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Electron correlation of a molecular system, we show, can be enhanced or diminished through the
application of a homogeneous electric field anti-parallel or parallel to the system’s intrinsic dipole
moment. More generally, we prove that any external stimulus that significantly changes the expec-
tation value of a one-electron operator with non-degenerate minimum and maximum eigenvalues
can be used to control the degree of a molecule’s electron correlation. Computationally, the effect
is demonstrated in HeH+, MgH+, BH, HCN, H2O, HF, formaldehyde, and a fluorescent dye.. Fur-
thermore, we show in calculations with an array of formaldehyde (CH2O) molecules that the field
can control not only the electron correlation of a single formaldehyde molecule but also the entan-
glement among formaldehyde molecules. The quantum control of correlation and entanglement has
potential applications in the design of molecules with tunable properties and the stabilization of
qubits in quantum computations.

PACS numbers: 31.10.+z

I. INTRODUCTION

The expectation values of two or more subsystems of a
pure-state quantum system can become inseparable in a
process known as entanglement. Formally, entanglement
is present between two subsystems of a pure-state quan-
tum system when the system’s density matrix cannot be
expressed as a product of the subsystems’ density matri-
ces [1, 2]. In a many-electron quantum system there is
a special type of entanglement known as electron corre-

lation which occurs when the pure-state many-electron
density matrix cannot be expressed as the product of
one-electron density matrices [3–5]. In addition to the
computation of electron correlation, a significant chal-
lenge in quantum theory is the control of a molecule’s
electron correlation [6–9]. In this paper we show that
the degree of electron correlation and entanglement in
quantum molecular systems can be controlled through
an external stimulus such as an electric field.
The application of an electric field in the direction

parallel to a molecule’s dipole moment, we show com-
putationally, decreases the degree of electron correlation
in the molecule, and conversely, the application of an
electric field in the direction opposite to a molecule’s
dipole moment increases the degree of electron corre-
lation in the molecule. More generally, using the set
of one-electron reduced density matrices (1-RDMs) and
notions of convexity, we prove mathematically that any
external stimulus that significantly changes the expecta-
tion value of a one-electron operator with non-degenerate
minimum and maximum eigenvalues can be used to con-
trol the degree of electron correlation in the molecule.
The concept is illustrated through calculations with the
molecules HeH+, MgH+, BH, HCN, H2O, HF, CH2O,
and a fluorescent dye. Furthermore, we show in calcula-
tions with formaldehyde (CH2O) that the field can con-
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trol not only the electron correlation of a formaldehyde
molecule but also the entanglement among formaldehyde
molecules in an array. The control of a molecule’s cor-
relation and entanglement has potential applications to
designing molecules and materials with controllable prop-
erties as well as modifying the degree of correlation be-
tween fundamental units such as qubits in quantum com-
putation.

II. THEORY

An electric field applied to a molecular system, whose
magnitude provides a continuous parameter for control-
ling the strength of the dipole moment, can be employed
to control the degree of the molecule’s electron correla-
tion. More generally, we can show that any adjustable
external stimulus that changes the expectation value of a
one-electron operator 1Ô with non-degenerate minimum
and maximum eigenvalues can be employed to control a
molecule’s electron correlation. To demonstrate this re-
sult, we will rely upon some key ideas from convexity and
reduced-density-matrix theory.[10–12].
The 1-RDM of a pure N -electron state is computable

from the state’s N -electron wavefunction

1D(1, 1̄) = N

∫

ψ(123..N)ψ∗(1̄23..N)d(23..N). (1)

Such a 1-RDM is said to be pure N -representable [13–
16]. Although the set of pure N -representable 1-RDMs
is not convex, it is contained within the convex set of
ensemble N -representable 1-RDMs [14]. A 1-RDM is en-
semble N -representable if and only if it can be obtained
from the integration of at least one ensemble N -electron
density matrix [10, 11, 13]. Because the set is convex, all
1-RDMs within the set can be expressed as convex com-
binations of its extreme 1-RDMs [12]. Coleman proved
the key result that the extreme 1-RDMs are the pure-
state 1-RDMs whose wavefunctions are Slater determi-
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nants [11, 13]. Formally, the convex set of ensemble N -
representable 1-RDMs is the convex hull of its extreme
elements, P 1

N = Conv(SSlater) where SSlater is the set of
1-RDMs whose N -electron pre-images are Slater deter-
minants.
The expectation value of the one-electron operator 1Ô

is expressible in terms of the 1-RDM:

〈1Ô〉(ǫ) = Tr(1Ô 1D(ǫ)) (2)

where ǫ is a controllable parameter such as an electric
field for controlling the expectation value of Ô. The ǫ
controls the expectation value of Ô by changing 1D(ǫ)
which is the 1-RDM of the ground state of the system
with the stimulus ǫ. By convexity the minimum and max-
imum expectation values occur at one or more extreme
1-RDMs. Importantly, from Coleman’s theorem [13] we
know that these 1-RDMs are contained in SSlater, the set
of uncorrelated 1-RDMs. From these two observations
we obtain the following theorem:
Theorem: If the operator 1Ô has a non-degenerate
ground state, then there is a unique extreme 1-RDM in
the uncorrelated set SSlater for which the minimum ex-
pectation value of 1Ô is achieved.
Proof: Because the expectation value of a one-electron
observable is an affine function of the 1-RDM, minimiza-
tion of the expectation value over the convex set of 1-
RDMs P 1

N must occur at one or more extreme points.

Because the operator 1Ô is assumed to have a non-
degenerate ground state, the minimum must occur at a
unique point. By Coleman’s theorem the unique extreme
point at which the minimum occurs must be a 1-RDM
with a Slater-determinant pre-image, that is a 1-RDM in
the uncorrelated set SSlater.
Similarly, If the operator 1Ô has a non-degenerate maxi-
mal state, then there is a unique extreme 1-RDM in the
uncorrelated set SSlater for which the maximum expec-
tation value of 1Ô is achieved. Consequently, the expec-
tation value of the operator 1Ô can be controlled with
ǫ to steer the 1-RDM towards the uncorrelated extreme
1-RDM at which the expectation value reaches its mini-
mum or maximum value.
Controllable 1-electron observables that correspond to

non-degenerate 1-electron operators provide a general
mechanism through their response to an external stimu-
lus such as an electric field for modulating the electron
correlation of a molecular system. In the case of the
dipole moment, as the electric dipole moment is moved
towards an extreme by the electric field, the 1-RDM
moves toward the extreme 1-RDM corresponding to the
Slater determinant with the minimum or maximum ob-
servable. Typically, a molecule with a greater polarizabil-
ity will be more sensitive to the electric field, and hence,
will exhibit greater changes in its electron correlation.
Practically, the magnitude of the stimulus must be less
than the value required to change the electronic identity
of the molecule; in the case of the electric-field stimulus
the field must be less than the value required to ionize the
molecule. Figure 1 shows a schematic representation of

the convex set of 1-RDMs. The color scheme of the set is
chosen to represent its convexity with the most blue color
(maximum value) and its yellow color (minimum value)
occurring at the extreme points (extreme 1-RDMs) of
the set. Changing the electric field steers the 1-RDM,
represented by the dot, towards increasing or decreasing
the dipole moment. In the direction towards the bound-
ary of the set of 1-RDMs, the electric field decreases the
electron correlation while in the opposite direction, the
electric field increases the electron correlation.

1
D

FIG. 1. A schematic representation of the convex set of 1-
RDMs is depicted. The color scheme of the set is chosen to
represent its convexity with the most blue color (minimum
value) and its most yellow color (maximum value) occurring
at the extreme points (extreme 1-RDMs) of the set. Chang-
ing the electric field steers the 1-RDM, represented by the
dot, towards increasing or decreasing the dipole moment. In
the direction towards the boundary of the set of 1-RDMs,
the electric field decreases the electron correlation while in
the opposite direction, the electric field increases the electron
correlation.

III. APPLICATIONS

After a discussion of computational methodology, we
explore computationally the entangling and disentan-
gling of molecules with an electric field through computa-
tions with two-electron systems HeH+ and MgH+ where
only the two valence electrons of MgH+ are correlated,
molecules BH, HCN, H2O, and HF, the formaldehyde
molecule CH2O and an array of 6 formaldehyde molecules
CH2O, as well as a fluorescent dye mimic of VF2.1.H.

A. Computational Methodology

Molecular electronic structure calculations were per-
formed on HeH+, MgH+, BH, HCN, H2O, HF, formalde-
hyde, formaldehyde clusters, and a fluorescent dye. The
two-electron calculation of HeH+ was performed with
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full configuration interaction (FCI), and the calcula-
tion of MgH+ was performed with a complete active-
space configuration interaction (CASCI) using an ac-
tive space of 2 electrons in 31 orbitals. For the larger
molecules we employed the parametric two-electron re-
duced density matrix (2-RDM) method in which a
parametrization of the 2-RDM is directly computed with-
out the many-electron wavefunction [17–24]. The aug-
mented correlation-consistent polarized valence double-
zeta (aug-cc-pVDZ) basis set was employed for cal-
culations of HeH+, MgH+, BH, HCN, H2O, and HF
the correlation-consistent polarized valence double-zeta
(cc-pVDZ) basis set was employed for calculations of
formaldehyde and the formaldehyde-cluster [25, 26], and
the Dunning-Hay double-zeta basis set was employed for
the dye mimic [27].
The degree of electron correlation in the 1-RDM is

quantified through its the von Neumann entropy [28],
equivalent to its first-order Rényi entropy [29],

S1 = −Tr(1D ln (1D)) (3)

or its second-order Rényi entropy [29–31].

S2 = − ln
(

Tr(1D2)
)

. (4)

As in Eq. (1), the 1-RDM is normalized to N . With
this normalization the von Neumann entropy of the 1-
RDM is a nonnegative quantity than vanishes only in
the absence of electron correlation. While the 1-RDM
can also be normalized to 1 in the definition of entropy,
such a normalization produces an entropy that is not
zero in the absence of electron correlation and that is
not size consistent upon the doubling of the quantum sys-
tem. Note that electron correlation, a form of entangle-
ment, is not the same as the electron correlation energy,
and that the relationship between these two quantities is
nontrivial [4, 32, 33]. Refer to Appendix A for a discus-
sion of electron correlation in terms of entanglement and
Appendix B for additional details and references on the
use of von Neumann entropy as a measure of electron
correlation. The second-order entropy provides experi-
mentally accessible information [34]. In section III B the
notation ∆Sα will be used to indicate the difference in
the entropy in the presence and the absence of an electric
field ǫ, ∆Sα = Sα(ǫ)−Sα(0). The α-order Rényi entropy
of cluster formation is given by

Sα,f = Sα,cluster −
∑

i

Sα,i, (5)

where the summation is over the entropy of each of the
individual molecules. The summation is permissible due
to the additivity of the Rényi entropy for non-interacting
constituents. The entropy of formation quantifies the ex-
cess quantum correlation that exists in the cluster due
to the intermolecular bonding. The von Neumann en-
tropy is used to measure both electron correlation and
entanglement for each molecule in section III B while the
second-order Renyi entropy is only employed to measure

electron correlation and entanglement in the formalde-
hyde array.

B. Results

For both HeH+ and MgH+ the first-order Rényi en-
tropy as a function of the field strength along and against
the dipole moment is shown in Table I . As predicted by
the theorem in section II, the electron correlation, mea-
sured by the entropy, increases with the electric field in
the direction against the dipole moment and decreases
with the electric field in the direction of the dipole mo-
ment. While not shown, the Euclidean distance from
the center of the 1-RDM set showed similar correlation
trends as the entropy. The 1-RDM moves towards a non-
interacting extreme point of the set as the expectation
value of the one-body dipole moment increases. Fig-
ure 2 also shows that for HeH+ the expectation value of
the Coulomb repulsion between a pair of electrons 1/r12
decreases with the field strength in the direction of the
dipole moment θ = 0 and increases with the electric field
against the direction against the dipole moment θ = π,
which is consistent with previous work showing a sta-
tistical relationship between r12 expectation values and
electron correlation [35].
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FIG. 2. For HeH+ the expectation value of the Coulomb
repulsion between a pair of electrons 1/r12, reported in a.u.
of energy, decreases with the field strength in the direction of
the dipole moment θ = 0 and increases with the electric field
against the direction against the dipole moment θ = π.

Table II displays the change in the energies, dipole
moments, and entropies of BH, HCN, H2O, and HF with
electric-field strength. The entropy decreases with the
electric field in the direction of the dipole moment while
the entropy increases with the electric field in the direc-
tion against the dipole moment. Figure 3 shows an ap-
proximately linear relationship between the change in the
dipole moment and the change in the first-order Rényi
entropy relative to the Rényi entropy at ǫ = 0 . While
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TABLE I. Dipole moments and entropies of HeH+ and MgH+

in the electric field (ǫ) are presented from p2-RDM calcula-
tions using the augmented cc-pVDZ basis set. The entropy
decreases with the electric field in the direction of the dipole
moment while the entropy increases with the electric field
in the direction against the dipole moment. The changes in
dipole moment and Rényi entropy are reported relative to
zero-field values. Dipole moments are expressed in units of
Debye (D), and the Rényi entropies are dimensionless.

ǫ(a.u.) |µ| S1 ∆|µ| ∆S1

HeH+ 0.015 1.9296 0.1316 0.1614 −0.0014
0.010 1.8705 0.1321 0.1023 −0.0009
0.000 1.7682 0.1330 0.0000 0.0000

−0.010 1.6795 0.1333 −0.0887 0.0003
−0.015 1.6389 0.1338 −0.1293 0.0008

MgH+ 0.015 4.7615 0.3449 1.1779 −0.0588
0.010 4.4078 0.3602 0.8242 −0.0435
0.000 3.5836 0.4037 0.0000 0.0000

−0.010 2.5031 0.4763 −1.0805 0.0726
−0.015 1.8224 0.5281 −1.7612 0.1244

the computed results are approximately linear and mono-
tonic, the theoretical results presented in the previous
section do not require this relationship to be linear or
even strictly monotonic.

TABLE II. Dipole moments and entropies of molecular sys-
tems in the electric field (ǫ) are presented from p2-RDM cal-
culations using the augmented cc-pVDZ basis set. The en-
tropy decreases with the electric field in the direction of the
dipole moment while the entropy increases with the electric
field in the direction against the dipole moment. The changes
in dipole moment and Rényi entropy are reported relative to
zero-field values. Dipole moments are expressed in units of
Debye (D), and the Rényi entropies are dimensionless.

ǫ(a.u.) |µ| (D) S1 ∆|µ| (D) ∆S1

BH −0.015 0.1036 1.0330 −1.2682 0.0626
−0.005 1.0499 0.9903 −0.3219 0.0199
0.000 1.3718 0.9704 0.0000 0.0000
0.005 1.7156 0.9525 0.3438 −0.0179
0.015 2.6268 0.9205 1.2550 −0.0499

HCN −0.015 1.8065 1.4970 −1.2605 0.0132
−0.005 2.1001 1.4882 −0.9669 0.0044
0.000 3.0670 1.4838 0.0000 0.0000
0.005 3.1707 1.4791 0.1037 −0.0046
0.015 3.8377 1.4707 0.7707 −0.0131

H2O −0.015 1.3462 0.8144 −0.7215 0.0076
−0.005 1.9534 0.8091 −0.1143 0.0023
0.000 2.0677 0.8068 0.0000 0.0000
0.005 2.1985 0.8048 0.1308 −0.0020
0.015 2.2842 0.8017 0.2165 −0.0051

HF −0.015 1.6620 0.6404 −0.2564 0.0050
−0.005 1.8913 0.6368 −0.0271 0.0014
0.000 1.9184 0.6354 0.0000 0.0000
0.005 2.0155 0.6339 0.0971 −0.0015
0.015 2.0454 0.6317 0.1270 −0.0037

Similar results are obtained for the molecule formalde-
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FIG. 3. The dipole moment relative to its value at ǫ = 0
versus the first-order Rényi entropy relative to its value at
ǫ = 0 is shown for each of the molecules (a) BH, (b) HCN,
(c) H2O, and (d) HF. The data indicates an approximately
linear relationship. For BH the Pearson correlation coefficient
is 0.981 and the slope of the best-fit line is -23.69 a.u. The
Rényi entropies are dimensionless.

hyde. We apply a homogeneous one-dimensional electric
field of strength starting from 105-108 V/m, as used in
experiment [36] and proceeding to 109 V/m. Table III
shows that both the first-order and second-order Rényi
entropies decrease with the electric field in the direction
of the dipole moment while they increase with the electric
field in the direction against the dipole moment. Impor-
tantly, the modulation of the electron correlation by the
electric field is applicable to not only individual molecules
but also clusters of molecules.
Clusters of formaldehyde molecules have been em-

ployed in cold-temperature experiments, first reported
in 2003 [37] and perfected in 2016 using an electrostatic
Sisyphus trap [36]. We consider the two-dimensional lat-
tice of six formaldehyde molecules separated by 5.0 Å
shown schematically in Fig. 4. As for the single formalde-
hyde molecule, Table III reveals that the Rényi entropies
of the cluster decrease with the electric field in the direc-
tion of the dipole moment while they increase with the
electric field in the opposite direction. Significantly, as
displayed in Fig. 5, the increase or decrease in the en-
tanglement of the cluster system is amplified compared
to that of the individual molecules at infinite separation.
The electric field controls not only the electron correla-
tion within the molecule but also the electronic entangle-
ment of formaldehyde molecules.
We also examined the effect of the electric field on the

electron correlation of larger molecules such as a fluo-
rescent dye mimic of VF2.1.H [39, 40], which has been
used for sensing voltage in neurons [40]. Figure 6 displays
the fluorescent dye mimic of VF2.1.H [39, 40]. Table IV
presents the first-order Rényi entropy as a function of
the field strength along and against the dipole moment
. As seen in the other molecular systems, the electron
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FIG. 4. Schematic of the (CH2O)6 crystal from Jmol [38]
is shown. The oxygen atoms are marked in red, the carbon
atoms in grey and the hydrogens in black.

TABLE III. Changes in the dipole moments and entropies of
CH2O and (CH2O)6 are reported as functions of the electric
field ǫ relative to their values at zero field ǫ = 0. In both cases
the entropy decreases with the electric field in the direction
of the dipole moment but increases with the electric field in
the direction against the dipole moment. Dipole moments
are expressed in units of Debye (D), and the Rényi entropies
are dimensionless. The zero-field dipole moments of CH2O
and (CH2O)6 are 2.4263 D and 13.9403 D respectively. The
1-RDMs were computed from the a cc-pVDZ basis set using
p2-RDM.

ǫ (a.u.) ∆|µ| (D) ∆S1 ∆S2

CH2O −0.015 −0.6337 0.0224 0.0007
−0.005 −0.0808 0.0081 0.0002
0.000 0.0000 0.0000 0.0000
0.005 0.3407 −0.0064 −0.0003
0.015 1.1097 −0.0208 −0.0007

(CH2O)6 −0.015 −3.8415 0.1517 0.0008
−0.005 −2.6110 0.0484 0.0003
0.000 0.0000 0.0000 0.0000
0.005 1.5238 −0.0384 −0.0002
0.015 4.2936 −0.1427 −0.0007

correlation, measured by the entropy, increases with the
electric field in the direction against the dipole moment
and decreases with the electric field in the direction of
the dipole moment. The change in entropy reflects the
movement of the 1-RDM towards a non-interacting ex-
treme point of its N -representable set as the expectation
value of the one-body dipole moment increases.

IV. DISCUSSION AND CONCLUSIONS

The degree of electron correlation and entanglement
in quantum molecular systems can be controlled through
an external stimulus such as an electric field. We proved
that any external stimulus that significantly changes the
expectation value of a one-electron operator with non-
degenerate minimum and maximum eigenvalues can be
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FIG. 5. The first-order Rényi entropies S1 of the six noninter-
acting molecules and the cluster are shown as functions of the
electric field in the direction of the dipole moment (θ = 0) and
in the direction opposite to the dipole moment (θ = π). The
cluster disentangles and entangles more in the field than the
six noninteracting molecules, which indicates that the field
cannot only decorrelate (correlate) the individual molecules
but also disentangle (entangle) the molecules from each other.
The Rényi entropies are dimensionless.

FIG. 6. A fluorescent dye mimic of VF2.1.H is shown.

used to control the degree of electron correlation in the
molecule. To obtain this result, we employed the convex-
ity of the set of 1-RDMs and Coleman’s theorem that the
extreme 1-RDMs of the set are the uncorrelated 1-RDMs
whose N -electron wavefunctions are Slater determinants.
Using the electric field, for example, to steer the 1-RDM
in the direction of the extreme 1-RDM where the dipole
moment reaches its maximum value causes the quantum
system to decorrelate.

The control of quantum molecular systems was demon-
strated computationally with HeH+, MgH+, BH, HCN,
H2O, HF, CH2O, a fluorescent dye, as well as an ar-
ray of six CH2O. Using the first-order and second-order
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TABLE IV. Changes in the dipole moments and entropies of
a fluorescent dye mimic of VF2.1.H are reported as functions
of the electric field ǫ relative to their values at zero field ǫ = 0.
The entropy decreases with the electric field in the direction
of the dipole moment but increases with the electric field in
the direction against the dipole moment. Dipole moments are
expressed in units of Debye (D), and the Rényi entropies are
dimensionless.

ǫ(a.u.) |µ| ∆|µ| (D) S1 ∆S1

0.0100 42.4705 13.3129 12.3920 −0.1372
0.0075 40.2996 11.1419 12.4238 −0.1054
0.0050 38.6528 4.6908 12.4600 −0.0692
0.0010 29.3534 0.7957 12.5139 −0.0153
0.0000 29.1576 0.0000 12.5292 0.0000
-0.0010 26.6115 −2.5461 12.5451 0.0158
-0.0050 23.1638 −5.9938 12.6284 0.0992
-0.0075 18.3631 −10.7947 12.6960 0.1669
-0.0100 17.0677 −12.0899 12.7674 0.2382

Rényi entropies to quantify the degree of correlation, we
observed that degree of correlation could be decreased or
increased through the application of a homogeneous elec-
tric field in the direction parallel or anti-parallel to the
molecule’s intrinsic dipole moment. Using other metrics
to quantify the electron correlation, such as the distance
of the 1-RDM to the center of the convex set [41], led to
the same conclusions. The calculations with an array of
formaldehyde molecules also showed that field can con-
trol not only the electron correlation of a formaldehyde
molecule but also the entanglement among formaldehyde
molecules in an array. Thereby, the external stimulus
can also be employed to entangle or disentangle a set of
molecules assembled by intermolecular forces in a clus-
ter or synthetically by an optical trap. The control of a
molecule’s correlation and entanglement by an electric
field has potential applications to designing molecules
and materials with targeted properties, modifying the de-
gree of correlation between fundamental units in quan-
tum computation, and understanding the electric-field
properties of biological systems, especially membranes.
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Appendix A: Electron Correlation as Entanglement

Electron correlation is a form of quantum entangle-
ment. For pure state the definition of entanglement is
that the density matrix cannot be written as a product
of the density matrices of its subsystems. In the case of

electron correlation the subsystem density matrices are
the 1-RDMs in their natural-orbital (eigenfunction) basis
set. Therefore, an N -electron quantum system is corre-

lated if and only if its N -electron density matrix cannot
be written as a product of the 1-RDMs in their natural-
orbital basis set. This definition of electron correlation
in the terminology of entanglement is equivalent to the
conventional definition in which the wavefunction is inex-
pressible as a single Slater determinant. While entangle-
ment is often associated with particles that are located
at a great distance from each other, such large separa-
tion is not necessary for entanglement and not applicable
in the case of electrons bound to a molecule [42]. Ap-
pendix B also shows that the cumulant of the 2-RDM is
non-vanishing if and only if theN -electron density matrix
is correlated. Furthermore, the von Neumann entropy of
the 1-RDM is nonzero if and only if the cumulant of the
2-RDM does not vanish. Therefore, the von Neumann en-
tropy of the 1-RDM is nonzero if and only if the quantum
system exhibits electron correlation (entanglement of the
N -electron density matrix with respect to the product of
the 1-RDMs).

Appendix B: Quantification of Electron Correlation

The cumulant (or connected) part 2∆ of the two-
electron reduced density matrix (2-RDM) [5, 43–45] is
defined as

2∆ij
kl =

2 Dij
kl − 2 1Di

k ∧
1Dj

l (B1)

in which 1D and 2D are the 1- and 2-RDMs, normal-
ized to N and N(N − 1), and ∧ is the antisymmetric
tensor product known as the Grassmann wedge prod-
uct [5, 46]. From the cumulant’s definition in Eq. (B1)
it can be shown that the trace of the cumulant of the
2-RDM is nonpositive and equal to [47–49]

Tr(2∆) = −Tr(1D 1Q) ≤ 0 (B2)

with 1Q(=1 I −1 D) being the 1-hole RDM in terms of
the 1-RDM and the identity matrix 1I. Because 1D and
1Q are positive semidefinite, the trace of the cumulant
2-RDM vanishes if and only if 1D and 1Q lie in orthogo-
nal subspaces which is equivalent to the N eigenvectors
of the 1-RDM (natural orbitals) being completely filled
and the remaining eigenvectors (natural orbitals) be-
ing completely empty or the 1-RDM being representable
by an N -electron Slater determinant. Consequently, we
have that the trace of the cumulant 2-RDM vanishes if
and only if the N -electron quantum system is not cor-
related [47]. Furthermore, because the magnitude of the
trace of the cumulant 2-RDM reflects the degree to which
natural orbitals are shared by both particles and holes, it
provides a mechanism to quantify the degree of electron
correlation.
The trace of the cumulant can be related to the von

Neumann entropy [1, 2, 28, 29] in Eq. (3) The natural
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logarithm of the 1-RDM can be expanded in a power
series about the identity matrix

ln(1D) = ln(1I −1 Q) (B3)

= −

∞
∑

n=1

(1Q)n/n (B4)

≈ −1Q−O(1Q2). (B5)

Substituting Eq. (B5) into the von Neumann entropy in

Eq. (3) and using Eq. (B2) yields

S1 ≈ −Tr(2∆) +O(Tr(1D(1Q)2)) ≥ 0. (B6)

Hence, we observe that the von Neumann entropy is
equal to the negative of the trace of the cumulant 2-
RDM through the terms scaling linearly with the 1-hole
RDM. Like the negative of the trace of the cumulant 2-
RDM, the von Neumann entropy is a nonnegative quan-
tity which vanishes only in the absence of electron cor-
relation. The von Neumann entropy of the 1-RDM has
been employed extensively in the literature [32, 33, 49–
57] as a measure of electron correlation.
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