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The scattering at ultralow temperatures of fermionic 14N16O molecules in the metastable 2Π3/2 is
considered, under the influence of parallel electric and magnetic fields. It is found that a magnetic
field of several thousand Gauss can enhance the ratio of elastic-to-inelastic collision rates. The
magnetic field can therefore assist the electric field in increasing this ratio. Evaporative cooling of
NO is feasible only in the presence of combined magnetic and electric fields and for temperatures
above about 70 mK.

PACS numbers:

I. INTRODUCTION

In a recent paper [1], we discussed the collision cross
sections of ground-state nitric oxide (NO) molecules at
low temperatures, below 1 K. This work was motivated
by the possibility of evaporatively cooling this species, if
it were to be produced in a sub-Kelvin sample by means
of buffer gas cooling, Stark deceleration, or other means
[2–5]. In Ref. [1] it was found that elastic rate constants
greatly exceed inelastic rate constants only at tempera-
tures above about one hundred milliKelvin. Evaporative
cooling would therefore be limited to temperatures on
this order, thus succumbing to the “milliKelvin catastro-
phe” common in cold molecules [6–8].

In the 2Π1/2 ground state considered in [1], the applica-
tion of a very large electric field (of order tens of kV/cm)
was found to suppress the inelastic rates, but this field
is likely too large to usefully do so in the lab. The ap-
plication of a magnetic field would do little to suppress
collisions in this state, which has a negligible magnetic
moment. By contrast, the metastable excited 2Π3/2 state
of NO does possess a magnetic moment and could in prin-
ciple be influenced by magnetic, as well as electric, fields.
Magnetic fields have been predicted to suppress inelastic
scattering of 2Π3/2 OH molecules [9–11], leading to ongo-
ing efforts to achieve evaporative cooling in this radical
[12].

In this paper we therefore extend the work of Ref. [1]
to the metastable state of NO, studying the influence of
combined (parallel) electric and magnetic fields on col-
lision rates. While the addition of a magnetic field has
some modest additional effect, the conclusion remains
that evaporative cooling of NO below 100 mK is prob-
lematic.
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II. THEORY

A. NO Molecular Structure in Absence of External

Field

In this section we briefly describe the structure of the
NO molecule. The NO ground state structure has been
considered in Ref. [1] to which we refer readers for de-
tails. In the rigid rotor approximation the internal struc-
ture of the ground 2Π electronic state, ground vibra-
tional state includes spin-orbit (SO) interaction, rota-
tion (ROT), spin-rotation (SR) interaction, Λ-doubling
structure, and nitrogen hyperfine interaction (HFS) in
14N16O. The well-defined axial components Λ and Σ
are combined to define Ω, a good quantum number in
the Hund’s case (a) representation. Components of Λ-
doubling are |Ω| = 1/2 and |Ω| = 3/2, both doubly de-
generate, of which 2Π3/2 is the higher-lying state. Their
separation is determined by a spin-orbit fitting parameter
of 123.146 cm−1 [13], far enough for neglecting the lower
state in our cold collision calculation. For these purposes
the nearest rotational level J = 5/2 can be neglected
because the 14NO rotational constant is 1.696 cm−1 [13].

The total angular momentum of the molecule ~J has
definite projections on the space-fixed axis, M , and on
the molecule-fixed axis, Ω. The eigenvectors of HSO +
HROT +HSR for each J,M are doubly degenerate in Ω

|2Π±

3/2〉 = |Λ = ±1, S,Σ = ±1/2〉|Ω = ±3/2, J,M〉 . (1)

In zero electric field, these states are combined into a par-
ity doublet +/−. The parity basis is a linear combination
of (1) that is labeled according to their total parity under
the inversion operation E∗ for each rotational level,

|2Π3/2(+/−)〉 = 1√
2

(

|2Π+
3/2〉 ± (−1)J−S |2Π−

3/2〉
)

. (2)

These functions can also be classified according to p =
e/f -symmetry, total parity exclusive of a (−1)J−1/2 ro-
tational factor. The Λ-doubling constant is ∆Λ = 5 ×
10−5K [14] which is about 350-times smaller than for
the 2Π1/2 state.

In addition, the 14N nucleus has spin I = 1 (the spin
of the 16O nucleus is zero), we extend the basis func-

tion set to also include ~I, coupled to ~J to form ~F in
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the lab frame, thus the J = 3/2 level of our interest
splits into three hyperfine components F = 1/2, F = 3/2,
and F = 5/2. This identifies the molecular basis set as
|η, |Ω|, J, I, F,MF ; p〉, where MF is the projection of F
onto the laboratory axis, and η is a general index which
represents all other quantum numbers. Within the 2Π3/2,
J = 3/2 manifold, we employ the shorthand notation
|F,MF ; p〉 ≡ |η, |Ω|, J, I, F,MF ; p〉.

B. Stark and Zeeman Field Interactions with NO

In the presence of a homogeneous electric field ~E ,
whose direction specifies the space-fixed Z-axis, the effec-
tive Hamiltonian is augmented by the Stark-effect term

HS = − ~ds · ~E . The space-fixed component of the electric

dipole moment of the molecule dZs = T 1
0 (
~ds) needs to be

rotated to the molecule-fixed axis, to which the electric

dipole moment ~dm is referred using a Wigner D-matrix,

T 1
0 (
~ds) =

∑

q D
(1)
q0

∗

T 1
q (
~dm). Electric field Hamiltonian

becomes

HS = −E
∑

q

D
(1)
q0

∗

T 1
q (
~dm) .

In the |J,M,Ω〉 basis, matrix elements of HS are well
known, and with the use of the Wigner-Eckart theorem
these terms are finally recasted into the F,MF -parity ba-
sis. We will not explicitly express terms here but refer to
e.g. [9].
The Stark effect for a single NO molecule in its first ex-

cited electronic state, J = 3/2 is demonstrated in Fig. 1.
In the absence of a magnetic field, the hyperfine compo-
nents are degenerate for |MF |-levels. The opposite parity
states repel as the field is increased. In the large-E limit
parity ceases to be a good quantum number. In this case
we follow convention and label the lower and upper states
of the doublet as e and f states, respectively (see below).
The critical field where the Stark effect transforms from
quadratic to linear is around E0 = ∆Λ/2d ∼ 7 V/cm,
based on the dipole moment of NO, d = 0.15872 D [15].
For fields larger than E0 the HS term dominates over the
hyperfine HHFS term in the molecular effective Hamilto-
nian and F is no longer a good quantum number. How-
ever, HS commutes with FZ resulting in a block-diagonal
Hamiltonian matrix elements with respect to the mag-
netic quantum number MF .
In order to transform smoothly from the zero-field Λ-

doubling Hamiltonian basis to the strong field basis for
fixed values of J,M , it is convenient to introduce a mixing
angle δM and denote lower and upper states of Λ-doublet
pairs by

|e〉 = cos δM |2Π+
3/2〉 − sin δM |2Π−

3/2〉 (3)

|f〉 = sin δM |2Π+
3/2〉+ cos δM |2Π−

3/2〉 . (4)

The Stark Hamiltonian in the {|e〉, |f〉} basis can be rep-

resented by

HS = − dEM |Ω|
J(J + 1)

[

cos 2δM sin 2δM
sin 2δM − cos 2δM

]

.

In the limiting cases δM = 0 that corresponds to a very
high field the Stark Hamiltonian matrix is a diagonal
matrix in the basis {|e〉 = |2Π+

3/2〉, |f〉 = |2Π−

3/2〉}, and
for δM = π/4 that corresponds to the zero-field limit
the Stark Hamiltonian is off-diagonal in the basis {|e〉 =
(|2Π+

3/2〉 − |2Π−

3/2〉)/
√
2, |f〉 = (|2Π+

3/2〉 + |2Π−

3/2〉)/
√
2}.

By constrast, the Λ-doubling Hamiltonian,

HΛ = ∆Λ/2

[

− sin 2δM cos 2δM
cos 2δM sin 2δM

]

.

is diagonal in the low-field limit δM = π/4.

In an applied homogenous magnetic field the molec-
ular magnetic moment interacts with the field and con-
sequently the energy levels are subjected to the Zeeman
effect with the Zeeman interaction Hamiltonian opera-

tor HZ = − ~µs · ~B where ~µs is the magnetic moment in
the space-fixed reference frame. Unlike the |Ω| = 1/2
state for which the orbital and spin contribution to the
molecular magnetic moment nearly cancel, the magnetic
moment of the |Ω| = 3/2 state (J = 3/2) is large. The
Landé factor gJ = (gLΛ + gSΣ)Ω/[J(J + 1)] = 0.777246
[16], where gL and gS are electron orbital and spin g-
factors respectively. The Zeeman splitting is shown in
Fig. 2 for the field range 0−200 G at which the stretched
molecular states are split by an energy shift comparable
to the Stark shift at the range of 0− 6000 V/cm. We fo-
cus on the low-field seeking state of highest energy which
is the stretched state with quantum numbers |5/2, 5/2; f〉
for collisions.

The electric and magnetic field configuration can be ar-
bitrary with an angle θEB between them. In the following
we will set θEB = 0, because the electric dipoles are more
easily induced when electric and magnetic moments are
parallel [10] and also becauseMF is a conserved quantum
number.

Figures 1 and 2 appear remarkably similar on the scale
shown, showing the range over which the two fields pro-
duce comparable energy shifts. However, the states be-
longing to these spectra are quite different. Consider
the stretched state |5/2, 5/2; f〉 of interest. This state is
doubly degenerate between states with MF = ±5/2 and
the same f . The states immediately lower in energy, in
large electric field differ by changing MF , but still retain
the f parity. By contrast, the stretched state at high
field in Figure 2 is nearly degenerate in e/f parity, but
has a unique, positive value of MF = +5/2. The state
immediately lower in energy changed MF , but still has
both parity states e and f . These differences will matter
below, in determining the dominant inelastic scattering
channels.
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FIG. 1: Stark energies of the hyperfine |F,MF ; e/f〉 and Λ-
doublet levels for J = 3/2 of the 2Π3/2 state of the NO
molecule at zero magnetic field. Each line is doubly degener-
ate in MF . The hyperfine state of our interest |5/2, 5/2; f〉 is
highlighted.
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FIG. 2: Zeeman energies of the hyperfine |F,MF ; e/f〉 and
Λ-doublet levels for J = 3/2 of the 2Π3/2 state of the NO
molecule at zero electric field. In a detailed resolution each
line would be p-doubly splitted. The hyperfine state of our
interest |5/2, 5/2; f〉 is highlighted.

C. NO-NO Interaction Hamiltonian

Let us now consider scattering due to the collision of
two NO molecules of mass m, and located at ~r1, ~r2, re-
spectively. We shall restrict our discussion to two-body
scattering in the center of mass frame by considering the

relative position ~R = ~r1 − ~r2 of body 1 with respect
to body 2, and reduced mass mred = m/2 associated
to the relative motion. In spherical coordinates we are
able to solve the scattering problem using a separation
of angular and radial variables of the total wave function
Ψ(R, θ, φ); the system is subjected to the centrifugal po-
tential ~2L(L+ 1)/(2mredR

2).

For a pair of 14N16O fermionic molecules the wave

function is antisymmetric with respect to interchange of
the molecules. The effect of the inversion of the coordi-
nates of all particles in the molecular center of mass is
given by E∗(R, θ, φ) = (R, π−θ, φ+π), thus the exchange
properties of the partial waves are governed strictly by
the properties of the spherical harmonics. Spherical har-
monics have a definite parity (−1)L with respect to in-
version about the origin, which means that the spatial
wave function is inversion-antisymmetric for odd L’s and
vice versa.
Considering collisions of identical species we must

use the symmetrized combinations of the uncoupled hy-
perfine representation |F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉.
The symmetrized functions (for F1 6= F2 or MF1 6=MF1

or p1 6= p2) are

|F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉S =

1√
2
{|F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉

± (−1)L|F2,MF2; p2〉|F1,MF1; p1〉|L,ML〉
}

,

(5)

with the + sign for bosonic molecules and the − sign
for fermionic molecules. In the case of indistinguishable
fermionic NO molecules this relation immediately ensures
that only odd partial waves are allowed in a totally anti-
symmetric wavefunction.
The potential energy surface between the molecules in-

cludes a van der Waals interaction and is represented as
−C6/R

6, which we will assume is isotropic in the present
calculation. We take C6 = 35.2Eh a

6
0 as a lower estimate

of actual C6 obtained from London formula and mean
dipole static polarizability for NO molecule [17]. We are
interested in the effects of long-range forces, and in par-
ticular dipole-dipole interactions, that are dominant at
long range in ultracold scattering. For this reason we
simply replace the short-range physics with a hard-wall
boundary condition at R = 30 a0. On this distance scale,
the higher excited rotational states are unlikely to be rel-
evant.
The long-range interaction is dominated by electric

dipole-dipole interaction between the two molecules

Vdd(~R) =− 3 (R̂ · ~d1)(R̂ · ~d2)− ~d1 · ~d2
4πε0R3

=−
√
30 d2

4πε0R3

∑

q;q1,q2

(−1)qC2
q

(

2 1 1
q −q1 −q2

)

C1
q1C

1
q2

(6)

where ~R = RR̂ is the intermolecular separation vector

in relative coordinates, and ~di is the electric dipole of
molecule i. C1

qi , C
2
q are components of first-rank and

second-rank spherical tensors, given by reduced spheri-
cal harmonics. The term Vdd can be given in a matrix
representation in the symmetrized hyperfine basis (5) as
written e.g. in [18] with a remaining dependence on the
radial coordinate R.
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The space fixed reference frame collisional Hamiltonian
for the NO-NO molecular system whose point mass is
located at the center of mass is

Htot = − ~
2

2mred

d2

dR2
+H1,2 + V , (7)

where H1,2 = H1 ⊗ 12 + 11 ⊗H2 is the sum of the one-
molecule effective Hamiltonians, V is the general term of
potential energy including centrifugal barrier, long-range
isotropic van der Waals and anisotropic dipole-dipole in-
teraction.
The total wavefunction Ψ(~R) is represented by a col-

umn vector having the n-th component of the form

Ψn(~R)=
ψn(R)

R

[

|F1,MF1; p1〉|F2,MF2; p2〉|L,ML〉S
]

,

where n is a collective index denoting all the channel
indices in the square brackets, and ψn is the diabatic
solution of the set of coupled radial equations
[

Nch
∑

m=1

(

− ~
2

2mred

d2

dR2
+ Em

)

δnm + Vnm

]

ψm = Etotψn(8)

with Em being the threshold energy of channelm, defined
as the eigenenergy of H1,2 in the R → ∞ limit. Etot

represents the total collision energy that is a conserved
quantity during the collision. The total energy Etot =
Ec + En, where Ec is the collision energy relative to the
threshold energy En of the incident channel.
In addition to symmetric properties of the wave func-

tions another molecular symmetry of great importance
for the interaction Hamiltonian is the total molecular an-
gular momentum projection onto an electric field axis,
Mtot = MF1 + MF2 + ML. This quantum number is
conserved in an electric field by dipole-dipole interaction
and the same holds for magnetic field.
The set of coupled Schrödinger equations (8) in

multichannel scattering was solved employing the log-
derivative propagator method [19]. Matching the log-
derivative matrix with the asymptotic solution for open
channels at large R yields the open-open submatrix of
the reaction K matrix, and subsequently the scattering
matrices S and T . The partial scattering cross section
for a collision process between an inbound channel i and
any of the outbound channels f is given by

σL,i→f (E)=2 × π

k2i

∑

ML

∑

f,L′,M ′

L

∣

∣〈i, L,ML|T |f, L′,M ′

L〉
∣

∣

2
,

where f = i for elastic process and f 6= i for inelastic pro-
cess, k2i = 2mred(Etot −E1,2

i )/~2 = 2mredEc/~
2 a square

of the wave number of an incident channel, and the nu-
merical factor of two is required because of permutation
symmetry in collisions of identical particles in indistin-
guishable hyperfine states. The total cross section is a
sum of partial cross sections over all possible incoming
partial waves L

σi→f (E)=
∑

L

σL,i→f (E) .

We also consider scattering rate constants, defined as
K = viσ, where vi is the incident collision velocity.
In practice, we consider only scattering within the

|Ω| = 3/2 manifold, and disregard possible collision
events where molecules scatter into |Ω| = 1/2 states,
which are far away in energy. Within this approxima-
tion, and for the |5/2, 5/2; f〉|5/2, 5/2; f〉 initial state of
interest, we find that including partial waves L = 1, 3, 5
is sufficient to converge the cross sections to perhaps 20
percent at the highest energies considered, a sufficient
convergence for our computation purposes. At the low-
est collision energy of 10−5 K a right bound of 15 000 a0
is sufficient to have a converged cross section below 5%.
Within these approximations there are Nch = 258 total
scattering channels.

III. SCATTERING RESULTS

We have calculated the elastic and inelastic cross sec-
tions for colliding molecules subjected to magnetic and
electric fields. Note, by elastic is meant collisions during
which the internal state |F,MF ; p〉 of both molecules re-
mains unchanged, whereas by inelastic is meant collisions
in which at least one molecule converts its internal state
to another. The collision energy within the wide range of
10 µK through 1 K is considered. As a rule of thumb, we
seek circumstances where the ratio of elastic to inelastic
collision rates is 100 or greater, to facilitate evaporative
cooling.
Fig. 3 shows cross sections for E = 6 000 V/cm and

B = 1 000 G with partial waves contributions to the to-
tal cross sections. Below 1.5mK the inelastic collisions
dominate over the elastic collisions. At around 10−4 K
the inelastic cross section features a maximum. Below
this energy lies the threshold regime where σinel scales

with collision energy Ec as E
1/2
c . Above this energy,

σinel ∼ E−2
c . For the indicated values of the electric

and magnetic field the favorable ratio of at least hun-
dred elastic to one inelastic collision event seems to hold
from 100mK to higher collision energies, thus allowing
NO molecules to be cooled by collisions to this limit.
Figure 3 closely resembles the similar Figure 3 in [1],

which showed the result for the |Ω| = 1/2 state of the
NO molecule, also in an electric field E = 6000 V/cm.
It differs, of course, in that the |Ω| = 1/2 had no mag-
netic moment and would not have been influenced by
a magnetic field. The fact that the overall magnitude
and variation of the cross sections is similar between the
|Ω| = 3/2 and |Ω| = 1/2 states, is reasonable since the
principal physics being explored here is due to the elec-
tric dipole interactions between the molecules. There are
also differences in the two cases, which likely arise from
details of angular momentum coupling in the |Ω| = 3/2
versus |Ω| = 1/2 state, and particularly in the hyperfine
structure.
The effect of the magnetic field on the |Ω| = 3/2 state

can be significant. To see this, we examine scattering rate
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FIG. 3: a) Elastic and b) inelastic cross sections versus the col-
lision energy for 6 000 V/cm applied electric field and 1 000G
applied magnetic field. Also shown are the individual partial
wave contribution L = 1, 3, 5 to the total cross section calcu-
lated in the inbound channel |5/2, 5/2; f〉|5/2, 5/2; f〉|1, 0〉S .

coefficients in zero electric field, as shown in Figure 4, for
collision energies Ec = 100mK and Ec = 1mK. Fig.
4 plots rate coefficients versus magnetic field strength.
At low collision energy 1 mK, the inelastic rate actually
exceeds the elastic rate, until a field of about 2000 G is
applied. At still higher fields, the inelastic rate continues
to diminish. Nevertheless, the ratio of elastic to inelastic
scattering remains less than an order of magnitude for
the fields considered. Qualitatively, the same behavior is
seen for Ec = 100mK, although elastic scattering already
exceeds inelastic scattering in zero field. The general
conclusion, from the point of view of evaporative cooling,
is that a magnetic field does not sufficiently increase the
ratio of elastic to inelastic scattering.

The presence of a magnetic field can also strongly influ-
ence the behavior of rate constants when an electric field
is present. This influence is indicated in Fig. 5. Panel a)
of this figure shows rate coefficients versus electric field
for a low collision energy, Ec = 1 mK. In the absence
of a magnetic field (black lines), the inelastic rate actu-
ally far exceeds the elastic rate for most of the range, a
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FIG. 4: Rate coefficient for elastic (solid curves) and inelastic
(dashed curves) as a function of magnetic field at E = 0V/cm
for the two different collision energies: Ec = 1mK (red, dark
curve) and Ec = 100mK (blue, light curve).

situation similar to the case in the |Ω| = 1/2 state (see
Figure 4 of Ref. [1]). Incorporating a magnetic field par-
allel to the electric field can ameliorate this difference:
elastic and inelastic rates are comparable for all electric
fields if the magnetic field is 1000 G (red lines); while
the elastic rate exceeds the inelastic rate for all electric
fields if B = 3000 G (blue lines). Moreover, large electric
fields tend to suppress the inelastic rates while leaving the
elastic rates alone, an effect already emphasized for the
|Ω| = 1/2 state. Admittedly, the fields required for this
suppression are unrealistically large to be a useful means
of achieving evaporative cooling at milikelvin tempera-
tures.
The situation is somewhat more promising in the case

of 100 mK collision energy [Figure 5 b), zoom to small
electric field in Figure 5 c)]. Here inelastic scattering
is already suppressed in zero field, and becomes further
suppressed as the magnetic field is increased. Meanwhile,
the elastic scattering rate is essentially unchanged by the
magnetic fields. In a B = 3000 G magnetic field, it is
conceivable that merely polarizing the atoms (E > 40
V/cm) is sufficient to promote evaporative cooling to this
temperature.

IV. SEMI-QUANTITATIVE ANALYSIS

Regardless of some inelastic suppression at large fields
and at temperatures above 10 mK, inelastic scattering is
nevertheless a fact of life for these radicals. It is worth-
while to look at the mechanism of inelastic scattering,
both to see why this scattering occurs, and why it is sup-
pressed.
Starting from the stretched state

|5/2, 5/2; f〉|5/2, 5/2; f〉, collisions can be inelastic,
thereby releasing energy, by transformations of two
types: either the molecules can change the total
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FIG. 5: Rate coefficients for elastic (solid curves) and inelastic
(dashed curves) scattering as a function of electric field at B =
0G (black curve), B = 1000G (red curve), and B = 3000G
(light blue curve). The collision energy is fixed at the value
a) Ec = 1 mK, b) Ec = 100 mK. c) The same as in b) but in
detailed electric field range.

projection of angular momentum on the field axis,
∆MF = ∆MF1 +∆MF2, with the shed angular momen-
tum transferred to partial-wave angular momentum; or
else one or both molecules can change parity state from
f to e.
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FIG. 6: Inelastic cross sections versus collision energy a) in ab-
sence of field, b) subjected to electric field of E = 6000V/cm
and magnetic field of B = 1000G. The collisions occur in the
incident state |5/2,MF1 = 5/2; f〉|5/2, MF2 = 5/2; f〉|1, 0〉S
and individual partial cross sections represent losses to chan-
nels that change MF1, MF2. Notation ∆MF = M ′

F1−MF1+
M ′

F2 −MF2.

The partial cross sections for the various ∆MF chan-
nels is shown in Figure 6, both in the absence of applied
field (a) and in fields of E = 6000 V/cm and B = 1000
G (b). Quite generally, these partial cross sections ex-
hibit a propensity rule, whereby larger changes in angu-
lar momentum ∆MF are suppressed relative to smaller
changes. A notable exception is the partial cross section
for ∆MF = 0. In zero field this process is somewhat sup-
pressed with respect to ∆MF = −1 for energies below
∼ 10 mK, while in strong fields it is suppressed to be
the least significant cross section of all.

The ability of the molecules to scatter into different
∆MF and parity channels depends qualitatively on two
things: the initial-to-final state coupling, and the energy
released in the collision. This can be seen in the plane-
wave Born approximation, where the transition ampli-
tude between initial channel i with wave number ki and
parities p1i, p2i, to final channel f with wave number kf
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FIG. 7: Rate coefficients in Born approximation for inelastic
scattering as a function of electric field at B = 0G between
the incident channel |f, f〉 ≡ |5/2, MF1 = 5/2; f〉|5/2, MF2 =
5/2; f〉|1, 0〉S and final channels indicated in the legend that
are either of different e/f parity or differentMF . The collision
energy is fixed at the value Ec = 1 mK. The solid purple curve
corresponds to a sum of all ∆MF = −1 state-changing colli-
sions, only selected dominant Ki→f are shown. Only Lf = 1
outcoming partial wave is considered.

and parities p1f , p2f , is given by [7]

〈i|T |f〉 = 4mred

~2
Ci,f

√

kikf

∫ ∞

0

jLi
(kiR)jLf

(kfR)

R
dR

= ACi,f

√

kikf
kLi

i

k
Lf

f

F (a, b, c; (ki/kf )
2).

(9)

Here ki and kf are the wave numbers of the initial and
final channels; F is a hypergeometric function whose in-
dices depend on angular momentum quantum numbers;
and Cif are matrix elements of the dipole-coupling in
the dressed states of the molecules, exclusive of the 1/R3

scaling.

The matrix elements Cif depend strongly on electric
field, which can be seen as follows. In the expression (6)
for the dipolar interactions, the matrix elements of the
individual C1

qi components is given by

C1
qi = 〈J,M, |Ω|

∣

∣C1
qi

∣

∣J,M, |Ω|〉
[

cos 2δM sin 2δM
sin 2δM cos 2δM

]

,

using [20]

〈J,M,Ω
∣

∣C1
qi

∣

∣J,M,Ω′〉 = δΩ,Ω′ Ω

J(J + 1)

{

M, qi = 0

±
√

J2−M2

2 , qi = ∓1

Thus in the two-molecule field-dressed basis the Ci,f ma-
trix elements depend on the parity states and the electric

field (via δM ) as

〈e e|C|e e〉 ∝ cos2 (2δM )

〈e e|C|ef〉 ∝ sin (4δM )

〈e e|C|ff〉 ∝ sin2 (2δM ) ,

(10)

Thus in the zero-electric-field limit, δM → π/4, the initial
channel with p1i = p2i = f is directly coupled only to the
final channel with p1f = p2f = e; both molecules must
change parity. Whereas in the high-electric-field limit,
δM → 0 and the initial channel p1i = p2i = f couples
only to channels where p1f = p2f = f also, that is the f
character of the state is preserved.
The second effect, of the energy released in the colli-

sion, follows from the Born approximation result, not-
ing that in the threshold limit ki/kf → 0, the hyper-
geometric function is (9) reduced to unity. The energy

dependence is therefore in the prefactor
√

kikfk
Li

i /k
Lf

f .
For final wave numbers given by the energy released,
kf =

√

2mred∆E/~2, where ∆E is the energy between
incident and final thresholds, and for p waves Lf = 1, we

have σif ∝ 1/
√
∆E, which is suppressed as the gap ∆E

gets larger. This idea was used to explain the electric
field suppression of inelastic rates in Ref. [1].
Selected rate constants in the Born approximation,

with ∆MF = −1, 0, are shown in Figure 7. The rates
show the smooth transition between ee final states that
are the dominant result at zero field, to the ff final states
that dominate at large field. At small electric field, both
∆MF = −1, 0 channels with opposite ee parity are read-
ily available, with gap ∆E remaining small, on the order
of the Lambda doubling energy. Both possibilities are
therefore approximately equally likely.
On the other hand, at large field, a parity-conserving

∆MF = −1 transition, |5/2, 5/2; f〉|5/2, 5/2; f〉 →
|5/2, 5/2; f〉|5/2, 3/2; f〉 is easily allowed, with a gap
corresponding to approximately the hyperfine split-
ting (Figure 1), so this transition proceeds rapidly.
But for a ∆MF = 0 transition, the only parity-
preserving operation is |5/2, 5/2; f〉|5/2, 5/2; f〉 →
|5/2, 5/2; f〉|5/2, 5/2; f〉, that is, elastic scattering. The
∆MF = 0 inelastic transition is therefore highly sup-
pressed.
Finally, we note that for any allowed transition, such

as ∆MF = −1 transition, |5/2, 5/2; f〉|5/2, 5/2; f〉 →
|5/2, 5/2; f〉|5/2, 3/2; f〉 at high field, the addition of
a magnetic field further splits the energy between the
|5/2, 5/2〉 and |5/2, 3/2〉 states, increasing the gap ∆E
and further somewhat suppressing the inelastic rates.
This is the result seen in Figure 5.

V. CONCLUSIONS

We have performed analysis of possibility of evapora-
tive cooling of NO molecules in their |Ω| = 3/2, J = 3/2
state and computed scattering cross sections and rate
coefficients under influence of electric and magnetic field.
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We found out that evaporative cooling is viable only for
collision energies Ec no lower than ∼ 100mK which is
similar to a result obtained for NO in the 2Π1/2 state [1].
Without an influence of external magnetic field the ra-
tio of elastic to inelastic rates is highly unfavorable and
does not exceed 100 at Ec = 100mK even when unre-
alistically high electric field is applied. Magnetic field
of few thousand gauss is necessary for effective cooling,
the suppresion of inelastic rate can be then controlled
by additional electric field that is in accordance with the
phenomenon found for the 2Π1/2 state [1].
As a result, no matter what field is applied and of

what magnitute, the most probable inelastic process is
the one that changes the sum of total angular momentum
projection ∆MF for both collision species by one.

Finally, we discussed the role of molecular state parity
that is during inelastic process preferred to be changed or
conserved with respect to the magnitude of electric field.
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