × 10−3

λ−20 − λ−2
, (12)

where λ
{n0,O2}
0 = 0.115 µm and is valid from 0.4 to 1.8

µm. Extending this curve into the mid-infrared wave-
length region shows that the scaled values of linear index
from the simulation are well represented by Eq. (12).
The calculated nonlinear index from the simulations is
also in reasonable agreement with experimental data [11].
However, we do not find an increase of n2 near 2.4 µm
which places our calculated values in closer agreement
with the data from Shelton and Rice [33] for this par-
ticular wavelength. Just as with N2, the values of n2
for O2 can be fitted with the Sellmeier-like equation
Eq. (11) using the parameters P {O2} = 14.62 GW and

λ
{n2,O2}
0 = 0.3360 µm.
We note that there is only a few percent difference

between the calculated values of the nonlinear index n2

for N2 and O2 and that this is merely a coincidence. In
general, the value of Ip for a particular species is not
necessarily correlated with its value of n2. A well-known
example of this is the case of Ar and N2 which have very
similar values of Ip, yet n2 for Ar is roughly 25% larger
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FIG. 3. The calculated (Sim) nonlinear refractive index values
n2 of N2 are compared to two formulations of a generalized
Miller’s rule for third order susceptibilities. The best match
for these values is obtained by a new Sellmeier-like equation
Eq. (11).
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FIG. 4. The calculated values (Sim) of the index of refraction
n0 of O2 are compared to the experimentally derived curve
Eq. (12) (Exp).

than that of N2 in the MIR regime [11].
A simple model for the optical properties of air can be

constructed using a combination of the calculated sus-

ceptibilities for N2 and O2: χ
(1)
air = 0.8χ

(1)
N2

+ 0.2χ
(1)
O2

and

χ
(3)
air = 0.8χ

(3)
N2

+ 0.2χ
(3)
O2

. In Figure 6a, we compare the

calculated values of χ
(1)
air to index curve Ciddor 1996 [7]

(valid from 0.23 − 1.69 µm) and index curves Mathar
2007 [34] (valid in ranges 1.3 − 2.5 µm and 2.8 − 4.2
µm). We find remarkably good agreement and therefore
we can recommend the use of these curves for modeling
the linear properties of air within the MIR wavelength
regime of 1 − 4 µm. In Figure 6b, we plot calculated
values of the nonlinear index for air and recommend the
use of these values in simulations of the propagation of
MIR laser pulses.
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of air using a proportional combination of values from N2 and
O2.

V. SUMMARY

Using ab-initio calculations based on TDDFT, we have
calculated the linear and nonlinear refractive indices for
N2, O2, and air for wavelengths of 1−4 µm. Close agree-
ment between the experimental and calculated values of
the linear index demonstrates that it is possible to extend
the commonly-used linear index curves into the MIR re-
gion without modification. We also found that the cal-
culated nonlinear index values n2 for N2 and O2 are in
good agreement with experimental values up to 2.4 µm,
and our calculations provide new values for wavelengths
up to 4 µm. We showed that the predictive formulas for
the nonlinear index using Miller’s rule tend to underes-
timate the dispersion of n2 at long wavelengths, and we
proposed an empirical, Sellmeier-type, fit instead.

Our results show that a fully time-dependent calcula-
tion of the molecular response to a strong field can be
used to reliably extract linear and nonlinear susceptibil-
ities for intensities up to 5 × 1013 W/cm2, as long as we
correct for higher-order contributions to the dipole spec-
trum at a given frequency. Above 5 × 1013 W/cm2 the
ionization-induced depletion of the ground state starts to
influence the calculation and the extracted susceptibili-
ties are no longer intensity-independent. Our results pro-
vide a benchmark for future experimental and theoreti-
cal determination of the linear and nonlinear refractive
indices in the MIR spectral range, and will allow for ac-
curate calculations of phenomena involving long-distance
propagation in air.
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