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Continuous-variable systems realized in quantum optics play a major role in quantum information
processing, and it is also one of the promising candidates for a scalable quantum computer. We intro-
duce a resource theory for continuous-variable systems relevant to universal quantum computation.
In our theory, easily implementable operations—Gaussian operations combined with feed-forward—
are chosen to be the free operations, making the convex hull of the Gaussian states the natural free
states. Since our free operations and free states cannot perform universal quantum computation,
genuine non-Gaussian states—states not in the convex hull of Gaussian states—are the necessary
resource states for universal quantum computation together with free operations. We introduce
a monotone to quantify the genuine non-Gaussianity of resource states, in analogy to the stabi-
lizer theory. A direct application of our resource theory is to bound the conversion rate between
genuine non-Gaussian states. Finally, we give a protocol that probabilistically distills genuine non-
Gaussianity—increases the genuine non-Gaussianity of resource states—only using free operations
and postselection on Gaussian measurements, where our theory gives an upper bound for the dis-
tillation rate. In particular, the same protocol allows the distillation of cubic phase states, which
enable universal quantum computation when combined with free operations.

I. INTRODUCTION

Continuous-variable quantum information deals
with continuous degrees of freedom, such as position
and momentum quadratures, in quantum systems like
optical fields or vibration modes. With a close connec-
tion to quantum optical experiments [1], continuous-
variable systems have been an important grounds for
quantum information processing [2], in parallel with
discrete-variable systems (qudits).

Gaussian states and Gaussian operations [3–5] es-
pecially play important roles in continuous-variable
quantum information processing. Despite being in an
infinite-dimensional Hilbert space, Gaussian states of-
ten enable analytical results in the analysis of quan-
tum information processing, due to their characteristic
functions in a Gaussian form. As an example, Gaus-
sian operations—operations that map Gaussian states
to Gaussian states—are completely characterized by
linear transforms of the mean and covariance [3]. Be-
sides the convenience of analytic treatment, it is de-
sirable to restrict ourselves in the Gaussian regime,
also because preparation of Gaussian states and ap-
plication of Gaussian operations are readily accessi-
ble in quantum optical experiments [1]. Not only
they are experimentally realizable, but they allow
for useful quantum information processing protocols
such as quantum teleportation [6–8], (noisy) quantum
cloning [9, 10], quantum-enhanced sensing [11–15] and
quantum key distribution [16].
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Unfortunately, such Gaussian schemes are limited
in their power of continuous-variable quantum in-
formation processing. It has been shown that non-
Gaussianity in the form of either non-Gaussian states
or non-Gaussian operations are required for entan-
glement distillation [3, 17–19], error correction [20],
loophole-free [21] violation of Bell’s inequality [22–
29], and universal quantum computation [30–33]. Re-
cently, it has been also shown that any Gaussian
quantum resource cannot be distilled if one is re-
stricted to the Gaussian regime [34]. To quantita-
tively take into account the necessary resource for
these protocols, resource theories of non-Gaussianity
have been proposed [35–38]. Resource theories are
frameworks for quantifying the amount of resource,
with respect to a given set of free states and free
operations [39, 40]. Previous proposals establish re-
source theories in a state-driven manner. They first
choose Gaussian states as the free states and define
resource measures based on the deviation, e.g. mea-
sured by relative entropy, from the set of Gaussian
states. Afterwards, Gaussian operations are naturally
chosen as the free operations, which preserve the set
of free states.

However, some non-Gaussian operations are actu-
ally easy to implement. A major class of such oper-
ations is the class of operations composed by Gaus-
sian operations with adaptive feed-forward on mea-
surement outcomes of Gaussian measurements. They
can produce probabilistic mixtures of Gaussian states,
which are non-Gaussian due to the non-convexity of
the set of Gaussian states. In contrast to state-
driven theories, setting Gaussian operations with feed-
forward as free operations is more suitable, when ac-
cessible operations are being considered. The convex
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hull of the Gaussian states is a natural set of free states
because it is invariant under the free operations and
also the largest set of states generated by them. It is
easy to see that all such free states have non-negative
Wigner functions [41]. This implies that the states or
operations outside of the free sets are necessary for
universal quantum computation, since quantum cir-
cuits involving only states with non-negative Wigner
function and operations that cannot create negativity
can be efficiently simulated classically [42, 43]. Thus,
a resource theory with this choice of free operations
and free states is more relevant to universal quan-
tum computation than previous proposals with the
set of free states being Gaussian states. Indeed, in
the discrete-variable case, similar resource theory of
quantum computation has been established by taking
the stabilizer operations with feed-forward as the free
operations and the convex hull of the stabilizer states
as free states [44, 45].

In this paper, we establish a resource theory rele-
vant to universal quantum computation with contin-
uous variable. Its free operations are Gaussian oper-
ations combined with feed-forward, which are experi-
mentally easy to implement and generate the convex
hull of Gaussian states, which we take as the set of
free states. States outside the convex hull of Gaus-
sian states—genuine non-Gaussian states—are the re-
source states. As a quantifier of the resourcefulness
in quantum computation, we consider the logarithmic
negativity of Wigner function, the logarithm of the in-
tegral of the absolute value of the Wigner function. It
is easily computable, and relevant to universal quan-
tum computation—it bounds the classical simulabil-
ity [46]. We show that it is a valid measure for genuine
non-Gaussianity, which takes zero for the states in
convex hull of Gaussian states and satisfies the mono-
tonic property under free operations. We compute the
logarithmic negativity for a number of common re-
source states and compare them with respect to their
mean photon numbers. We find that number states,
cubic phase states [47] as well as recently proposed ON
states [48] have similar values of logarithmic negativity
for fixed mean photon numbers. We further apply our
theory to the protocol implementing the cubic phase
gate using the ON state [48] and show that their pro-
tocol is efficient in terms of genuine non-Gaussianity.

To facilitate the preparation of the resource state,
we also provide the first distillation protocol that
increases the genuine non-Gaussianity. We exploit
a partial homodyne measurement idea considered
in [49, 50] to non-determinstically extract larger gen-
uine non-Gaussianity comparing to the initial value.
Our approach is entirely different from the discrete-
variable stabilizer quantum computation resource
state (magic state) distillation protocols, which are
based on the property of discrete-variable error cor-
recting codes [51–56]. Due to this different approach,

our protocol only requires a single copy of the input
state, unlike usual distillation protocols. In analog
to ref. [44]’s application of resource theory on magic-
state distillation, we apply our resource theory to this
protocol to give an upper bound of the obtainable log-
arithmic negativity with respect to the success rate of
the protocol. We verify it by numerically computing
the logarithmic negativity for input and output states,
when the input states are imperfect cubic phase states
obtained by applying a cubic phase gate to finitely
squeezed states. Conditioned on success, we find that
the protocol not only increases the logarithmic neg-
ativity but also increases the fidelity from a better
cubic phase state—a state obtained by applying a cu-
bic phase gate on a finitely squeezed state with larger
squeezing parameter. Thus, it works as “state distilla-
tion” as well as “genuine non-Gaussianity” distillation.

This paper is organized as follows. In Sec. II,
we introduce Gaussian states, Gaussian channels
and continuous-variable quantum computation. In
Sec. III, we establish the resource theory framework—
free states, free operations and a monotone. In
Sec. IV, we compare the genuine non-Gaussianity of
some resource states. In Sec. V, we apply our resource
theory on state conversion and distillation. Finally,
we conclude in Sec. VI by more discussions and future
directions.

II. PRELIMINARIES

A. Gaussian states and Gaussian channels

We use the notation in ref. [57]. An n-mode bosonic
continuous-variable system is described by annihi-
lation operators {âk, 1 ≤ k ≤ n}, which satisfy the
commutation relation

[
âk, â

†
j

]
= δkj , [âk, âj ] = 0.

One can also define real quadrature field operators
q̂k = âk + â†k, p̂k = i

(
â†k − âk

)
and formally define

a real vector of operators x̂ = (q̂1, p̂1, · · · , q̂n, p̂n),
which satisfies the canonical commutation relation
[x̂i, x̂j ] = 2iΩij . Here Ω = i

⊕n
k=1 Y , where Y is the

Pauli matrix. The mean photon number (power) in
mode k is given by the expectation value of operator
â†kâk =

(
p̂2k + q̂2k

)
/4− 1/2.

A quantum state ρ̂ can be described by its Wigner
characteristic function

χ (ξ; ρ̂) = Tr
[
ρ̂D̂ (ξ)

]
, (1)

where ξ = (ξ1, · · · ξ2n) ∈ R2N and D̂ (ξ) =
exp

(
ix̂TΩξ

)
is the Weyl displacement operator for

all modes. Under this convention, the displacement
operator on position D̂q (x) ≡ exp (−ip̂x/2), which
satisfies D̂q (x) |y〉 = |y + x〉. Similarly, D̂p (P ) ≡
exp (iq̂P/2), which satisfies D̂p (P ) |m〉 = |m+ P 〉.
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For a pure state |ψ〉, for simplicity, we will write
χ (ξ; |ψ〉) and for other similar cases.

The Wigner function is defined as the Fourier trans-
form of the Wigner characteristic function

W (x; ρ̂) =

ˆ
d2Nξ

(2π)
2N

exp
(
−ixTΩξ

)
χ (ξ; ρ̂) . (2)

Note by definition, both the Wigner function and the
Wigner characteristic function are linear in ρ̂.

A state ρ̂ is Gaussian if its characteristic function
has the Gaussian form

χ (ξ; ρ̂) = exp

(
−1

2
ξT
(
ΩΛΩT

)
ξ − i (Ωx)

T
ξ

)
. (3)

Here the x = 〈x̂〉ρ̂ is the state’s mean and Λij =
1
2 〈{x̂i − xi, x̂j − xj}〉ρ̂ is its covariance matrix, where

{, } is the anticommutator and 〈Â〉ρ̂ ≡ Tr
(
Âρ̂
)

for

operator Â.
Gaussian channels are complete-positive and trace-

preserving (CPTP) maps that map any Gaussian state
to a Gaussian state [3–5]. They can be extended to
Gaussian unitaries on the input and a vacuum envi-
ronment (Stinespring dilation) [3], therefore we focus
on Gaussian unitaries. A Gaussian unitary ÛS,d trans-
forms

Û†S,dx̂ÛS,d = Sx̂+ d, (4)

where d = (d1, · · · , d2n) is the displacement and
S is a matrix. Commutation relation preserving
requires that [

∑
m Samxm + da,

∑
n Sbnxn + db] =∑

mn Sam(2i)ΩmnSbn = 2iΩab, thus SΩST = Ω. Be-
cause SΩ

(
STΩS

)
=
(
SΩST

)
ΩS = Ω2S = −S, we

have STΩS = Ω. Since det (Ω) = 1, we have the Ja-
cobian of the linear transform |det (S) | = 1. Also
we have Û†S,d = ÛS−1,−S−1d. Here we give some ex-
amples of Gaussian unitaries: single-mode squeezing
Ŝ (s) = exp

(
s
(
â2 − â†2

)
/2
)
, where s is the squeez-

ing strength; phase rotation R̂ (θ) = exp
(
−iθâ†â

)
;

displacement operator which has already been intro-
duced.
Lemma 1.— Gaussian unitary corresponds to a lin-

ear coordinate transform for the Wigner characteristic
function and the Wigner function.

χ
(
ξ; ÛS,dρ̂Û

†
S,d

)
= χ

(
S−1ξ; ρ̂

)
exp

(
idTΩξ

)
, (5)

W
(
x; ÛS,dρ̂Û

†
S,d

)
= W

(
S−1 (x− d) ; ρ̂

)
. (6)

The proof is attached in Appendix A. In discrete-
variable systems, it is known that the Clifford uni-
taries are permutations on the discrete Wigner func-
tions [44]. Lemma 1 shows the analog between Gaus-
sian unitaries and Clifford unitaries.

In following, we list the well-known properties of
Wigner functions.
Lemma 2.— Wigner functions satisfy the following.

(2.1) Consider bipartite state ρ̂AB with two parts
A and B. Let xA, xB denote the variable in
Wigner function associated with each part. Then
W (xB ; TrA (ρ̂AB)) =

´
dxAW (xA, xB ; ρ̂AB) .

(2.2) The probability of homodyne mea-
surement on the m-th mode described by
{|qm〉〈qm|} has result qm with probability
Pm (qm) =

´
dpm

∏
k 6=m d

2xkW (x; ρ̂) . Similar
results hold for projection on multiple modes.

(2.3) Consider product state ρ̂AB with two parts A
and B. Then

W (xA, xB ; ρ̂A ⊗ ρ̂B) = W (xA; ρ̂A)W (xB ; ρ̂B) . (7)

(2.4) Suppose one performs a homodyne measure-
ment on a single mode A and get the result q̃A,
the Wigner function of the post-measurement state
ρ̂B|q̃A = 〈q̃A|ρ̂AB |q̃A〉/TrB (〈q̃A|ρ̂AB |q̃A〉) is

W
(
xB ; ρ̂B|q̃A

)
=

´
dpAW (pA, q̃A, xB ; ρ̂AB)´

dxB
´
dpAW (pA, q̃A, xB ; ρ̂AB)

.

(8)
Similar results can be obtained for measuring multiple
modes, by considering the measurement sequentially.

(2.5) The trace of the product of two quantum
states can be evaluated as follows, Tr (ρ̂σ̂) =
4π
´
dxW (x; ρ̂)W (x; σ̂) .

(2.6) For pure state with position space wave function
ψ (q), we have

W (q, p; |ψ〉) =
1

2π

ˆ ∞
−∞

dyψ? (q − y)ψ (q + y) e−ipy.

(9)

Note that (2.6) is different from ref. [58], and (2.5)
has a factor of 4π, because of the choice of ~ = 2,
which is the convention in ref. [57]. To clarify these
two points, we show their proof in Appendix B. The
proof of the other properties are well-known, straight-
forward and not presented here.

B. Continuous-variable quantum computation

We consider the definition of continuous-variable
universal quantum computation in ref. [30], i.e. a set
of operations is universal if by a finite number of ap-
plications of operations in the set, one can approach
arbitrarily close to any unitary evolution generated
by Hamiltonians of a polynomial form in operators
q̂k’s and p̂k’s. Under this definition of universality,
ref. [30] also shows that Gaussian operations alone are
not universal, since Gaussian unitaries corresponds to
generators of second order polynomials in q̂k’s and
p̂k’s. However, an arbitrary extra unitary with gener-
ators of higher order than two, in addition to Gaussian
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operations, will be universal. Based on this finding,
ref. [59] developed a systematical way of performing
the decomposition of any unitary generated by poly-
nomial Hamiltonian to a basic set of Gaussian uni-
taries

{
eiπ(p̂2+q̂2)/2, eit1q̂, eit2q̂

2
}

and the cubic phase
gate

V̂ (γ) = eiγq̂
3

. (10)

The choice of the non-Gaussian unitary is not unique
and cubic phase gate, generated by q̂3, is basically
one of the most simple non-Gaussian unitaries, in the
sense that it is generated by the lowest polynomial of
order higher than two.

There are a number of experimental proposals of
realizing the cubic phase gate, involving genuine non-
Gaussian resource states and Gaussian operations
combined with feed-forward [47, 48, 58, 60]. Ref. [47]
(GKP scheme) uses the cubic phase state

|γ〉 = V̂ (γ) |0〉p =

ˆ
dqeiγq

3 |q〉 (11)

as the resource state, where |0〉p is the zero-
momentum state at the infinite squeezing limit and
unnormalizable. They also provide a scheme for
preparing approximate cubic phase states by two-
mode squeezing, displacement and photon number
counting. Ref. [58] analyzes the above approximate
preparation scheme in details, and provide alterna-
tive schemes with number state |N〉 as the resource
state. Ref. [60] provides a scheme by sequential pho-
ton number subtractions and displacement to produce
approximate weak cubic phase states, which is exper-
imentally implemented in ref. [61]. Ref. [48] further
introduces the ON state

|ON〉 =
1√

1 + |a|2
(|0〉+ a |N〉) (12)

as a replacement of cubic phase state to realize the
cubic phase gate.

Ref. [62] shows that instead of genuine non-
Gaussian states as the resource, it is possible to have
non-Gaussian measurements such as photon number
counting to enable cubic phase gates. This is similar to
the idea of Gaussian cluster state measurement-based
quantum computation [33], where the measurement,
e.g. photon number counting, is non-Gaussian. In
this paper, we focus on the case where genuine non-
Gaussian states are the necessary resource for univer-
sal quantum computing combined with Gaussian op-
erations and feed-forward.

III. RESOURCE THEORY FRAMEWORK

A. Free states and free operations

Resource theories are frameworks that deal with
quantification and manipulation of a quantity that is
considered resource under some setting. The states
that are not resourceful are called free states and oper-
ations that cannot create any resource from free states
are called free operations. The set of free states is in-
variant under the free operations. In some situations
where one is more interested in the property of states,
it is natural to define the set of free states first and
choose a corresponding set of free operations. An ex-
ample of such resource theories is the theory of coher-
ence [63, 64], where free states are naturally defined
as incoherent states—the set of diagonal states with
respect to some fixed basis. Depending on the focus,
one can investigate various sets of free operations. For
example, in coherence theory, many sets of free oper-
ations have been considered such as incoherent opera-
tions [64], strictly incoherent operations [65, 66], max-
imally incoherent operations [63, 67] etc., and each set
has its own resource quantifier and restriction on state
transformation rules.

On the other hand, for other settings where one is
more interested in physically available operations, it is
more natural to define the set of free operations as eas-
ily accessible operations and choose a set of free states
invariant under the application of free operations. An
example of such setting is the case when two parties
are restricted to the set of local operation and classical
communications (LOCC) [68]. As we set LOCC as free
operations, separable states are naturally found to be
a set of free states and other states—called entangled
states—are the resource states.

Here, we take the latter view to consider continuous-
variable systems relevant to quantum optics. In such
a setting, easily accessible operations are Gaussian
operations and homodyne measurements. It is also
reasonable to allow feed-forward—controlling further
operations conditioned on the outcome of the mea-
surements. We call the above operations combined
as Gaussian protocols and we take them as our free
operations.
Definition 1.— An operation is a Gaussian protocol

if it is composed by the following operations.

(1). Gaussian unitaries, ρ̂→ ÛS,dρ̂Û
†
S,d.

(2). Composition with ancillary vacuum states, ρ̂→
ρ̂⊗ |0〉〈0|

(3). Homodyne measurement described by POVM
{|q〉〈q|}.

(4). Partial trace.
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(5). The above quantum operations conditioned on
the outcomes of homodyne measurements.

Because general Gaussian measurement is equiva-
lent to first performing a general Gaussian unitary
and then homodyne [3], one only needs to consider
homodyne measurement. Note that the above set of
operations includes performing the above operations
conditioned on classical randomness. This is because
one can generate classical randomness by perform-
ing homodyne measurements on ancillae. By dividing
the measurement outcomes on ancillae into proper re-
gions, random numbers with an arbitrary probability
distribution can be generated. The above definition
of Gaussian protocols based on elementary operations
is equivalent to the following definition.
Lemma 3.— The set of Gaussian protocols defined

in Definition 1 is equivalent to the set of operations
composed by the following.

(1). Composition with ancillary vacuum states, ρ̂→
ρ̂⊗ |0〉〈0|

(2). Homodyne measurement on one mode and con-
ditional Gaussian channel on the other modes,´
dqΦq ⊗Mq where {Φq} are Gaussian channels

and Mq(·) = |q〉〈q| · |q〉〈q|.
Proof. Let O1 be the set of Gaussian protocols defined
in Definition 1 and O2 be the set of operations real-
ized by the above two elementary operations. Since
(1), (2), and (4) in Definition 1 can realize any Gaus-
sian channel in dilution form, together with (5) we get
O2 ⊆ O1. To show O1 ⊆ O2, notice that (1), (3), and
(4) in Definition 1 are Gaussian channels. They can
be realized by attaching ancillary vacuum state, mak-
ing a homodyne measurement on the vacuum state,
and applying the corresponding Gaussian channels no
matter what the measurement result is. (5) can be
straightforwardly realized again noticing that (1)-(4)
are Gaussican channels.

Now that we set up our free operations, we shall find
a set of free states that is invariant under free opera-
tions. The set of Gaussian states is not appropriate for
it due to its non-convexity property. A simple proba-
bilistic mixture of Gaussian operations, which are free
operations, may transform a Gaussian state to non-
Gaussian states composed of a mixture of Gaussian
states. Indeed, an appropriate set of free states is the
convex hull of Gaussian states.
Definition 2.— Denote the set of Gaussian states

as G, the states outside are called non-Gaussian. We
consider the convex hull

Ḡ =

{ˆ
dλPλρ̂λ | ρ̂λ ∈ G, Pλ ≥ 0,

ˆ
dλPλ = 1

}
.

(13)
We call states in Ḡ as convex-Gaussian states and
states outside Ḡ as genuine non-Gaussian states.

It is clear by definition that any two convex-
Gaussian states are connected by some Gaussian pro-
tocol and Ḡ is the largest set of states that can be
prepared by Gaussian protocols from Gaussian states.
The following lemma greatly simplifies the expression
of Ḡ.
Lemma 4.— The convex hull of all Gaussian pure

states equals Ḡ.

Proof. This lemma is mentioned in ref. [69] without
proof. For completeness, we make the proof explicit.
Any Gaussian state can be transformed to a thermal
state by Gaussian unitary. For single mode case, ρ̂λ =

Ûλσ̂
th
λ Ûλ =

´
d2αpαÛλ |α〉 〈α| Û†λ, where pα > 0 is the

P-function of the thermal state and |α〉 is the coherent
state. The multi-mode case is similar.

All states in Ḡ have non-negative Wigner functions.
Denote the set of sates with non-negative Wigner func-
tions as W+ [70]. We have [69, 71] G ( Ḡ (W+.

This choice of free operations and free states is
the most relevant to universal quantum computation
with continuous-variable systems. Ref. [42] showed
that when the initial state and the Choi matrix of
all operations are in W+, the quantum computation
can be classically simulated efficiently. Genuine non-
Gaussian states (with negative Wigner function) are
naturally considered resource for universal quantum
computation. Note states in W+ \ Ḡ are analogs of
bound genuine non-Gaussian states, which do not en-
able universal quantum computation together with
free states and free operations.

B. Monotone

Besides free states and free operations, another im-
portant concept of resource theories is monotones.
Monotones are maps from a quantum state to a real
number that is meant to quantify how resourceful the
state is. Here, we are interested in quantum states
acting on an infinite-dimensional Hilbert space. If a
quantum state describes a n-mode bosonic system, the
state is expressed by a density operator ρ̂ acting on the
Hilbert space H⊗n. We formally define monotones as
following.
Definition 3.— Let D(H⊗n) be a space of the den-

sity operators for n-mode bosonic systems and Mn :
D(H⊗n) → R be a map from the set of quantum
states for n-bosonic systems to real numbers. Let
M(ρ̂) ≡ Mn(ρ̂) for ρ̂ ∈ D(H⊗n) so that M auto-
matically takes into account the number of the modes
in the system that the input state belongs to. M is
called genuine non-Gaussian monotone if it satisfies
the following.

1. M(ρ̂) ≥ 0 andM(ρ̂) = 0, ∀ρ̂ ∈ Ḡ
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2. It does not increase under a Gaussian proto-
col. To clarify what it means, consider the ele-
mentary operations for the Gaussian protocols
in Lemma 3. We say that M does not in-
crease under a Gaussian protocol if (1)M(ρ̂) ≥
M(ρ̂⊗ |0〉〈0|) and (2)M(ρ̂) ≥M

(´
dqP (q)σ̂q

)

and M(ρ̂) ≥
´
dqP (q)M (σ̂q) where P (q) =

Tr[(Î ⊗ M̂q)ρ̂] and σ̂q = Φq ⊗Mq(ρ̂)/P (q).

The last inequality is sometimes called selective
monotonicity because it states that expectation value
after a selective measurement cannot increase. It is
not a very standard requirement for other resource
theories; it is more common to only require the mono-
tonicity under free operations. Nevertheless, we take
the selective monotonicity as a requirement as well
because it will be relevant to a non-deterministic dis-
tillation protocol which we shall discuss later. Al-
though there are many candidates for monotones, in
this paper we focus on the logarithmic negativity of
the Wigner function. We pick it up because it is easily
computatble and it is a relevant resource measure for
universal quantum computation. The definition and
properties are given as follows (proof in Appendix. C)
Lemma 5.— Logarithmic negativity of the Wigner

function

NL (ρ̂) = log

ˆ
d2Nx|W (x; ρ̂) |. (14)

satifies the following properties.

(5.1) Invatiant under Gaussian unitaries.

(5.2) Non-increasing under partial trace.

(5.3) Additive. NL (ρ̂A ⊗ ρ̂B) = NL (ρ̂A) +NL (ρ̂B).

(5.4) NL (ρ̂) = 0, iff ρ̂ ∈W+.

(5.5) Non-increasing under Gaussian channel ΦG .
NL (ΦG (ρ̂)) ≤ NL (ρ̂).

(5.6) Non-increasing under free operations in the
sense of Definition 3.

Since Ḡ ( W+ and states in W+ \ Ḡ have zero
logarithmic negativity, logarithmic negativity is not a
faithful monotone. However, states in W+ \ Ḡ cannot
be resources for universal quantum computation, and
should be considered as bound genuine non-Gaussian
states, as the analog of bound entangled states [72, 73]
and bound magic states [74], where the distillable re-
source is zero. In general, although logarithmic nega-
tivity is usually not analytically calculable, it can be
easily obtained numerically when the Wigner function
is available analytically.
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Figure 1. Genuine non-Gaussianity measured by loga-
rithmic negativity of some resource states. PNS: photon-
number subtraction. PNA: photon-number addition. Note
that for single-PNS/PNA, we are plotting the maximum
genuine non-Gassianity.

IV. RESOURCE STATES

As discussed in section II B, cubic phase states,
number states and ON states can be used as re-
source states to facilitate continuous-variable univer-
sal quantum computation, when combined with Gaus-
sian protocols. In this section, we will compute their
genuine non-Gaussianity measured by the logarith-
mic negativity; we will also compare their genuine
non-Gaussianity when each state has the same mean
photon number. For completeness, we also consider
photon-number added or subtracted states, which
have been shown to improve the entanglement of two-
mode Gaussian states [75]. We numerically obtain the
logarithmic negativity in Fig. 1. Surprisingly, number
states, ON states, and cubic phase states with the
same mean photon number (same energy) have very
close amount of the negativity even though the de-
scription of the cubic phase states looks very different
from the other two. Below, we make comments on
these resource states to clarify the meaning of Fig. 1.

1. Number states. Photon number state |N〉 is the
most common non-Gaussian source. And it has been
known that for fixed photon number, number states
and its superpositions maximize the non-convex ver-
sion of non-Gaussianity [36, 37]. The Wigner function
is given in Appendix D.

2. Single photon added and subtracted states. Ideal
single photon-number addition (PNA) operation and
photon-number subtraction (PNS) operation can be
described by the annihilation and creation operators
â and â† [75, 76]. Experimental schemes of PNS and
PNA can be found in Refs. [77–83]. Conditioned
on success, they map a pure state |ψ〉 to another
pure state ∝ â |ψ〉 (PNS) or ∝ â† |ψ〉 (PNA). For
single-photon-subtracted or added zero-mean Gaus-
sian state, the Wigner functions are analytically cal-
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culable [84, 85] (details in Appendix D). Here we con-
sider the zero-mean single-mode photon-number sub-
tracted or added pure state with the maximum loga-
rithmic negativity. It suffices to consider PNS or PNA
on the squeezed pure state |θ, s〉 = R̂ (θ) Ŝ (s) |0〉.
Note that âR̂ (θ) = eiθR̂ (θ) â and that Gaussian uni-
tary does not change logarithmic negativity, we only
need to consider θ = 0. Afterwards, a simple nu-
merical calculation shows that for all values of s,
both the single-photon-added state and single-photon-
subtracted state has

NL = log
(
4/
√
e− 1

)
' 0.354. (15)

This equals NL (|1〉) exactly, which coincides with
the conclusion by using non-convex version of non-
Gaussianity [86].

3. Cubic phase states. The ideal cubic phase state
cannot be normalized, thus is not physical. The un-
normalized Wigner functions of |γ〉 is given in Ap-
pendix D. We instead consider an imperfect cubic
phase state created by applying the cubic phase gate
to the finitely squeezed state with squeezing parame-
ter s, namely,

|γ, P, s〉 = V̂ (γ) |P, s〉p , (16)

where |P, s〉p = D̂p (P ) Ŝ (−s) |0〉. The wave function
of |γ, P, s〉 in q-space is given by

ψ(q) = (2πe2s)−1/4 exp

(
iγq3 − q2

4e2s
+ i

Pq

2

)
. (17)

As the squeezing strength s increases, it approaches
the ideal cubic phase state. The Wigner function of
|γ, P, s〉 is given in Appendix D. The mean photon
number can be analytically obtained (details also in
Appendix D) as

NS =
1

2
(cosh(2s)− 1) + 18γ2e4s +

1

4

(
P + 6γe2s

)2
.

(18)
We consider the state with P = −6γe2s in Fig. 1,
which has the minimum mean photon number, when
we compare the genuine non-Gaussianity.

4. ON states. The wavefunction is given in Eq. (12).
The Wigner functions of ON states are given in Ap-
pendix D. The mean photon number of the ON state
is |a|2

1+|a|2N .

V. APPLICATIONS

A. State conversions

Consider a state transformation ρ̂ →
´
dqP (q)σ̂q

under a Gaussian protocol where P (q) =
Tr [Φq ⊗Mq(ρ̂)] in the sense of Lemma 3. The

monotonicity of the logarithmic negativity
NL(ρ̂) ≥

´
dqP (q)NL(σ̂q) serves as a necessary

condition for such a transformation to be possible
under a Gaussian protocol. As an example, let us
take a closer look at the protocol in ref. [48] which
implements a cubic phase gate using ON state,
which is defined in Eq. (12). It starts with input
state |ψ〉 and ancillary ON state |ON〉 and apply
the continuous version of controlled-NOT gate from
|ψ〉 to |ON〉. The homodyne measurement is made
on the ancillary system and Gaussian feed-forward
operation is applied to the other system. They
showed that when N = 3 and |a| � 1 where a is the
parameter of |ON〉 in Eq. (12), the output state can
be approximated by 1

P (q̃) Âq̃V̂ (γ) |ψ〉 where q̃ is the
outcome of the homodyne measurement, P (q̃) is the
probability density of obtaining the outcome P (q̃),
and Âq̃ = exp

[
−(q̂ + q̃)2/4

]
is a noise factor. γ is

related to a by γ =
(
−i/
√

6
)
a. It can be seen as a

state transformation under a Gaussian protocol with
ρ̂ being |ψ〉 ⊗ |ON〉 and σq̃ being 1

P (q̃) Âq̃V̂ (γ) |ψ〉,
so the monotonicity relation applies. For instance,
suppose |ψ〉 is the infinitely-squeezed state. Since
the squeezed state has zero logarithmic negativity
and the logarithmic negativity is additive, the initial
logarithmic negativity is NL(|03〉) where |03〉 is the
ON state with N = 3. σq̃ in this case is proportional
to
´
dq exp

[
−(q + q̃)2/4 + iγq3

]
|q〉. In ref. [48], they

examined P (q̃) for various |ψ〉 and observed that for
squeezed states the distributions are Gaussian-like
and become flatter as the squeezing level increases.
We obtained that for γ = 0.1, NL(|03〉) = 0.11 and
NL(σ̂q̃) ∼ 0.09 for various q̃ we examined. It not only
confirms the monotonicity relation but asserts that
it is quite an efficient protocol in terms of genuine
non-Gaussianity in this case. The monotonocity rela-
tion would be useful in general to get insights to the
relationship between output states and corresponding
probability density for various input states |ψ〉.

If |ψ〉 is a squeezed state and the outcomes q̃ ∼ 0 are
postselected, it works as a non-derterministic conver-
sion to the imperfect cubic phase state in Eq. (17) and
the success probability of such a protocol is bounded
by the ratio between the initial logarithmic negativity
to the output logarithmic negativity. As we shall see
in the next section, the imperfect cubic phase state in
Eq. (17) may be further purified by another protocol,
and the level of purification and the success probabil-
ity have a similar constraint due to the monotonicity
of the logarithmic negativity.

Finally, although in ref. [48] only the ON state of
N = 3 is discussed for the implementation of the cubic
phase gate, it is possible that larger N would be help-
ful to realize a better cubic phase gate since it may
allow tuning up to higher order terms. The logarith-
mic negativity of the ON states for various N in Fig. 1
serves as a bound for quality of the implemented gate
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and success probability of such protocols.

B. Distillation of genuine non-Gaussianity

Although genuine non-Gaussianity is necessary for
some tasks such as universal quantum computation,
it is usually hard to prepare states with large genuine
non-Gaussianity. One can then ask whether it is possi-
ble to non-deterministically increase the genuine non-
Gaussianity of states only by Gaussian protocols and
postselection. Here, we provide such a protocol which
only consists of a beam splitter, homodyne measure-
ment and postselection. It is so simple that it should
be readily implementable in experiments. The pro-
tocol is based on the partial homodyne measurement
that allows for distillation of coherent-state superpo-
sitions [49] and distillation of squeezing under non-
Gaussian noise [50]. Intuitively, it works as a filter
function that focuses on some region of the Wigner
plane and reduce the contributions from the other re-
gions. By tuning the strategy of postselection, one
can somewhat engineer the output state. We apply
this idea to increase the genuine non-Gaussianity by
focusing on the region on the Wigner plane that has
more negativity than the other. It turns out that the
same protocol also allows for distillation of cubic phase
state in the sense that it increases the fidelity of im-
perfect cubic phase states from a “better” cubic phase
state, which may be of interest on its own.

The setup of the protocol is described in Fig. 2(a).
Suppose we have a beam splitter with transmittance
t ' 1 and homodyne detector that measures the mo-
mentum quadrature p̂. The input state ρ̂in and vac-
uum state |0〉 are mixed by the beam splitter. The
transformation at the beam splitter is q̂′ =

√
tq̂ +√

1− tq̂v, p̂′ =
√
tp̂ +

√
1− tp̂v, q̂′v =

√
tq̂v −√

1− tq̂, p̂′v =
√
tp̂v −

√
1− tp̂, where q̂, p̂, q̂v, p̂v are

the quadrature operators for input state and the vac-
uum and prime denotes the operator after the trans-
form. The momentum of the outgoing vacuum state is
measured at the homodyne detector and postselection
is made based on the measurement outcome. Specif-
ically, the state is discarded if the measured momen-
tum is not within the prespecified region, which can
be tuned by the experimenter. From (2.3), the initial
Wigner function of the input state and vacuum state
is

Wini(q, p, qv, pv) = W (q, p; ρ̂in)W (qv, pv; |0〉). (19)

Using Lemma 1, the Wigner function of the total out-
put state right after the beam splitter transformation
is

Wf(q, p, qv, pv) = W (q′inv, p
′
inv; ρ̂in)

×W (q′v,inv, p
′
v,inv; |0〉), (20)

where q′inv =
√
tq −

√
1− tqv, p′inv =

√
tp −√

1− tpv, q′v,inv =
√
tqv +

√
1− tq, p′v,inv =

√
tpv +√

1− tp. From (2.4), the output state ρ̂out conditioned
that the measurement result p̃v has the Wigner func-
tion

W (q, p; ρ̂out|p̃v ) =

´
dqvWf(q, p, qv, p̃v)´

dqdpdqvWf(q, p, qv, p̃v)
. (21)

Note that since the exponent ofWf is quadratic with
respect to qv, the integration of qv can be carried out
analytically. Let p̃−v and p̃+v be the thresholds for the
postselection. We call the protocol successful and keep
the output state when p̃v ∈ [p̃−v , p̃

+
v ]. The probability

density of obtaining the measurement outcome p̃v is

P (p̃v) =

ˆ
dqdpdqvWf(q, p, qv, p̃v) (22)

and the success probability Psuc is obtained by

Psuc =

ˆ p̃+v

p̃−v

dp̃vP (p̃v). (23)

Here, we give an intuition why our protocol allows
to increase the negativity. At the beginning, the input
state and vacuum state are uncorrelated and the total
Wigner function is just a product of these two. The
beam splitter with transmittance t ' 1 generates a
slight correlation between them, although it does not
alter the input state significantly because we assume
1− t� 1. However, it still allows the homodyne mea-
surement to partially extract the information about
the input state and give a kickback by the measure-
ment. The Wigner function after the beam splitter
depends on the measurement outcome p̃v and it is a
product of the slightly shifted Wigner function of the
input resource state and a shifted Gaussian distribu-
tion from the vacuum state. How much these two
are shifted depends on the measured momentum p̃v,
and the shifted Gaussian distribution works as a filter
function that passes the region which has a large con-
tribution to the negativity. Fig. 2(b) shows the mech-
anism of the protocol with the input state being an
imperfect cubic phase state. Although we have only
checked the genuine non-Gaussianity increase for im-
perfect cubic phase states having the form of Eq. (17),
we expect that our protocol will work for large class
of resource states in the same mechanism. One should
be able to tune the thresholds for postselection so the
shifted Gaussian distribution appropriately focuses on
the region on the Wigner plane where many ripples
occur.

Furthermore, specifically for cubic phase state, it
can be expected that the output state gets closer
to another imperfect cubic phase state with larger
squeezing parameter as long as the input squeezing
level is not too large. One can check that the inter-
vals of ripples of the Wigner functions for imperfect
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Figure 2. (a) Schematic of the distillation protocol. The yellow box is a beam splitter with transmittance t. “Homo”
means homodyne measurement. The dashed line denotes the postsection by the homodyne measurement result p̃v. “Vac”
denotes the vacuum ancilla. (b) Mechanism of the distillation protocol. The cross section of the Wigner function at
q = 0 is shown as functions of p. Dotted blue curve represents the input vacuum state with standard deviation σ = 1
and purple curve represents the input resource state. In this figure, the Wigner function of an imperfect cubic phase
state is plotted. The partial homodyne shifts the Gaussian distribution by −

√
t/(1− t) p̃v where t is the transmittance

of the beam splitter and p̃v is the outcome of the homodyne measurement. The case of a negative p̃v is shown. The
Wigner function of the resource state is also shifted in the opposite direction by −

√
(1− t)/t p̃v, but it is not shown in

the figure because the shift is small when 1 − t � 1. The Wigner function of the output state is the product of the
shifted Gaussian distribution and the slightly shifted distribution of the resource state. The shifted Gaussian works as
a filter function that focuses on the region which has a large contribution to the negativity. (c) Logarithmic negativity
NL of imperfect cubic phase states |γ, P, s〉 with γ = 0.05, P = 0 in terms of squeezing parameter s. (d) Logarithmic
negativity NL(p̃v) (blue dots) and the probability density P (p̃v) (purple squares) for the case when the input state is
|γ, P, sin〉 with γ = 0.05, P = 0, sin = 1 in terms of outcome of the homodyne measurement p̃v. The horizontal dotted
line is the logarithmic negativity of the input state N ini

L .

cubic phase states do not vary much with squeezing
parameters, but states with larger squeezing param-
eter have less difference in the amplitudes between
neighboring peaks in the small p domain. As can
be seen in Fig. 2(b), the broad Gaussian distribution
evens out the difference in the amplitudes in the small
p region if the amplitude difference and filtering of the
Gaussian distribution balances out. In such cases, the
filter function makes the shape of the Wigner func-
tion closer to the one for a larger squeezing parame-
ter. However, when the initial squeezing is so large
that ripples are still significantly large in a large p do-
main, the amplification in the focused domain starts
beating the ripple in the small p domain, so it will not
get closer to the state with larger squeezing parameter
although it will still increase the negativity. We shall
observe this tendency of the fidelity increase later in
this section.

Let us first look at the negativity increase. We are
interested to compare the initial logarithmic negativ-
ity to the final logarithmic negativity. Let N ini

L be the
initial logarithmic negativity. Let NL(p̃v) denote the
logarithmic negativity of state described by Wigner
function in Eq. (21). The average negativity condi-
tioned on the postselection is given by

N post
L =

〈
N fin
L

〉
/Psuc, (24)

where
〈
N fin
L

〉
=

ˆ p̃+v

p̃−v

dp̃vP (p̃v)NL(p̃v). (25)

The resource theory developed above allows one to
put an upper bound on the average logarithmic nega-
tivity without a postselection. Namely,

〈
N fin
L

〉
≤ N ini

L (26)

and it holds for any choice of p̃−v and p̃+v . One can see
it as a trade-off relation between the output negativity
and success probability N post

L ≤ N ini
L /Psuc by apply-

ing Eq. (26) to Eq. (24). Note that the left hand side
of Eq. (26) is monotonically increasing as the success
region gets larger. It increases the success probability
but may reduce the output negativity after postselec-
tion.

We choose an imperfect cubic phase state |γ, P, sin〉
as the input state ρ̂in, then N ini

L = NL(|γ, P, s〉) +
NL(|0〉) = NL(|γ, P, s〉). Since NL is independent
of P , we choose P = 0 without loss of generality.
As seen in the previous section, |γ, P, s〉 approaches
the ideal cubic phase state as s increases, so it is ex-
pected that the genuine non-Gaussianity also increases
as s increases. We find that it is indeed the case
as shown in Fig. 2(c). We choose p̃±v for given Psuc
such that it gives the maximum N post

L while satisfying
Eq. (23). NL(p̃v) and P (p̃v) are plotted in terms of
p̃v in Fig. 2(d). The Gaussian shape of the probabil-
ity distribution is a reminiscence of Gaussian Wigner
function of the vacuum state. Since NL(p̃v) is mono-
tonically decreasing with p̃v, we set p̃−v = −∞ and
take p̃+v that satisfies Eq. (23). This monotonic be-
havior of NL(p̃v) in terms of p̃v was also seen in the
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Figure 3. (a) Logarithmic negativity after postselection N post
L in terms of success probability Psuc for different input

squeezing parameters. Input states are |γ, P, sin〉 with γ = 0.05, P = 0. The initial logarithmic negativity for each sini are
N ini

L = 0.11, 0.38, 0.81 for sin = 0.2, 0.6, 1.0 respectively. (b) Average logarithmic negativity after the protocol
〈
N fin

L

〉
normalized by the initial logarithmic negativity. (c) Fidelity from the target state |γ, P ′, starg〉 after postselection F post

in terms of success probability Psuc for different input squeezing parameters. The target squeezing parameter is set as
starg = 4.0. Input states are |γ, P, sin〉 with γ = 0.05, P = 0. The initial fidelity for each sini are F ini = 0.04, 0.10, 0.18
for sin = 0.2, 1.0, 1.6 respectively.

other choice of sin for 0 ≤ sin ≤ 1.4. Fig. 3(a) shows
the change in the logarithmic negativity by our proto-
col in terms of the success probability. There is a clear
trade-off between the negativity increase and the suc-
cess probability, but positive increase in the negativ-
ity is realized at the most of the success probabilities.
Fig. 3(b) shows the ratios of the average logarithmic
negativity after the protocol to the initial logarith-
mic negativity in terms of the success probability. It
confirms that the selective monotonicity of the loga-
rithmic negativity Eq. (26) is satisfied. Note that the
description of the output state is also known because
the Wigner function of the output state contains all
the information about the state. Thus, larger genuine
non-Gaussianity of the output state will be helpful to
realize tasks such as universal quantum computation
under noisy environment.

As expected from Fig. 2(b) and the argument above,
it turns out that the same protocol also allows for
the “cubic phase state distillation” in the sense that
it increases the fidelity from another imperfect (but
better) cubic phase state with higher squeezing pa-
rameter. Again, we take an imperfect cubic phase
state |γ, Pini, sini〉 as an input state and look at
the fidelity from another imperfect cubic phase state
|γ, Pini, starg〉 with starg > sini,

F ini ≡ F (|γ, Pini, sini〉 , |γ, Pini, starg〉)
= | 〈γ, Pini, sini|γ, Pini, starg〉 |2

= [cosh(sini − starg)]−1 , (27)

where we used Eq. (17). Suppose we obtain p̃v as the
outcome of the homodyne measurement. Then, the
fidelity between the output state and the target state

is

F (p̃v) ≡ F (ρ̂out|p̃v , |γ, P ′, starg〉)
= | 〈γ, P ′, starg| ρ̂out|p̃v |γ, P ′, starg〉 |

=

ˆ
dqdpW (q, p; ρ̂out|p̃v)W (q, p| |γ, P ′, starg〉),

(28)

where we set P ′ =
√

1−t
t p̃v to take into account the

slight shift of the Wigner function of the resource state
along p direction due to the measurement. The form
ofW (q, p| |γ, P, s〉) is given in Appendix D. We choose
p̃±v in the same fashion so given Psuc it maximizes
F post where

F post ≡
〈
F fin

〉
/Psuc (29)

and

〈
F fin

〉
=

ˆ p̃+v

p̃−v

dp̃vP (p̃v)F (p̃v). (30)

Fig. 3(c) shows the change in the fidelity before and
after the protocol for different initial squeezing param-
eters. We show the result for starg = 4, but similar
behaviors were seen for the other choices of starg. As
can be seen in the figure, we obtain 13% increase in the
fidelity with success probability 1% for sini = 1. As
expected, the increase in the fidelity is not monotonic
with sini; F post/F ini increases until about sini = 1.2,
but starts decreasing as sini increases from that point.
For sini = 1.6 the fidelity even decreases from the ini-
tial fidelity. One may wonder whether sequential ap-
plications of the protocol keeps increasing the fidelity.
However, it turns out that after some numbers of ap-
plications, the increase saturates at some point that is
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not very far from the fidelity obtained after the first
application. It is not very surprising that the satu-
ration occurs because although it increases the nega-
tivity, mismatch of the shape of the Wigner function
can accumulate over the number of applications of the
protocol. We leave the construction of a sequential
protocol that keeps increasing the fidelity for future
work.

VI. CONCLUSIONS

We developed a resource theory of genuine non-
Gaussianity that is relevant to continuous variable
quantum computation. Our theory is operation-
driven where we first fix a set of operations that are
easily accessible as free operations and a set of free
states are defined as the maximal set of the states gen-
erated by them. We formally introduced the Gaussian
protocol as free operations and the convex hull of the
Gaussian states was naturally chosen to be a corre-
sponding set of free states. We showed that the loga-
rithmic negativity of Wigner function, the logarithm
of the integral of the absolute value of the Wigner
function, is a valid monotone under the Gaussian pro-
tocols and examined its properties. We computed
the logarithmic negativity of well known genuine non-
Gaussian resource states and compared them with re-
spect to the mean photon number. We found that
number states, ON states, and cubic phase states show
similar behaviors. As an application of our theory, we
discussed state conversions under the Gaussian proto-
cols, where monotonicity serves as a necessary condi-
tion for such conversions. We examined the recently
proposed protocol implementing the cubic phase gate
using ON state and found that their protocol is ef-
ficient in terms of genuine non-Gaussianity. For an-
other application, we proposed a simple protocol that
may non-determinstically increase the genuine non-
Gaussianity using the Gaussian protocol with posts-
election. We numerically verified that it indeed in-
creases the logarithmic negativity of imperfect cubic
phase states. We further showed that it may also work
as a “cubic phase state distillator”, which takes an im-
perfect cubic phase state as input and outputs a state
with higher fidelity to the better cubic phase state
with larger squeezing parameter. It needs to be noted
that it is different from a conventional state distilla-
tion protocol that keeps purifying the state to a spe-
cific state under sequential applications of the proto-
cols. Under our protocol, fidelity saturates after some
applications due to the accumulation of the mismatch
of the Wigner functions.

From this work, there is much room to explore in
the future. When counting resources, the notion of
“golden unit” of the resource is often helpful. In the
quantum computation in discrete systems, one could

consider the T state as the golden unit and evaluate a
state by, for instance, the number of T states required
to create it. It is subtle to define the corresponding
notion in continuous-variable systems (with infinite
dimension) because the genuine non-Gaussianity di-
verges at the infinite photon number limit. One may
think that it can be still defined for fixed mean photon
numbers, but it is problematic because Gaussian pro-
tocols can freely change the mean photon number. A
formal treatment awaits. Another concern would be
that a protocol that keeps purifying a state to a spe-
cific resource state under sequential applications has
not been known. Although our protocol increases the
fidelity of imperfect cubic phase states, it ceases to in-
crease the fidelity after some numbers of applications.
The notion of the golden unit will make more sense if
we have such a protocol.

The design of distillation protocols is related to the
search of sufficient resources for continuous-variable
universal quantum computation. The perfect cubic
phase state, which implements the perfect cubic phase
gate, is not a valid quantum state. What is physically
relevant is whether Gaussian protocols, with an in-
finite supply of an imperfect cubic phase state, can
perform universal quantum computation. In the case
of the qubit computation, stabilizer protocols with an
infinite supply of a noisy magic state are sufficient for
the universal quantum computation. This is because
well-established magic-state distillation protocols al-
low one to prepare a state that is arbitrarily close to
the target magic state. We could exploit the same ar-
gument for the continuous-variable universal quantum
computation if we had a corresponding protocol. The
protocol proposed in this paper may serve as a first
step toward answering this question.

Another possible future work would be to con-
sider genuine-non-Gaussianity generating power of
processes. The resource generating power of a quan-
tum process indicates the maximum amount of the
resource that it can create per use. It will play an
important role in evaluating the cost of classical sim-
ulation of the circuit that involves operations that are
not free [46].

Although we only discussed one monotone, the log-
arithmic negativity, it will be interesting to examine
other monotones as well. Especially, the logarithmic
negativity is not faithful, and there are many poten-
tial choices for faithful measures. For instance, dis-
tance based measures which quantify how far the state
is from the closest free state are natural choices of
faithful monotones. Since the set of free states is
convex, well-known robustness measure [45, 87] and
more general measure [88] should also work. On in-
troducing such faithful measures, the following two
points should be cared. One is that such faithful
measures will be hard to compute [44].—even telling
whether a state belongs to the set of free states is
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difficult [89]. The other point is that one needs
to clarify the tasks on which bound genuine non-
Gaussian states—genuine non-Gaussian states with
non-negative Wigner function—have advantage over
the states that can be written by convex mixtures
of Gaussian states. The ways to detect bound gen-
uine non-Gaussian states have been investigated, mo-
tivated by a desire to tell whether some genuinely non-
Gaussian protocols have been applied before certain
noisy channels may have caused the Wigner function
to be positive again [69, 71, 90–93]. However, the
operational meaning of bound genuine non-Gaussian
states is not known yet. As an analog, in entanglement
resource theory, bound entanglement can still improve
the task of channel discrimination [94]. It will be im-
portant to identify such tasks in the Gaussian context.

Finally, if we take the perspective that the nega-
tivity is a useful resource, one could develop a state-
driven theory starting from the set of free states be-
ing the states with non-negative Wigner function. It

would be nice to clarify the characterization of the
“non-negative Wigner function preserving operations”
and examine how feasible it is to realize such opera-
tions.
Note added.—After the appearance of our pre-

print [95], we became aware of a related work by F.
Albarelli, M. G. Genoni, M. G. A. Paris and A. Fer-
raro [96].
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Appendix A: Proof of Lemma 1

χ
(
ξ; ÛS,dρ̂Û

†
S,d

)
= Tr

[
ÛS,dρ̂Û

†
S,d exp

(
ix̂TΩξ

)]

= Tr
[
ρ̂Û†S,d exp

(
ix̂TΩξ

)
ÛS,d

]

= Tr
[
ρ̂ exp

(
i (Sx̂+ d)

T
Ωξ
)]

= χ
(
S−1ξ; ρ̂

)
exp

(
idTΩξ

)
. (A1)

In the last step we used STΩ = ΩS−1. To be more rigorous, the cyclic property of trace is ensured by the
Fubini-Tonelli theorem.

Similarly, for Wigner function, we have

W
(
x; ÛS,dρ̂Û

†
S,d

)

=

ˆ
d2Nξ′

(2π)
2N

exp
(
−ixTΩSξ′

)
χ (ξ′; ρ̂) exp

(
idTΩSξ′

)
,

=

ˆ
d2Nξ′

(2π)
2N

exp
(
−i
(
S−1 (x− d)

)T
Ωξ′
)
χ (ξ′; ρ̂)

= W
(
S−1 (x− d) ; ρ̂

)
. (A2)

where we let ξ′ = S−1ξ and used |det (S) | = 1, and ΩS =
(
S−1

)T
Ω.

Appendix B: Proof of (2.6), (2.5) in Lemma 2

Note that in accordance with ref. [57], we use the following convention: commutation relation [q̂, p̂] = 2i,
delta-function

´
dp exp (ipx) = 2πδ (x), and displacement of position D̂q (x) ≡ exp (−ip̂x/2), which satisfies

D̂q (x) |y〉 = |y + x〉. It suffices to prove the single mode case. Denote ξ = (ξ1, ξ2), thus D̂ (ξ) = e−ip̂ξ1+iq̂ξ2 =
e−ip̂ξ1eiq̂ξ2eiξ1ξ2 .
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From the definition, for single mode pure states ρ̂ = |ψ〉〈ψ|, we have (Note all integration are from −∞ to∞)

W (q, p; ρ̂) =

ˆ
d2ξ1ξ2

(2π)
2 e

ipξ1e−iqξ2
ˆ
dx 〈x|ρ̂e−ip̂ξ1eiq̂ξ2eiξ1ξ2 |x〉 (B1)

=

ˆ
d2ξ1ξ2

(2π)
2 e

ipξ1e−iqξ2
ˆ
dx 〈x|ψ〉 〈ψ|x+ 2ξ1〉 eixξ2eiξ1ξ2 (B2)

=

ˆ
dξ1
2π

eipξ1
ˆ
dx 〈x|ψ〉 〈ψ|x+ 2ξ1〉 δ (x+ ξ1 − q) (B3)

=

ˆ
dξ1
2π

e−ipξ1 〈q + ξ1|ψ〉 〈ψ|q − ξ1〉 . (B4)

We arrive at (2.6).
For two single-mode quantum states,

4π

ˆ
dxW (x; ρ̂)W (x; σ̂) (B5)

= 4π

ˆ
dqdp

ˆ
d2ξ1ξ2

(2π)
2 e

ipξ1e−iqξ2
ˆ
dx 〈x|ρ̂|x+ 2ξ1〉 eixξ2eiξ1ξ2 (B6)

×
ˆ
d2ξ′1ξ

′
2

(2π)
2 e

ipξ′1e−iqξ
′
2

ˆ
dx′ 〈x′|σ̂|x′ + 2ξ′1〉 eix

′ξ′2eiξ
′
1ξ
′
2 (B7)

= 4π

ˆ
d2ξ1ξ2

(2π)
2

ˆ
d2ξ′1ξ

′
2

(2π)
2 2πδ (ξ1 + ξ′1) 2πδ (ξ2 + ξ′2) (B8)

×
ˆ
dx 〈x|ρ̂|x+ 2ξ1〉 eixξ2eiξ1ξ2

ˆ
dx′ 〈x′|σ̂|x′ + 2ξ′1〉 eix

′ξ′2eiξ
′
1ξ
′
2 (B9)

= 4π

ˆ
d2ξ1ξ2

(2π)
2

ˆ
dx 〈x|ρ̂|x+ 2ξ1〉 eixξ2eiξ1ξ2

ˆ
dx′ 〈x′|σ̂|x′ − 2ξ1〉 e−ix

′ξ2eiξ1ξ2 (B10)

= 4π

ˆ
dξ1

(2π)
2

ˆ
dx 〈x|ρ̂|x+ 2ξ1〉

ˆ
dx′ 〈x′|σ̂|x′ − 2ξ1〉 2πδ (x− x′ + 2ξ1) (B11)

=

ˆ
d2ξ1

ˆ
dx 〈x|ρ̂|x+ 2ξ1〉 〈x+ 2ξ1|σ̂|x〉 = Tr (ρ̂σ̂) . (B12)

We arrive at (2.5).

Appendix C: Proof of Lemma 5

Proof. (5.1) directly comes from Lemma 1 as follows.

NL
(
ÛS,dρ̂Û

†
S,d

)
= log

ˆ
d2Nx|W

(
x; ÛS,dρ̂Û

†
S,d

)
| (C1)

= log

ˆ
d2Nx|W

(
S−1x− S−1d; ρ̂

)
| (C2)

= NL (ρ̂) . (C3)

(5.2) comes from (2.1) and triangle inequality. Consider bipartite state ρ̂AB with two parts A and B.

NL (TrAρ̂AB) = log

ˆ
d2NBxB |W (xB ; TrAρ̂AB) | (C4)

= log

ˆ
d2NBxB |

ˆ
d2NAxAW (xA, xB ; ρ̂AB) | (C5)

≤ log

ˆ
d2NBxB

ˆ
d2NAxA|W (xA, xB ; ρ̂AB) | (C6)

= NL (ρ̂AB) . (C7)
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(5.3) follows directly from (2.3).

NL (ρ̂A ⊗ ρ̂B) = log

ˆ
d2Nx|W (x; ρ̂A ⊗ ρ̂B) |. (C8)

= log

ˆ
d2NAxA

ˆ
d2NBxB |W (xA; ρ̂A) ||W (xB ; ρ̂B) | (C9)

= NL (ρ̂A) +NL (ρ̂B) . (C10)

(5.4) is simply from equality condition of triangular inequality. If
´
d2Nx|W (x; ρ̂) | =

´
d2NxW (x; ρ̂) = 1,

we have NL (ρ̂) = 0. If NL (ρ̂) = 0, we have W (x; ρ̂) ≥ 0 except for points with measure zero. These measure
zero negative points have no relevance to experiments in reality, and we have included these cases in W+.

(5.5) directly follows from (5.1)-(5.4) and the fact that any Gaussian channel has Stinespring dilation of a
Gaussian unitary ÛG with ancilla E in vacuum state 0̂. NL (ΦG (ρ̂)) = NL

(
TrE

(
ρ̂⊗ 0̂

))
≤ NL

(
ρ̂⊗ 0̂

)
= NL (ρ̂).

To prove (5.6), it suffices to prove non-increasing under the Gaussian protocol in Lemma 3 on state ρ̂AB :
perform a homodyne on A and conditioned on the measurement result qA, perform a Gaussian channel ΦqA on
B. By (2.2), the measurement result’s distribution is given by

PqA =

ˆ
dNApAd

2NBxBW (pA, qA, xB ; ρ̂AB) , (C11)

and the Wigner function of B conditioned on measurement result qA is given by

W
(
xB ; ρ̂B|qA

)
=

1

PqA

ˆ
dNApAW (pA, qA, xB ; ρ̂AB) . (C12)

The logarithmic negativity of the overall output of the channels {ΦqA} conditioned on measurement result
qA is

NL
(ˆ

dNAqAPqAΦqA
(
ρ̂B|qA

))
(C13)

= log

ˆ
d2NBxB |

ˆ
dNAqAPqAW

(
xB ; ΦqA

(
ρ̂B|qA

))
| (C14)

≤ log

ˆ
dNAqAPqA

ˆ
d2NBxB |W

(
xB ; ΦqA

(
ρ̂B|qA

))
| (C15)

≤ log

ˆ
dNAqAPqA

ˆ
d2NBxB |W

(
xB ; ρ̂B|qA

)
| (C16)

= log

ˆ
dqNA

A PqA

ˆ
d2NBxB |

1

PqA

ˆ
dNApAW (pA, qA, xB ; ρ̂AB) | (C17)

≤ log

ˆ
dNAqA

ˆ
d2NBxB

ˆ
dNApA|W (pA, qA, xB ; ρ̂AB) | (C18)

= NL (ρ̂AB) . (C19)

The first equality is due to the linearity of Wigner functions. The first inequality is due to triangular inequality.
The second inequality is due to (5.5) and the monotonicity of log (x). The third inequality is due to triangular
inequality.

The non-increasing of the average logarithmic negativity can be proved similarly as follows

NL ≡
ˆ
dNAqAPqANL

(
ΦqA

(
ρ̂B|qA

))
(C20)

≤
ˆ
dNAqAPqANL

(
ρ̂B|qA

)
(C21)

=

ˆ
dNAqAPqA log

ˆ
d2NBxB |

1

PqA

ˆ
dNApAW (pA, qA, xB ; ρ̂AB) | (C22)

≤ log

ˆ
dNAqA

ˆ
d2NBxB |

ˆ
dNApAW (pA, qA, xB ; ρ̂AB) | (C23)

≤ log

ˆ
dNAqA

ˆ
d2NBxB

ˆ
dNApA|W (pA, qA, xB ; ρ̂AB) | (C24)
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= NL (ρ̂AB) . (C25)

The first inequality is due to (5.5). The rest of inequalities is due to triangular inequality, log (x) being concave
and Jensen’s inequality.

Appendix D: Wigner functions for resource states

1. Number state

The Wigner function of the number state |n〉 is

W (p, q; |n〉) =
1

2π
(−1)

n
Ln
(
p2 + q2

)
e−(p2+q2)/2, (D1)

where Ln (x) is the Laguerre polynomial.

2. Single-photon-added and single-photon-subtracted states

The Wigner function of such states are analytically calculable [84, 85]. The Wigner function of the single-
photon-added (+) or subtracted (-) state starting from |θ, s〉 = R (θ)S (s) |0〉 is given by

W± (x) =
1

2

[
xV −1A±g V

−1xT − Tr
(
V −1A±g

)
+ 2
]
W0 (x) , (D2)

where V is the covariance matrix of |θ, s〉 and

A±g = 2
(V ± I)

2

Tr (V ± I)
. (D3)

3. Cubic phase state

The unnormalized wave function of |γ, P 〉 is

ψ(q) ∝ exp

(
iγq3 + i

Pq

2

)
. (D4)

Using W (q, p) = 1
2π

´
dyψ∗(q − y)ψ(q + y)e−ipy, the unnormalized Wigner function of |γ, P 〉 is given by

W (q, p; |γ, P 〉) ∝
ˆ ∞
−∞

dy exp

[
i

(
2γy3 + 2

(
3γq2 − p− P

2

)
y

)]
(D5)

=

ˆ ∞
0

dy 2 cos

[
2γy3 + 2

(
3γq2 − p− P

2

)
y

]
(D6)

∝ Ai

((
4

3γ

)1/3(
3γq2 − p− P

2

))
, (D7)

where Ai (x) is the Airy function.
The Wigner function of |γ, P, s〉 is obtained by

W (q, p| |γ, P, s〉) = (8π3e2s)−1/2 exp

[−q2
2e2s

] ˆ ∞
−∞

dy exp

[
i

(
2γy3 + 2

(
3γq2 − p− P

2

)
y

)]
exp

[
− y2

2e2s

]

= (8π3e2s)−1/2 exp

[−q2
2e2s

] ˆ ∞
0

dy 2 cos

[
2γy3 + 2

(
3γq2 − p− P

2

)
y

]
exp

[
− y2

2e2s

]
.

As an example, the Wigner function with γ = 0.05, P = 0, s = 1 for q > 0 is shown in Fig. 4 (it is symmetric
for q → −q).
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Figure 4. Wigner function of |γ, P, s〉 with γ = 0.05, P = 0, s = 1

To calculate the mean photon number of state |γ, P, s〉, we notice that â†â =
(
p̂2 + q̂2

)
/4 − 1/2 and by

definition Eq. (16) |γ, P, s〉 = V̂ (γ)D̂p (P ) Ŝ (−s) |0〉, thus the mean photon number is given by

NS = 〈0|Ŝ† (−s) D̂†p (P ) V̂ †(γ)
(
p̂2 + q̂2

)
V̂ (γ)D̂p (P ) Ŝ (−s) |0〉 /4− 1/2 (D8)

= 〈0|Ŝ† (−s) V̂ †(γ)
(

(p̂+ P )
2

+ q̂2
)
V̂ (γ)Ŝ (−s) |0〉 /4− 1/2, (D9)

where we have used
[
V̂ (γ), D̂p (P )

]
= 0 and D̂†p (P ) p̂D̂p (P ) = p̂ + P . Since [q̂, p̂] = 2i, by the correspondence

p̂ = −2i ddq̂ we have
[
p̂, V̂ (γ)

]
= V̂ (γ)6γq̂2, thus

[
(p̂+ P )

2
, V̂ (γ)

]
=
[
p̂2, V̂ (γ)

]
+ 2P

[
p̂, V̂ (γ)

]
= 4V̂ (γ)

(
9γ2q̂4 + 3Pγq̂2

)
+ 6V̂ (γ)

(
p̂q̂2 + q̂2p̂

)
. (D10)

With these in hand, one finds that

NS = 〈0|Ŝ† (−s)
(

(p̂+ P )
2

+ q̂2 + 4
(
9γ2q̂4 + 3Pγq̂2

)
+ 6

(
p̂q̂2 + q̂2p̂

))
Ŝ (−s) |0〉 /4− 1/2. (D11)

Now we are evaluating the expectation value of some polynomial of quadrature operators on a zero-mean
squeezed vacuum state with 〈p̂2〉 = e−2s, 〈q̂2〉 = e2s. By Gaussian moment factoring (Wick’s theorem) we have
〈q̂4〉 = 3 〈q̂2〉2 = 3e4s, 〈q̂2p̂〉 = 〈p̂q̂2〉 = 0. Combing the above into Eq. (D11), we have

NS =
1

2
(cosh(2s)− 1) + 18γ2e4s +

1

4

(
P + 6γe2s

)2
, (D12)

which is Eq. (18).

4. ON-state

The Wigner function can be obtained analytically

W (p, q; |ON〉) = 1
1+|a|2W (p, q; |0〉) + |a|2

1+|a|2W (p, q; |n〉)

+ 1
1+|a|2

√
1
n!

1
2π exp

(
−p2 − x2

)
(a (x− ip)n + a? (x+ ip)

n
) . (D13)

[1] D. F. Walls and G. J. Milburn, Quantum Opt.
(Springer Science & Business Media, 2007).

[2] C. Weedbrook, C. Ottaviani, and S. Pirandola, Phys.
Rev. A 89, 012309 (2014).

[3] G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316

(2002).
[4] G. De Palma, A. Mari, V. Giovannetti, and A. S.

Holevo, J. Math. Phys. 56, 052202 (2015).
[5] G. De Palma, arXiv:1710.09395 (2017).
[6] L. Vaidman, Phys. Rev. A 49, 1473 (1994).

http://dx.doi.org/10.1103/PhysRevA.89.012309
http://dx.doi.org/10.1103/PhysRevA.89.012309


17

[7] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett.
80, 869 (1998).

[8] T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668
(1998).

[9] N. J. Cerf and S. Iblisdir, Phys. Rev. A 62, 040301
(2000).

[10] G. Lindblad, J. Phys. A: Math. Gen. 33, 5059 (2000).
[11] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[12] R. S. Bondurant and J. H. Shapiro, Phys. Rev. D 30,

2548 (1984).
[13] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha,

S. Lloyd, L. Maccone, S. Pirandola, and J. H.
Shapiro, Phys. Rev. Lett. 101, 253601 (2008).

[14] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev.
Lett. 118, 040801 (2017).

[15] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev.
A 97, 032329 (2018).

[16] F. Grosshans and P. Grangier, Phys. Rev. Lett. 88,
057902 (2002).

[17] J. Eisert, S. Scheel, and M. Plenio, Phys. Rev. Lett.
89, 137903 (2002).

[18] J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
[19] S. L. Zhang and P. van Loock, Phys. Rev.A 82, 062316

(2010).
[20] J. Niset, J. Fiurášek, and N. J. Cerf, Phys. Rev. Lett.

102, 120501 (2009).
[21] If one trusts the device, then Gaussian states and op-

erations suffices for Bell’s inequality violation [97, 98].
[22] K. Banaszek and K. Wódkiewicz, Phys. Rev. A 58,

4345 (1998).
[23] K. Banaszek and K. Wódkiewicz, Phys. Rev. Lett. 82,

2009 (1999).
[24] R. Filip and L. Mišta Jr, Phys. Rev. A 66, 044309

(2002).
[25] Z.-B. Chen, J.-W. Pan, G. Hou, and Y.-D. Zhang,

Phys. Rev. Lett. 88, 040406 (2002).
[26] H. Nha and H. Carmichael, Phys. Rev. Lett. 93,

020401 (2004).
[27] C. Invernizzi, S. Olivares, M. G. Paris, and K. Ba-

naszek, Phys. Rev. A 72, 042105 (2005).
[28] R. García-Patrón, J. Fiurášek, and N. J. Cerf, Phys.

Rev. A 71, 022105 (2005).
[29] A. Ferraro and M. G. Paris, J. Opt. B: Quantum Semi-

class. Opt. 7, 174 (2005).
[30] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82,

1784 (1999).
[31] S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65,

042304 (2002).
[32] M. Ohliger, K. Kieling, and J. Eisert, Phys. Rev. A

82, 042336 (2010).
[33] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook,

T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97,
110501 (2006).

[34] L. Lami, B. Regula, X. Wang, R. Nichols, A. Winter,
and G. Adesso, arXiv:1801.05450 (2018).

[35] P. Marian and T. A. Marian, Phys. Rev. A 88, 012322
(2013).

[36] M. G. Genoni, M. G. Paris, and K. Banaszek, Phys.
Rev. A 78, 060303 (2008).

[37] M. G. Genoni and M. G. Paris, Phys. Rev. A 82,
052341 (2010).

[38] Q. Zhuang, P. W. Shor, and J. H. Shapiro,
arXiv:1803.07580 (2018).

[39] M. Horodecki and J. Oppenheim, Int. J. Mod. Phys.
B 27, 1345019 (2013).

[40] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett.
115, 070503 (2015).

[41] The converse is not true. And various ways to test
whether a quantum state is in the such a free set are
being considered [69, 71, 90–93].

[42] A. Mari and J. Eisert, Phys. Rev. Lett. 109, 230503
(2012).

[43] V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, New
J. Phys. 15, 013037 (2013).

[44] V. Veitch, S. H. Mousavian, D. Gottesman, and
J. Emerson, New J. Phys. 16, 013009 (2014).

[45] M. Howard and E. Campbell, Phys. Rev. Lett. 118,
090501 (2017).

[46] H. Pashayan, J. J. Wallman, and S. D. Bartlett, Phys.
Rev. Lett. 115, 070501 (2015).

[47] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev.
A 64, 012310 (2001).

[48] K. K. Sabapathy and C. Weedbrook,
arXiv:1802.05220 (2018).

[49] S. Suzuki, M. Takeoka, M. Sasaki, U. L. Andersen,
and F. Kannari, Phys. Rev. A 73, 042304 (2006).

[50] J. Heersink, C. Marquardt, R. Dong, R. Filip,
S. Lorenz, G. Leuchs, and U. L. Andersen, Phys.
Rev. Lett. 96, 253601 (2006).

[51] E. Dennis, Phys. Rev. A 63, 052314 (2001).
[52] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316

(2005).
[53] B. W. Reichardt, Quantum Inf. Process. 4, 251 (2005).
[54] S. Bravyi and J. Haah, Phys. Rev. A 86, 052329

(2012).
[55] A. M. Meier, B. Eastin, and E. Knill, Quantum Inf.

Comput. 13, 195 (2013).
[56] B. Eastin, Phys. Rev. A 87, 032321 (2013).
[57] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J.

Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev.
Mod. Phys. 84, 621 (2012).

[58] S. Ghose and B. C. Sanders, J. Mod. Opt. 54, 855
(2007).

[59] S. Sefi and P. van Loock, Phys. Rev. Lett. 107, 170501
(2011).

[60] P. Marek, R. Filip, and A. Furusawa, Phys. Rev. A
84, 053802 (2011).

[61] M. Yukawa, K. Miyata, H. Yonezawa, P. Marek,
R. Filip, and A. Furusawa, Phys. Rev. A 88, 053816
(2013).

[62] F. Arzani, N. Treps, and G. Ferrini, Phys. Rev. A
95, 052352 (2017).

[63] J. Aberg, arXiv:quant-ph/0612146 (2006).
[64] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys.

Rev. Lett. 113, 140401 (2014).
[65] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404

(2016).
[66] B. Yadin, J. Ma, D. Girolami, M. Gu, and V. Vedral,

Phys. Rev. X 6, 041028 (2016).
[67] E. Chitambar and G. Gour, Phys. Rev. A 94, 052336

(2016).
[68] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[69] M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares,

M. Kim, and M. G. Paris, Phys. Rev. A 87, 062104
(2013).

[70] We include states of Wigner function with negative

http://dx.doi.org/10.1103/PhysRevLett.80.869
http://dx.doi.org/10.1103/PhysRevLett.80.869
http://dx.doi.org/10.1103/PhysRevLett.81.5668
http://dx.doi.org/10.1103/PhysRevLett.81.5668
http://dx.doi.org/10.1103/PhysRevA.62.040301
http://dx.doi.org/10.1103/PhysRevA.62.040301
http://dx.doi.org/10.1103/PhysRevA.97.032329
http://dx.doi.org/10.1103/PhysRevA.97.032329
http://dx.doi.org/10.1142/S0217979213450197
http://dx.doi.org/10.1142/S0217979213450197
http://dx.doi.org/10.1103/PhysRevLett.115.070503
http://dx.doi.org/10.1103/PhysRevLett.115.070503
http://stacks.iop.org/1367-2630/15/i=1/a=013037
http://stacks.iop.org/1367-2630/15/i=1/a=013037
http://dx.doi.org/ 10.1103/PhysRevA.73.042304
http://dx.doi.org/10.1103/PhysRevLett.96.253601
http://dx.doi.org/10.1103/PhysRevLett.96.253601
http://dx.doi.org/10.1103/PhysRevA.63.052314
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1007/s11128-005-7654-8
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://www.rintonpress.com/journals/qiconline.html
http://www.rintonpress.com/journals/qiconline.html
http://dx.doi.org/10.1103/PhysRevA.87.032321
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/ 10.1103/PhysRevX.6.041028
http://dx.doi.org/10.1103/PhysRevA.94.052336
http://dx.doi.org/10.1103/PhysRevA.94.052336


18

values at measure zero points in this set. These mea-
sure zero negative points should be irrelevant to any
experiments in reality.

[71] R. Filip and L. Mišta Jr, Phys. Rev. Lett. 106, 200401
(2011).

[72] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.
Rev. Lett. 80, 5239 (1998).

[73] D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M.
Terhal, and A. V. Thapliyal, Phys. Rev. A 61, 062312
(2000).

[74] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New
J. Phys. 14, 113011 (2012).

[75] C. Navarrete-Benlloch, R. García-Patrón, J. H.
Shapiro, and N. J. Cerf, Phys. Rev. A 86, 012328
(2012).

[76] M. Kim, H. Jeong, A. Zavatta, V. Parigi, and
M. Bellini, Phys. Rev. Lett. 101, 260401 (2008).

[77] V. Parigi, A. Zavatta, M. Kim, and M. Bellini, Sci-
ence 317, 1890 (2007).

[78] J. Fiurášek, Phys. Rev. A 80, 053822 (2009).
[79] P. Marek, H. Jeong, and M. Kim, Phys. Rev. A 78,

063811 (2008).
[80] A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles,

Phys. Rev. A 73, 042310 (2006).
[81] N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda,

S. Kurimura, and S. Inoue, Nat. Photonics 4, 655
(2010).

[82] J. Fiurášek, R. García-Patrón, and N. J. Cerf, Phys.
Rev. A 72, 033822 (2005).

[83] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki,
Opt. Express 15, 3568 (2007).

[84] M. Walschaers, C. Fabre, V. Parigi, and N. Treps,

Phys. Rev. Lett. 119, 183601 (2017).
[85] M. Walschaers, C. Fabre, V. Parigi, and N. Treps,

Phys. Rev. A 96, 053835 (2017).
[86] M. G. Genoni, M. G. Paris, and K. Banaszek, Phys.

Rev. A 76, 042327 (2007).
[87] G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 (1999).
[88] B. Regula, J. Phys. A: Math. Theor. 51, 045303

(2018).
[89] F. de Melo, P. ÄĘwikliÅĎski, and B. M. Terhal, New

J. Phys. 15, 013015 (2013).
[90] J. Park, J. Zhang, J. Lee, S.-W. Ji, M. Um, D. Lv,

K. Kim, and H. Nha, Phys. Rev. Lett. 114, 190402
(2015).

[91] C. Hughes, M. G. Genoni, T. Tufarelli, M. G. Paris,
and M. Kim, Phys. Rev. A 90, 013810 (2014).

[92] M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fi-
urášek, and R. Filip, Phys. Rev. Lett. 107, 213602
(2011).

[93] L. Happ, M. A. Efremov, H. Nha, and W. P. Schleich,
New J. Phys. 20, 023046 (2018).

[94] M. Piani and J. Watrous, Phys. Rev. Lett. 102,
250501 (2009).

[95] R. Takagi and Q. Zhuang, arXiv:1804.04669v1
(2018).

[96] F. Albarelli, M. G. Genoni, M. G. A. Paris, and
A. Ferraro, arXiv:1804.05763v1 (2018).

[97] T. Ralph, W. Munro, and R. Polkinghorne, Phys.
Rev. Lett. 85, 2035 (2000).

[98] O. Thearle, J. Janousek, S. Armstrong, S. Hosseini,
M. Schünemann (Mraz), S. Assad, T. Symul, M. R.
James, E. Huntington, T. C. Ralph, and P. K. Lam,
Phys. Rev. Lett. 120, 040406 (2018).

http://stacks.iop.org/1367-2630/14/i=11/a=113011
http://stacks.iop.org/1367-2630/14/i=11/a=113011
http://dx.doi.org/10.1103/PhysRevA.59.141
http://stacks.iop.org/1751-8121/51/i=4/a=045303
http://stacks.iop.org/1751-8121/51/i=4/a=045303
http://stacks.iop.org/1367-2630/15/i=1/a=013015
http://stacks.iop.org/1367-2630/15/i=1/a=013015
http://stacks.iop.org/1367-2630/20/i=2/a=023046
http://dx.doi.org/10.1103/PhysRevLett.102.250501
http://dx.doi.org/10.1103/PhysRevLett.102.250501
http://dx.doi.org/10.1103/PhysRevLett.120.040406

	Convex resource theory of non-Gaussianity
	Abstract
	Introduction
	Preliminaries
	Gaussian states and Gaussian channels
	Continuous-variable quantum computation

	Resource theory framework
	Free states and free operations
	Monotone

	Resource states
	Applications
	State conversions
	Distillation of genuine non-Gaussianity

	Conclusions
	Acknowledgments
	Proof of [lemm:WignerGaussianunitary]Lemma 1
	Proof of (2.6), (2.5) in [lemm:Wigner]Lemma 2
	Proof of [lemm:mana]Lemma 5
	Wigner functions for resource states
	Number state
	Single-photon-added and single-photon-subtracted states
	Cubic phase state
	ON-state

	References


