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The measurement-feedback is a versatile and powerful means, although its performance must be
limited by several practical imperfections resulting from classical components. This paper shows
that, for some typical quantum feedback control problems for state preparation (stabilization of a
qubit or a qutrit, spin squeezing, and Fock state generation), the classical feedback operation can
be replaced by a fully quantum one such that the state autonomously dissipates into the target or
a state close to the target. The main common feature of the proposed quantum operation, which
is called the coherent feedback, is that it is composed of the series of dispersive and dissipative
couplings inspired by the corresponding measurement-feedback scheme.

I. INTRODUCTION

Many quantum information systems contain measure-
ment feedback (MF) processes such as teleportation and
error correction [1]. However, the classical components
involved in such processes introduce practical imperfec-
tions due to detection loss, time delays in the signal pro-
cessing, and the finite-bandwidth of actuators, which as
a result severely limit the system performance. Thus, the
following important question arises; Can we replace those
classical components by fully-quantum systems that em-
ulate the same functionalities?
The theory for MF is well established [2–6]. In par-

ticular, MF control method based on the quantum non-
demolition (QND) measurement followed by the filtering
(i.e., the continuous-time state estimation) has been in-
vestigated in depth [7–13] and some notable experiments
have been demonstrated [14–19]. Figure 1 illustrates the
idea of this MF control, for the case of squeezed state gen-
eration, as follows. (a) The initial state is the vacuum.
(b) The system dispersively interacts with a probe field,
and thereby they are entangled; if we measure the out-
put field, the estimated system state becomes a squeezed
state with random amplitude conditioned on the mea-
surement result. The figure shows the ensemble of these
conditional states. (c) Finally, the measurement result
is fed back to compensate this random displacement for
generating the target squeezed state deterministically.
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FIG. 1: Schematic of the feedback control for the case of
squeezed state generation.

This paper gives an answer to the question posed
above. That is, for some typical quantum feedback con-
trol problems for state preparation, we show that the

classical operation that compensates the random dis-
placement (i.e., the feedback process in Fig. 1) can be
replaced by a fully quantum operation such that the state
autonomously dissipates into the target or a state close to
the target. Our idea is to use the coherent feedback (CF)
scheme to realize this quantum operation; i.e., a quan-
tum system is controlled via another quantum system in
a feedback way that does not involve any measurement
process. The CF scheme is implementable in a variety
of systems including optics, superconductors, and cold
atoms. See [20–28] for the basic theories and applica-
tions of CF, and [29–34] for experimental demonstrations.
Note that the control problem considered in this paper is
not contained in the framework where the superiority of
CF over MF (or the equivalency of CF and MF) has been
proved [20, 24–26, 28, 33]. Also the proposed scheme is
a sort of reservoir engineering but is different from the
other approaches [35–42], in that it relies on a novel reser-
voir composed of the series of dispersive and dissipative
couplings, inspired by the MF control composed of the
QND measurement and the subsequent filtering process.
The paper is organized as follows. In Sec. II, the CF

controller configuration is described in a general setting.
Then we demonstrate how the CF can replace the MF for
various state control problems: stabilization for a qubit
(Sec. III) and qutrit (Sec. IV), spin squeezing (Sec. V),
and Fock state generation (Sec. VI). Section VII con-
cludes the paper.

II. THE CONTROLLER CONFIGURATION

For a general Markovian open quantum system inter-
acting with a single probe field, the unconditional state
obeys the master equation

dρ

dt
= −i[H, ρ] + LρL† − 1

2
L†Lρ− 1

2
ρL†L. (1)

Here L is the coupling operator and H is a Hamilto-
nian; see Appendix A for a detailed description of this
equation. Thus, this system is generally characterized by
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(L,H). Let us consider two open systems G1 = (L1, H1)
and G2 = (L2, H2) that are unidirectionally connected
through a single probe field, as shown in Fig. 2(a). Then,
under the assumption that the propagation time from G1

to G2 is negligible, the whole system, denoted as G1 ⊲G2,
behaves as a Markovian open system and is given by
[23, 43, 44]

G1 ⊲G2 =
(

L1 +L2, H1 +H2 +
1

2i
(L†

2L1 −L†
1L2)

)

. (2)

(a) (b)

FIG. 2: (a) Cascade connection of two open quantum systems
G1 and G2. (b) CF for the system G via cascade connection.

In this paper, we consider the case where L1, L2, H1,
and H2 are operators living in the same Hilbert space
associated with a single system. Then, as shown in
Fig. 2(b), G = G1 ⊲ G2 is a CF controlled system where
the output field after the coupling L1 is again coupled
to the same system through L2. Moreover, L1 and L2

are specified as follows. First, L1 is Hermitian; L1 = L†
1.

This coupling induces a dispersive change of the system
state depending on the field state. For the MF case, we
measure the field after this coupling; then, ideally, the
system’s conditional state probabilistically changes to-
ward one of the eigenstates of L1, and a feedback control
based on the measurement result compensates this ran-
domness so that the target eigenstate is deterministically
generated. Our CF strategy is to apply a fully-quantum
dissipative process that emulates this feedback operation;
that is, in Fig. 2(b), L2 is chosen as a dissipative coupling
operator, which may drive the system state to the target.
Summarizing, the CF controlled system is given by

G = (L,H) = (eiφL1, Hsys) ⊲ (L2, 0)

=
(

L2 + eiφL1, Hsys +
1

2i
(eiφL†

2L1 − e−iφL1L2)
)

, (3)

where L1 = L†
1 is a given dispersive coupling and L2 is a

dissipative one to be appropriately chosen. Also Hsys is
a system Hamiltonian and eiφ represents a phase shifter
acting on the probe field. In what follows we demonstrate
how to choose these operators and evaluate the perfor-
mance of the resulting CF controlled system, in some
quantum control problems.

III. QUBIT STABILIZATION

In this section we study a qubit interacting with a
probe field through the dispersive coupling operator L1 =
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FIG. 3: (a) MF and (b) CF configuration for qubit control.
(c) Fidelity F = 〈ψ|ρ(∞)|ψ〉 between the ideal target state
|ψ〉 and the steady state ρ(∞) in the realistic model.

√
κσz =

√
κ(|e〉〈e| − |g〉〈g|), where |e〉 = [1, 0]⊤ and

|g〉 = [0, 1]⊤ [8, 45–49]. If we continuously monitor the
field after this coupling, as shown in Fig. 3(a), the qubit
state conditioned on the measurement result probabilisti-
cally converges to |e〉 or |g〉; some MF control compensate
this random change and realize deterministic convergence
to |e〉 or |g〉.

A. Control in the ideal setup

First we study the CF control emulating the above MF
scheme, in the ideal setting. Our initial task is to choose a
suitable dissipative coupling L2 that autonomously com-
pensates the dispersive effect induced by L1; here let us
particularly take L2 =

√
γσ− =

√
γ|g〉〈e|, which rep-

resents the energy dissipation of a two-level atom with
decay rate γ > 0. Figure 3(b) shows the configuration
of this CF control; the qubit interacts with the field via
L1, and the output field is fed back to again couple to
the system via L2. Moreover we set Hsys = 0. Then the
characteristic operators of this CF controlled system (3)
are given by

L =
√
γσ− + eiφ

√
κσz =

[

eiφ
√
κ 0√
γ −eiφ√κ

]

,

H =

√
κγ

2i
(eiφσ†

−σz − e−iφσzσ−)

=

√
κγ

2i

[

0 −eiφ
e−iφ 0

]

. (4)

Then, noting the fact that the uniqueness of the steady
state for the general finite dimensional master equation
(1) is equivalent to the deterministic convergence to it
[50], we find that any initial state ρ(0) deterministically
converges to the following steady state ρ(∞):

ρ(∞) = |ψ〉〈ψ|, |ψ〉 = 1√
4κ+ γ

[

2eiφ
√
κ√

γ

]

. (5)

Interestingly, this is a pure state. Also, an arbitrary pure
state, except |e〉, can be prepared by suitably choosing
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the control parameters γ and φ. |e〉 can be approximately
generated by setting γ ≪ κ, although we should note that
the dispersive coupling is usually realized in the so-called
weak coupling regime where κ is relatively small. Recall
now that the MF control can exactly stabilize |e〉 in an
ideal setup, while it cannot stabilize any pure state other
than |e〉 and |g〉. Hence, this CF is not a control scheme
that outperforms the MF. Rather, the important fact
we have learned through this case study is that the CF
scheme certainly has an ability to emulate the function-
ality of MF, i.e., the ability to compensate the dispersion
effect by autonomous dissipation and as a result generate
a desired unconditional state.
Before closing this subsection, we provide another way

to prove the unique convergence of the CF-controlled sys-
tem to the state |ψ〉 given by Eq. (5). We use the follow-
ing theorem:
Theorem 1 [51, 52]: A pure state |Ψ〉 is a steady state

of the master equation (1) if and only if |Ψ〉 is a common
eigenvector of L and iH + L†L/2.
Now the eigenvectors of the operator L are given by

|g〉 and |ψ〉. Then it is immediate to see that |ψ〉 is an
eigenvector of

iH +
1

2
L†L =

[

(κ+ γ)/2 −eiφ√κγ
0 κ/2

]

,

but |g〉 is not. Thus, from the above theorem, |ψ〉 is
a unique steady state; actually, if there exists a mixed
steady state, then |g〉 must also be a steady state due to
the convexity of the Bloch sphere, which is contradiction.
As a result, any initial state ρ(0) converges to |ψ〉.

Remark 1: Let us consider the setup where the two
couplings occur in a wrong order; that is, the field
first couples with the system via the dissipative opera-
tor L1 =

√
γσ− and secondly with the dispersive one

L2 =
√
κσz in the feedback way. Then the operators of

the CF controlled system are given by

L =
√
κσz + eiφ

√
γσ− =

[ √
κ 0

eiφ
√
γ −√

κ

]

,

H =

√
κγ

2i
(eiφσzσ− − e−iφσ†

−σz) =

√
κγ

2i

[

0 eiφ

−e−iφ 0

]

.

In this case, the ground state |g〉 = [0, 1]⊤ is the unique
steady state of the master equation; hence any initial
state converges to |g〉. This is a reasonable result, be-
cause what the CF controller considered here is doing is
to emulate the operation such that the stabilizing control
for |g〉 is performed before the measurement. Therefore,
though not useful, this result also shows the fact that
the all-quantum CF scheme certainly has an ability to
emulate the measurement-feedback operation.

B. Control performance in the imperfect setting

To demonstrate the control performance of the pro-
posed CF scheme in a realistic situation, here we con-

sider the setup of circuit QED [45]; this paper presented
a method for continuously monitoring a superconducting
charge qubit that dispersively couples to a transmission
line resonator. The master equation for the CF controlled
qubit, which takes into account the imperfections studied
in [45], is given by

dρ

dt
= −i[H +Hδ, ρ] +D[L]ρ+D[L(1)

ex ]ρ+D[L(2)
ex ]ρ, (6)

where H and L are the operators in the ideal setting
given in Eq. (4). That is, in the practical situation,
the qubit system is driven by the external Hamiltonian
Hδ = δσz with δ the detuning between the qubit tran-
sition frequency and the driving probe frequency. More-
over, the system is coupled to another uncontrollable
dissipative channel characterized by the Lindblad op-

erator L
(1)
ex =

√
ǫ1σ− and further a dephasing channel

L
(2)
ex =

√
ǫ2σz . In the recent experimental study [49],

which has applied the theory of [45] to perform the MF
control for qubit state preparation, the system parame-
ters are κ/2π = 0.13 MHz and ǫ2/2π = 0.005 MHz; hence
ǫ2 ≈ 0.04κ, meaning that roughly 4% loss occurs in the
dispersive coupling process. We expect further progress
will be made in experiments and assume ǫ2 = 0.01κ in
the simulation. Also we set ǫ1 = 0.01γ, i.e., 1% loss in
the dissipative coupling process. Finally φ = 0 is chosen
for simplicity. Figure 3(c) shows the fidelity between the
target state |ψ〉 in Eq. (5) with φ = 0 and the steady
state ρ(∞) of the master equation (6), as a function of
the z-component of the Bloch vector corresponding to
|ψ〉 (the target Bloch vector is depicted for several z in
the top of Fig. 3(c)). Note that, from the equation

|ψ〉〈ψ| = 1

4κ+ γ

[

4κ 2
√
κγ

2
√
κγ γ

]

=
1

2

[

1 + z x
x 1− z

]

,

we have z = (4κ/γ − 1)/(4κ/γ + 1). In the ideal set-
ting (the case δ = 0, ǫ1 = 0, and ǫ2 = 0), the fidelity
takes F (z) = 〈ψ|ρ(∞)|ψ〉 = 1 for all z; that is, as proven
in the previous subsection, an arbitrary pure qubit state
(except |e〉) can be prepared by suitably choosing the sys-
tem parameter κ/γ. In the practical setting, if the de-
tuning δ is small (desirably the case δ = 0 in the figure),
the fidelity monotonically decreases as z increases, due to

the additional decoherence process L
(1)
ex =

√
0.01γσ− and

L
(2)
ex =

√
0.01κσz . The figure shows that, in this case,

states close to the ground state can be prepared with
good fidelity nearly F (z) ≈ 1. In particular, the superpo-

sition (|g〉+ |e〉)/
√
2 can be stabilized with fidelity bigger

than 0.99. On the other hand, if δ becomes large, the
fidelity function takes the minimum at around z = −0.1
and decreases down to about 0.86 when δ = 0.3γ. It is
notable, however, that even in those cases a state close
to the excited state can be produced with fidelity ≈ 0.97.
Therefore, the CF scheme functions as a robust emulator
for selectively producing |e〉 or |g〉. Note of course that,
in order to stabilize a superposition, the detuning should
be sufficiently suppressed.
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IV. QUTRIT STABILIZATION

Next, let us consider a qutrit such as a three-level
atom, with states |1〉 = [1, 0, 0]⊤, |2〉 = [0, 1, 0]⊤, and
|3〉 = [0, 0, 1]⊤. We assume that the following dispersive
coupling L1 and the dissipative one L2 can be imple-
mented [53, 54]:

L1 =
√
κ





1 0 0
0 0 0
0 0 −1



 , L2 =
√
γ





0 0 0
1 0 0
0 1 0



 .

Measuring the probe after the dispersive coupling L1

produces the conditional state, which probabilistically
converges to one of the eigenstates of L1, {|1〉, |2〉, |3〉};
a suitable MF control can compensate this dispersive
change and deterministically stabilize an arbitrary eigen-
state [12, 13]. As for L2, this induces the state change
|1〉 → |2〉 → |3〉, i.e., a ladder-type dissipation for a three-
level atom illustrated in Fig. 4(a). This dissipation is
induced by the coupling of the qutrit to a single probe
field B(t); the Hamiltonian representing this instanta-
neous coupling is given by (see Appendix A)

Hint(t+ dt, t) = i
√
γ(|3〉〈2|+ |2〉〈1|)dB†(t) + h.c..

A. Control in the ideal setup

First let us set Hsys = 0 and φ = 0. Then the CF
controlled system (3), which might be implemented in a
similar setup as Fig. 3(b), is characterized by

L =





√
κ 0 0√
γ 0 0
0

√
γ −√

κ



 , H =
i
√
κγ

2





0 0 0
0 0 1
0 −1 0



 . (7)

The master equation has the following unique solution:

ρ(∞) =
1

5κ+ γ





0 0 0
0 4κ 2

√
κγ

0 2
√
κγ κ+ γ



 .

Unlike the qubit case, this is not a pure state; purity is
Tr(ρ(∞)2) = 1−8/(5+γ/κ)2. For instance when γ = 3κ,

ρ(∞) approximates |Ψ23〉 = (|2〉 + |3〉)/
√
2 with fidelity

〈Ψ23|ρ(∞)|Ψ23〉 ≈ 9.33. However, ρ(∞) is a particular
mixed state, which can stabilize neither |1〉 nor |2〉.
To emulate the MF scheme and stabilize an arbitrary

eigenstate of L1, the CF scheme needs to have a system
Hamiltonian Hsys to move the steady state. Here we take

Hsys = iu1(|2〉〈1| − |1〉〈2|) + iu2(|3〉〈2| − |2〉〈3|), (8)

where (u1, u2) are real parameters to be determined; Hsys

exchanges |1〉 and |2〉 with strength u1, and |2〉 and |3〉
with u2 as shown in Fig. 4(a). Finally we set φ = 0.
Then the CF controlled system (3) is characterized by L

in Eq. (7) and

H =





0 −iu1 0
iu1 0 −iu2 + i

√
κγ/2

0 iu2 − i
√
κγ/2 0



 . (9)

0 5 10
−1

0

1

0 10

(c)(b)(a)

FIG. 4: Energy diagram of the states (a), and the time evolu-
tion of ρ11 − ρ33 in the case κ = 100γ, (b) with several initial
states in the ideal setup and (c) with a specific initial state in
the realistic setup.

The parameter (u1, u2) can be determined by using
Theorem 1 given in Sec. III-A. Now, the eigenvectors of
L are calculated as

|Φ1〉 =
1

2κ+ γ





2κ
2
√
κγ
γ



 , |Φ2〉 =
1√
κ+ γ





0√
κ√
γ



 ,

and |Φ3〉 = |3〉. Note that, if κ ≫ γ, |Φ1〉 and |Φ2〉
approximates |1〉 and |2〉, respectively. Then, by solv-
ing the equation (iH + L†L/2)|Φj〉 = λj |Φj〉, we end up
with (u1, u2) = (−√

κγ/2, 0) for the case |Φ1〉, (u1, u2) =
(0,

√
κγ/2) for the case |Φ2〉, and u2 =

√
κγ for the case

|Φ3〉. Moreover, each |Φj〉 is a unique steady state of the
CF controlled system (the proof is given in Appendix B),
and thus any ρ(0) converges to |Φj〉 according to the re-
sult of [50].
In Fig. 4(b) the time evolution of ρ11 − ρ33 is plotted

with several initial states ρ(0) in the ideal setup. The
parameters are taken as κ = 100γ, hence |Φ1〉 ≈ |1〉 and
|Φ2〉 ≈ |2〉. This figure shows that, by properly choos-
ing the control parameters (u1, u2), we can selectively
and deterministically generate |1〉, |2〉, or |3〉. (Note that
ρ11 − ρ33 → 0 indicates ρ → |2〉〈2| in the figure.) That
is, the CF scheme certainly emulates the corresponding
MF control.

B. Control performance in the imperfect setting

Here we study a three-level artificial ladder-type atom
implemented in a superconducting circuit [54], as a re-
alistic model of the qutrit system. The first practical
imperfection is the parameter mismatch. Recall that we
need to add the driving Hamiltonian Hsys, and its pa-
rameters have to be exactly specified. For instance, if
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|Φ1〉 is the target, then the parameters must be exactly
(u1, u2) = (−√

κγ/2, 0). In reality, however, there exists
a deviation:

u1 = −(1 + ∆)
√
κγ/2,

where ∆ is the unknown parameter. Similarly, u2 = (1+
∆)

√
κγ/2 for the case of |Φ2〉 and u2 = (1 + ∆)

√
κγ for

the case of |Φ3〉. The non-zero ∆ would affect on the
performance of control.
Next, in addition to the driving Hamiltonian Hsys

given by Eq. (8), the system is subjected to

Hδ = δ1|1〉〈1|+ δ2|2〉〈2|,

where δ1 = ω13 − ωin − Ω1 and δ2 = ω23 − ωin − Ω2 are
detunings; ω13 and ω23 are the transition frequency of
the energy levels |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively,
with ωin the center frequency of the probe input field
and Ωi the frequency of the driving Hamiltonian with
strength ui. Likewise the case of parameter mismatch,
the detunings also violate the condition for the system
to have a pure steady state.
The last imperfection is decoherence. In addition to

the ideal ladder-type decay process represented by L2,
in reality there exist independent decay processes such
that the emitted photon leaks to the fields B1(t) and
B2(t). This coupling is represented by the interaction
Hamiltonian

H ′
int(t+ dt, t) = i

√
ǫ1

(

|2〉〈1|dB†
1(t)− |1〉〈2|dB1(t)

)

+ i
√
ǫ2

(

|3〉〈2|dB†
2(t)− |2〉〈3|dB2(t)

)

.

The master equation of the CF-controlled system, which
takes into account the above imperfections, is

dρ

dt
= −i[H +Hδ, ρ] +D[L]ρ+D[L(1)

ex ]ρ+D[L(2)
ex ]ρ,

where L
(1)
ex =

√
ǫ1|2〉〈1|, L(1)

ex =
√
ǫ2|3〉〈2|, L in Eq. (7),

and H in Eq. (9). The simulation shown in Fig. 4(c) has
been carried out with the following parameter choice.
First we take κ = 100γ, which realizes |Φ1〉 ≈ |1〉 and
|Φ2〉 ≈ |2〉. In the ideal case where ∆, δ1, δ2, ǫ1, ǫ2 are
all zero, the qutrit state ρ(t) selectively converges to
one of {|1〉, |2〉, |3〉}, as demonstrated in Fig. 4(b). The
decoherence strength is fixed to ǫ1 = ǫ2 =

√
κγ/1000, in

view of the fact that, in the experiment [54], the cor-
responding parameters are estimated as ǫ = 2π × 0.272
MHz and

√
κγ = 2π × 240 MHz. For the detunings

(δ1, δ2), they take random numbers generated from the
uniformly random distribution on [−√

κγ,
√
κγ]. The

parameter uncertainty ∆ also takes a random number
generated from the uniformly random distribution on
[−0.01, 0.01]. The random variables (δ1, δ2,∆) are
independent. The simulation result with this setting
is depicted in Fig. 4(c), where for each case of |Φi〉 30
sample paths are plotted. This figure clearly shows that
the state convergence to |2〉 or |3〉 is robust against the

above imperfections. For the case of |1〉, it looks that the
fluctuation of the trajectories is not small, but the mean
value of the fidelity 〈1|ρ(∞)|1〉 is 0.9531. Therefore, we
can conclude that the CF control scheme functions as a
robust state generator.

Remark 2: The robustness property against the de-
tuning Hδ can be theoretically explained as follows, es-
pecially when ǫ1 = ǫ2 = ∆ = 0. The iff condition for
the pure state |Φi〉 to be a steady state is that it is an
eigenvector of i(H + Hδ) + L†L/2; in the case of |Φ1〉,
this condition is represented by




iδ1 + (κ+ γ)/2 u1 0
−u1 iδ2 + γ/2 u2 −

√
κγ

0 −u2 κ/2









2κ
2
√
κγ
γ





=





2iκδ1 + κ(κ+ γ) + 2u1
√
κγ

−2u1κ+ 2iδ2
√
κγ + γu2

−2u2
√
κγ + κγ/2



 = λ





2κ
2
√
κγ
γ



 ,

for some constant λ. Now we choose (u1, u2) =
(−√

κγ/2, 0), which are the optimal parameters in the
ideal case δ1 = δ2 = 0. Then, the above eigen-equation
becomes





κ2 + 2iκδ1
κ
√
κγ + 2iδ2

√
κγ

κγ/2



 = λ





2κ
2
√
κγ
γ



 ,

which approximately holds with λ = κ/2, if δ1 and δ2
are much smaller than κ. Hence, |Φ1〉 is a robust steady
state of the CF controlled system, under the influence
of the detuning. Likewise, we can prove the robustness
property of |Φ2〉 and |Φ3〉.

V. SPIN SQUEEZING

We next study an atomic ensemble. The goal is to
generate a spin-squeezed state, which can be applied for
quantum magnetometry [56]. The basic variables are
the spin angular momentum operators (Jx, Jy, Jz). They
satisfy [Jx, Jy] = iJz and accordingly 〈∆J2

x〉〈∆J2
y 〉 ≥

|〈Jz〉|2/4, where 〈Ji〉 = Tr(Jiρ) and ∆Ji = Ji − 〈Ji〉.
Also the lowering operator is defined as J− = Jx − iJy.
Here we assume that the ensemble is large, i.e., J ≫ 1,
and the state lies near the collective spin-down state.
Then Jz can be approximated as Jz ≈ −J , and (Jx, Jy)
satisfy [Jx, Jy] = −iJ and thus 〈∆J2

x〉〈∆J2
y 〉 ≥ J2/4.

Hence the spin operators can be transformed to the
boson operators as q = Jx/

√
J , p = −Jy/

√
J , and

a = (q + ip)/
√
2 = J−/

√
2J [55]; As shown in Fig. 5,

this is a projection from the generalized Bloch sphere
onto the 2 dimensional phase space.
Suppose that the atomic ensemble dispersively couples

with an optical field with annihilation operator B1(t) via
the following Faraday interaction Hamiltonian [7, 18, 19]:

H
(1)
int (t+ dt, t) = i

√
κ
(

qdB†
1(t)− qdB1(t)

)

,
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FIG. 5: Projection of the spin operators to the boson opera-
tors, for a large atomic ensemble.

meaning that L1 =
√
κq. Through this interaction, the

polarization of the optical probe field changes depending
on the system’s energy level. Hence, measuring the probe
field after this coupling yields the conditional squeezed
state with random amplitude on the q-axis as shown in
Fig. 5; then, as implied by Fig. 1, a suitable MF can
compensate this dispersive change and generate an un-
conditional squeezed vacuum state. Here we take the
following dissipative system-field coupling, which simply
represents the energy decay, to construct a CF that em-
ulates this MF control:

H
(2)
int (t+ dt, t) = i

√
γ
(

adB†
2(t)− a†dB2(t)

)

,

meaning that L2 =
√
γa. In fact, as indicated by the

purple arrows in Fig. 5, this dissipative CF operation will
stabilize a squeezed vacuum state, or equivalently a spin
squeezed state at around Jz ≈ −J . This means that an
additional system Hamiltonian would not be necessary
to achieve the goal; that is, Hsys = 0. Also we set φ = 0.
Then the system operators of the CF controlled system
(3) are given by

H =
1

2i
(L†

2L1 − L†
1L2) = −

√
κγ

2
(qp+ pq),

L = L1 + L2 = (
√
κ+

√
γ)q + i

√
γp.

Note that H ∝ JxJy + JyJx is the two-axis twisting
Hamiltonian [56], which itself has an ability to yield a
spin squeezed state. As noted in Sec. I, there are several
approaches for producing such a squeezing operation via
CF [35–39, 41, 42], but the method proposed in this paper
differs from those in that it utilizes a novel feedback oper-
ation composed of the series of dispersive and dissipative
couplings inspired by the corresponding MF control.
Now, ρ(t) is Gaussian for all t, and thus it can be fully

characterized by the mean vector 〈x〉 = [〈q〉, 〈p〉]⊤ and
the covariance matrix

V =

[

〈∆q2〉 〈∆q∆p+∆p∆q〉/2
〈∆q∆p+∆p∆q〉/2 〈∆p2〉

]

,

where ∆q = q − 〈q〉 and ∆p = p− 〈p〉. These statistical
variables are subjected to the equations d〈x〉/dt = A〈x〉

and dV/dt = AV + V A⊤ +D, where

A =

[

−2
√
κγ − γ 0
0 −γ

]

, D =

[

γ 0
0 (

√
κ+

√
γ)2

]

.

The derivation of these matrices is given in Appendix C.
Then, in the limit t→ ∞, 〈x(t)〉 → 0 and V (t) converges
to the diagonal matrix diag(〈∆q(∞)2〉, 〈∆p(∞)2〉) with

〈∆q(∞)2〉 =
√
γ

4
√
κ+ 2

√
γ
, 〈∆p(∞)2〉 = (

√
κ+

√
γ)2

2γ
.

Clearly, 〈∆q(∞)2〉 < 1/2, hence the squeezed state is
generated by the CF control. For example when κ = 9γ,
the variances are 〈∆q(∞)2〉 = 1/14 and 〈∆p(∞)2〉 = 8,
which corresponds to about 8.5 dB squeezing. In this case
the purity is only Tr(ρ(∞)2) = 1/

√

4det(V (∞)) ≈ 0.66,
but this would not be a serious issue for the application
to quantum metrology.

Remark 3: Let us consider the setup where the two
system-probe couplings occur in a wrong order along the
feedback loop; the dissipative coupling represented by
L1 =

√
γa first occurs, and secondly the dispersive one

L2 =
√
κq occurs. In this case, the Hamiltonian is calcu-

lated as H =
√
κγ(qp+ pq)/2. The coupling operator is

the same as before, i.e., L = L1+L2 =
√
γa+

√
κq. Then

the system matrices characterizing this linear system are
given by

A =

[

−γ 0
0 −γ − 2

√
κγ

]

, D =

[

γ 0
0 (

√
κ+

√
γ)2

]

.

Then, the steady covariance matrix of the dynamics
dV/dt = AV + V A⊤ +D is obtained as

V (∞) =
1

2

[

1 0
0 1 + κ/(γ + 2

√
κγ)

]

.

Hence, the steady state is not a squeezed state. Note
that, likewise the qubit case discussed in Remark 1, this
results emphasizes the importance of the ordering of the
two couplings.

VI. FOCK STATE GENERATION

Lastly we consider the problem for generating a Fock
state via feedback. The system is a high-Q optical cavity
containing a few photons. In Refs. [9–11], the dispersive
coupling L1 =

√
κn, where n = a†a with a the anni-

hilation operator of the cavity mode, was taken for MF
control; this is the cross Kerr coupling between the cavity
field and the probe field represented by B1, the instanta-
neous Hamiltonian of which is given by

H
(1)
int (t+ dt, t) = i

√
κ
(

ndB†
1(t)− ndB1(t)

)

.

In fact, this coupling induces a phase shift on B1 de-
pending on the number of photons inside the cavity;
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hence, by measuring the output field represented by
dB̃1(t) =

√
κjt(n)dt+dB1(t) (see Eq. (A5)), we can esti-

mate the number of cavity photons and probabilistically
obtain one of the eigenstates of L1, i.e., a conditional
Fock state |m〉.
Our aim is to construct a dissipative CF controller that

compensates the dispersive process L1 and produces a
target Fock state deterministically. A simple dissipative
process is the optical decay L2 =

√
γa, represented by

the interaction Hamiltonian

H
(2)
int (t+ dt, t) = i

√
γ
(

adB†
2(t)− a†dB2(t)

)

,

where B2(t) is the annihilation field operator of the cor-
responding optical field. The CF control is structured by
connecting the output B̃1 to the input B2.
Moreover, we add a displacement Hamiltonian Hsys =

ig(a†−a), where g is the gain to be determined, to move
the steady state; note that merely the vacuum is pro-
duced if Hsys = 0. Also we take φ = 0. Hence, the CF
controlled system (3) is characterized by

L =
√
κn+

√
γa, H = ig(a†−a)+

√
κγ

2i
(a†n−na). (10)

0.6

0.7

0.8

0.9

1.0

3 40 1 2

Fidelity

Purity

3 40 1 2

Fidelity

Purity

(a) (b)

0.04

0.08

0.12

0.16

0.00
−2 0 2

 

 −2

0

2
γt = 4.0γt = 0.0 γt = 1.1(c)

−2 0 2
 −2 0 2

 

FIG. 6: (a, b) Time evolution of the fidelity F (t) = 〈1|ρ(t)|1〉
and the purity P (t) = Tr(ρ(t)2); the solid red and blue lines
are the case of ideal setup, while cyan and magenta lines are
the case under (a) decoherence and (b) parameter mismatch.
(c) Q function of the system state at γt = 0, 1.1, 4.0 in the
ideal setting.

Now we fix the target to the single-photon |1〉, with
initial state ρ(0) = |0〉〈0|. The control parameters are
γ = κ/4 and g = κ/2, which are chosen to maximize the
fidelity F (t) = 〈1|ρ(t)|1〉, at some point of time t. The
blue and red lines in Fig. 6(a,b) show the time-evolution
of F (t) and the purity P (t) = Tr(ρ(t)2), respectively; the
maximum fidelity is F ≈ 0.86 at γt = 1.1 (with P ≈
0.86), and F (t) converges to F ≈ 0.76 (with P ≈ 0.71).
Therefore, the proposed CF controller actually emulates

the MF scheme and generates a state close to |1〉 before
reaching to the steady state which still has a feature of
|1〉, as indicated by the Q function Q(α) = 〈α|ρ|α〉/π
shown in Fig. 6(c).

We also should study the effect of imperfection. In
practice, there exists an uncontrollable photon leakage;
we model this imperfection by introducing an extra opti-
cal field B3 coupled to the cavity through the interaction
Hamiltonian

H
(3)
int (t+ dt, t) = i

√
ǫ
(

adB†
3(t)− a†dB3(t)

)

.

The master equation of the CF-controlled system is then
given by

dρ

dt
= −i[H, ρ] +D[L]ρ+D[Lex]ρ, Lex =

√
ǫa,

with (L,H) given in Eq. (10). In Ref. [9] the author
estimated ǫ = 12 kHz while κ = 2.5 MHz, which leads
to ǫ ≈ κ/200; hence we take ǫ = κ/50, κ/100. The cyan
and magenta lines in Fig. 6(a) represent F (t) and P (t),
respectively, in this imperfect setting. The figure shows
that the peak fidelity F (t) = 〈1|ρ(t)|1〉 at γt = 1.1 de-
creases from the optimal value 0.86 to 0.84. Apart from
the decoherence, we have studied the case where the gain
parameter g in the displacement operation ig(a†−a) devi-
ates from the optimal value g = κ/2. Figure 6(b) shows
the case g = κ/2 + ∆ with ∆ = ±κ/40,±κ/80, while
ǫ = 0 is assumed. Then from the figure we find that
the fluctuation of the peak fidelity at γt = 1.1 is smaller
than the case of decoherence. In summary, in both cases
(a, b), the performance degradation is not so big, hence
the CF scheme for the single photon generation is robust
against those practical imperfections. This is in stark
contrast to the MF strategy [14] where |1〉 is generated
with fidelity F ≈ 0.9 but is collapsed immediately.

VII. CONCLUSION

Ini this paper we demonstrated that a CF control can
replace the MF one for the purpose of state preparation
in some typical settings. The CF controller has a com-
mon structure, which is simply a series of dispersive and
dissipative couplings inspired by the corresponding MF
operation. Hence, it would have a wide-applicability in
practice and work for other important objectives such as
the quantum error correction. In fact, some studies along
this direction have been conducted in a particular setup
[57, 58]. The sophisticated design theory for dissipative
quantum networks [59] would be useful to solve those
problems.

This work was supported in part by JSPS Grant-in-Aid
No. 15K06151 and JST PRESTO No. JPMJPR166A.
N.Y. acknowledges helpful discussions with M. Takeuchi.
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Appendix A: Markovian open quantum systems

1. Quantum stochastic differential equation and
master equation

Here we derive the dynamical equation and the master
equation of a general Markovian open quantum system
that interacts with a single coherent field.

Let b(t) be the annihilation operator of the coher-
ent field and assume that b(t) instantaneously interacts
with the system. b(t) satisfies the canonical commuta-
tion relation [b(t), b†(s)] = δ(t − s). As in the classi-
cal case, such a white noise process can be rigorously
treated by introducing the annihilation process operator

B(t) =
∫ t

0
b(s)ds; in particular, the infinitesimal change

dB(t) = B(t+ dt)−B(t) satisfies the following quantum
Ito rule [44]:

dtdB = 0, dBdB† = dt, dB2 = (dB†)2 = dB†dB = 0.
(A1)

The system-field interaction in the short time interval
[t, t+ dt) is generally described by the Hamiltonian

Hint(t+ dt, t) = i
(

LdB†(t)− L†dB(t)
)

, (A2)

where L is a system operator representing the coupling
with the field. The corresponding unitary operator in
this time interval is given by U(t+dt, t) = exp[−iHint(t+
dt, t)]. Then the total unitary operator from time 0 to
t, denoted by U(t), is constructed by U(t + dt) = U(t +
dt, t)U(t), and from the quantum Ito rule (A1) we can
derive the time evolution of U(t) as follows:

U(t+ dt)

= exp[−iHdt− iHint(t+ dt, t)]U(t)

=
[

I − iHdt− iHint(t+ dt, t)− 1

2
Hint(t+ dt, t)2

]

U(t)

=
[

I − (iH +
1

2
L†L)dt+ LdB†(t)− L†dB(t)

]

U(t),

(A3)

with U(0) = I, where we have added the time-invariant
system Hamiltonian H (thus, the total Hamiltonian is
Hdt + Hint(t + dt, t)). From dU(t) = U(t + dt) − U(t),
Eq. (A3) is equivalently represented by

dU(t) =
[

− (iH +
1

2
L†L)dt+ LdB†(t)− L†dB(t)

]

U(t),

with U(0) = I. This is called the quantum stochastic
differential equation (QSDE). Thus, a Markovian open
quantum system G, which interacts with a single coher-
ent field, is generally characterized by two operators L
and H , and thus it is denoted by G = (L,H).

For an arbitrary system operator X , the Heisenberg

equation of X(t) = jt(X) = U †(t)XU(t) is given by

dX(t) = U †(t+ dt)XU(t+ dt)− U †(t)XU(t)

= dU †(t)XU(t) + U †(t)XdU(t) + dU †(t)XdU(t)

= jt

(

i[H,X ] + L†XL− 1

2
L†LX − 1

2
XL†L

)

dt

+ jt([X,L])dB
†(t) + jt([L

†, X ])dB(t), (A4)

which is also called the QSDE. The field operator changes
to B̃(t) = jt(B(t)) and satisfies the output equation

dB̃(t) = jt(L)dt+ dB(t). (A5)

Let us assume that the probe is a coherent field with
amplitude α. Then the expectation 〈X(t)〉 obeys

d〈X(t)〉
dt

=
〈

jt

(

i[H ′, X ]+L†XL− 1

2
L†LX− 1

2
XL†L

)〉

,

where H ′ = H + (αL† − α∗L)/2i. In the Schrödinger
picture the expectation 〈X(t)〉 is represented in terms of
the time-dependent unconditional state ρ(t) as 〈X(t)〉 =
Tr[Xρ(t)]. Then it is easy to find that ρ(t) obeys the
master equation (1):

dρ

dt
= −i[H, ρ]+D[L]ρ, D[L]ρ = LρL†− 1

2
L†Lρ− 1

2
ρL†L,

(A6)
where H ′ has been replaced by H . Note finally that, if
the system interacts with m probe fields, then the result-
ing master equation is given by

dρ

dt
= −i[H, ρ] +

m
∑

k=1

D[Lk]ρ. (A7)

2. Derivation of the series product formula (2)

The series product formula (2):

G1 ⊲G2 =
(

L1+L2, H1+H2+
1

2i
(L†

2L1−L†
1L2)

)

(A8)

is directly obtained from Eq. (A3) as follows. Because
the single probe field represented by B(t) first interacts
with the system G1 = (L1, H1) and secondly with G2 =
(L2, H2), the change of the total unitary operator U(t) is
given by

U(t+ dt)

=
[

I − (iH2 +
1

2
L†
2L2)dt+ L2dB

†(t)− L†
2dB(t)

]

×
[

I − (iH1 +
1

2
L†
1L1)dt+ L1dB

†(t)− L†
1dB(t)

]

U(t)

=
[

I − i
(

H1 +H2 +
1

2i
(L†

2L1 − L†
1L2)

)

dt

− 1

2
(L1 + L2)

†(L1 + L2)dt

+ (L1 + L2)dB
†(t)− (L1 + L2)

†dB(t)
]

U(t).
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This means that the whole system G1 ⊲ G2 is character-
ized by Eq. (2) or (A8). Note that, if G1 and G2 are
different systems (for example, G1 is a qubit and G2 is
an amplifier), then (L1, H1) and (L2, H2) are operators
on the respective Hilbert spaces, and the more precise ex-
pression of the operators appearing in Eq. (A8) is, e.g.,
L1 ⊗ I + I ⊗ L2.

3. The general SLH formula

A more general Markovian open quantum system,
which couples with m independent probe fields B(t) =
[B1(t), . . . , Bm(t)]⊤, is characterized by the triplet
(S,L,H), where S is an m × m unitary matrix repre-
senting the scattering process of the probe fields. In this
case the QSDE is represented by [23]

dU(t) =
[

− (iH +
1

2
L†L)dt+Tr[(S − I)dΛ(t)T ]

+ dB(t)†L− L†SdB(t)
]

U(t),

with U(0) = I, where L = [L1, . . . , Lm]⊤ is a vector of
coupling operators, Λ = (Λij) is the matrix of gauge pro-
cess operators satisfying dΛijdΛkℓ = δjkdΛiℓ, and H is a
system Hamiltonian. It is shown in [23] that the cascade
connection from G1 = (S1, L1, H1) to G2 = (S2, L2, H2)
is given by

G1 ⊲ G2 =
(

S2S1, L2 + S2L1,

H1 +H2 +
1

2i
(L†

2S2L1 − L†
1S

†
2L2)

)

.

The proposed CF controlled system (3) can then be
equivalently represented by

G = (1, L1, Hsys) ⊲ (e
iφ, 0, 0) ⊲ (1, L2, 0),

where (eiφ, 0, 0) represents a static device that only
changes the phase of the field, such as a π/2 wave plate;
that is, a phase shifter is placed along the feedback loop
between the two systems, as shown in Fig. 7 below.

FIG. 7: Coherent feedback configuration for the system G,
composed of two couplings L1 and L2, and the phase shifter
eiφ placed along the feedback loop.

Appendix B: Proof of uniqueness of |Φj〉 for the
qutrit stabilization problem

Here we prove that, in the ideal setup, one of the vec-
tors {|Φ1〉, |Φ2〉, |Φ3〉} given in Sec. IV-A can be selec-
tively assigned as the unique pure steady state of the CF
controlled system, by properly choosing the parameters
(u1, u2) in the added Hamiltonian Hsys given by Eq. (8).
First let us determine the parameter (u1, u2), using The-
orem 1 given in Sec. III-A; that is, |Φi〉 is a steady state
of the master equation (1) if and only if it is an eigen-
vector of both L and iH+L†L/2. Now {|Φ1〉, |Φ2〉, |Φ3〉}
are eigenvectors of L in Eq. (7). Then for |Φ1〉 to be a
steady state, it must be an eigenvector of iH + L†L/2:

iH +
1

2
L†L =





(κ+ γ)/2 u1 0
−u1 γ/2 u2 −

√
κγ

0 −u2 κ/2



 .

That is,




(κ+ γ)/2 u1 0
−u1 γ/2 u2 −

√
κγ

0 −u2 κ/2









2κ
2
√
κγ
γ





=





κ(κ+ γ) + 2u1
√
κγ

−2u1κ+ u2γ
−2u2

√
κγ + κγ/2



 = λ





2κ
2
√
κγ
γ





must hold, where λ is an eigenvalue. This immediately
yields (u1, u2) = (−√

κγ/2, 0), with λ = κ/2. Similarly
we obtain (u1, u2) = (0,

√
κγ/2) for the case |Φ2〉 and

u2 =
√
κγ for the case |Φ3〉.

Now, by using the following result, we prove that |Φi〉
is a unique steady state.
Theorem 2 [52]: Let D be the subset composed of pure

steady states (called the “dark states”) of the Markovian
master equation (A7) in the Hilbert space H. If there is
no subspace S ⊆ H with S ⊥ D such that LkS ⊆ S for
all k, then D is the unique subset of steady states.
For the case |Φ1〉, D is given by D = span{|Φ1〉}. Then

it is easy to find that the subspace orthogonal to D is

S = span
{





γ
0

−2κ



 ,





0√
γ

−2
√
κ





}

.

Then, we have

LS = span
{





γ
√
κ

γ
√
γ

2κ
√
κ



 ,





0
0
1





}

,

which clearly shows that LS * S. Therefore, from Theo-
rem 2, |Φ1〉 is the unique steady state of the master equa-
tion of the system (L,H) with (u1, u2) = (−√

κγ/2, 0).
Then, from the equivalency of the uniqueness of the
steady state and the deterministic convergence to it for
a finite dimensional Markovian quantum system [50], we
arrive at the conclusion that any initial state ρ(0) con-
verges to |Φi〉. Similarly, we can prove the uniqueness of
|Φ2〉 and |Φ3〉.
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Appendix C: Linear open quantum systems

1. General single-mode linear model

Here we describe the QSDE of a general single-mode
open harmonic oscillator that interacts with a single field;
for a general system composed of multiple harmonic os-
cillators, see [4, 6]. This system is generally characterized
by the quadratic Hamiltonian

H =
1

2
x⊤Gx =

1

2
[q, p]

[

g1 g2
g2 g3

] [

q
p

]

, gi ∈ R,

and the coupling operator L = c1q + c2p (c1, c2 ∈ C),
where x = [q, p]⊤ is the vector of canonical variables of
the oscillator, satisfying qp − pq = i. Note that, from
Eq. (A2), the oscillator couples with the field via the
following interaction Hamiltonian:

Hint(t+ dt, t) = i(c1q + c2p)dB
†(t)− i(c1q + c2p)

†dB(t).

Then the QSDEs (A4) of q(t) = jt(q) and p(t) = jt(p),
for the system (L,H) described above, are given by

dq(t) = (g2 + Im(c1c
∗
2))q(t)dt + g3p(t)dt

− ic∗2dB(t) + ic2dB
†(t),

dp(t) = −g1q(t)dt− (g2 + Im(c∗1c2))p(t)dt

+ ic∗1dB(t) − ic1dB
†(t).

These set of equations can be summarized as

dx(t) = Ax(t)dt + iΣ[C⊤dB†(t)− C†dB(t)], (C1)

where x(t) = [q(t), p(t)]⊤,

A := Σ[G+ Im(C†C)], C = [c1, c2], Σ =

[

0 1
−1 0

]

.

Also the output field operator (A5) is expressed as

dB̃(t) = Cx(t)dt + dB(t). (C2)

Due to the linearity of Eq. (C1), the quantum state
ρ(t) is Gaussian for all t, if ρ(0) is Gaussian. Then the
system is fully characterized by the mean vector 〈x(t)〉 =
[〈q(t)〉, 〈p(t)〉]⊤ and the covariance matrix

V (t) =

[

〈∆q(t)2〉 ⋆
〈∆q(t)∆p(t) + ∆p(t)∆q(t)〉/2 〈∆p(t)2〉

]

,

where ∆q = q− 〈q〉 and ∆p = p− 〈p〉, and ⋆ denotes the
symmetric element. The dynamics of 〈x(t)〉 is readily
obtained as d〈x(t)〉/dt = A〈x(t)〉, where the field state is
assumed to be the vacuum. Also from the quantum Ito
rule (A1), the time evolution equation of V (t) is obtained
as

d

dt
V (t) = AV (t) + V (t)A⊤ +D, (C3)

where D = ΣRe(C†C)Σ⊤. It is known that, if all the
eigenvalues of A have negative real part, the mean vector
〈x(t)〉 converges to zero and Eq. (C3) has a unique steady
solution V (∞).
2. Steady covariance matrix for the spin squeezing

problem

We here apply the above formulas to our model, and
derive the dynamical equations of the system variables
(q(t), p(t)) and the covariance matrix V (t). Now the sys-
tem is an open quantum harmonic oscillator driven by
the following Hamiltonian and the coupling operator:

H = −
√
κγ

2
(qp+ pq), L = (

√
κ+

√
γ)q + i

√
γp

Hence, by definition we find

G =

[

0 −√
κγ

−√
κγ 0

]

, C = [
√
κ+

√
γ, i

√
γ].

Then A and D in Eqs. (C1) and (C3) are obtained as
follows;

A =

[

−2
√
κγ − γ 0
0 −γ

]

, D =

[

γ 0
0 (

√
κ+

√
γ)2

]

.

Hence, the differential equation (C3) has the following
unique steady solution:

V (∞) =
1

2

[ √
γ/(2

√
κ+

√
γ) 0

0 (
√
κ+

√
γ)2/γ

]

.
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