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It is a central question in quantum thermodynamics to determine how irreversible is a process that
transforms an initial state ρ to a final state σ, and whether such irreversibility can be thought of as
a useful resource. For example, we might ask how much work can be obtained by thermalizing ρ to
a thermal state σ at temperature T of an ambient heat bath. Here, we show that, for different sets
of resource-theoretic thermodynamic operations, the amount of entropy produced along a transition
is characterized by how reversible the process is. More specifically, this entropy production depends
on how well we can return the state σ to its original form ρ without investing any work. At the
same time, the entropy production can be linked to the work that can be extracted along a given
transition, and we explore the consequences that this fact has for our results. We also exhibit an
explicit reversal operation in terms of the Petz recovery channel coming from quantum information
theory. Our result establishes a quantitative link between the reversibility of thermodynamical
processes and the corresponding work gain.

I. INTRODUCTION

Quantum thermodynamics is experiencing a renaissance in which ideas from quantum information theory enable
us to understand thermodynamics for even the smallest quantum systems. Our inability to apply statistical methods
to a small number of particles and the presence of quantum coherences make this a challenging undertaking. Yet, we
are now indeed able to construct very small quantum devices allowing us to probe such regimes experimentally [1–3].
Theoretical results studying the efficiency of small thermal machines [4–9], catalysis [10–12], work extraction [13–20],
and the second laws of quantum thermodynamics [21, 22] have furthermore led to the satisfying conclusion that the
usual laws of thermodynamics as we know them can be derived from the laws of quantum mechanics in an appropriate
limit.
Here we are concerned with the fundamental problem of how irreversible is the transformation of a state ρS to a

state σS of some system S in the presence of a thermal bath, and how that irreversibility is related to the work that
can be extracted through the same transformation. In this regard, the second laws [21] provide general constraints on
these transitions, which are necessary and sufficient if ρS is diagonal in the energy eigenbasis of the system. Special
instances of this problem have drawn particular attention, such as gaining the maximum amount of work from ρS by
thermalizing it to the temperature of the surrounding bath [13], extracting work from correlations among different
subsystems when ρS is a multipartite state (see, e.g. [23]), as well as the case when σS results from a measurement
on ρS [24–26]. When thinking about investing work, one of the most well studied instances is Landauer’s erasure [27],
which is concerned with the amount of energy necessary to take an arbitrary state ρS to a pure state σS .
We adopt the resource theory approach of [13, 28, 29], which has the appealing feature of explictly accounting for

all energy flows. We will focus on the quantitative features of the irreversibility of thermodynamical processes that
take an initial state ρS to a final state σS . In particular, we here show that a key quantity, namely the decrease of
free energy or entropy production is related to how well a particular thermodynamical process can be reversed. In
turn, this quantity is directly related to how much work can be extracted in the transition ρS → σS .

II. PRELIMINARIES

Let us now describe a prominent class of processes that we will be dealing with, known in the resource theory
approach as thermal operations [21]. Given a particular fixed temperature T , we may access a bath described by a
Hamiltonian HB and thermal state τ̂B = exp(−βHB)/ZB, where β = 1/(kT ) is the inverse temperature1 and ZB is
the partition function. Let HS be the Hamiltonian associated with the system S and let U denote a unitary that
acts on the system S, a battery system W , and the bath B. The only unitary transformations U that are allowed are

1 Here, k is the Boltzmann constant.
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those that conserve total energy. That is, the allowed unitaries are such that [U,H ] = 0, where H = HS +HW +HB

is the total Hamiltonian. The transformation T performing the mapping T (ρS ⊗ |0〉〈0|W ) = σS ⊗ |1〉〈1|W then takes
the following form

T (ηSW ) = TrB[U(ηSW ⊗ τ̂B)U
†] (1)

for some input state ηSW of the system and the battery. Other classes of thermodynamic operations are discussed
in Sections VI and VII. Given that U conserves total energy, it is clear that this framework accounts for all energy
flows, making it particularly appealing for studying quantum thermodynamics.
We shall focus on the following quantity, known as entropy production

F (ρS)− F (σS), (2)

where F (ωS) = Tr[HSωS ] − kT S(ωS) is the Helmholtz free energy and the von Neumann entropy is defined as
S(ωS) = −Tr[ωS logωS ].

2 This entropy production is always non-negative under the action of thermal operations
[29]. In the absence of work extraction or expenditure, the change of energy in the system is equal to the negated
change of energy in the bath

Tr[HSσS ]− Tr[HSρS ] = −Q, (3)

where Q denotes heat. This is due to energy conservation. In the limit of an infinite heat bath, we have that Q = βδSB

(the heat and the change of entropy of the bath are proportional). Thus, in that case, we can understand the quantity
in (2) as the sum of the change of entropy of the system and bath separately, which is always positive.
How much work could we gain by transforming ρS to σS using such a bath? This question can be answered by asking

about the largest value of Wgain(ρS → σS) = W that can be achieved by a thermodynamical operation belonging to
the particular class in question, e.g., thermal operations, in the transition made by the map in (1). The standard
second law tells us that this transformation is possible only if

F (ρS ⊗ |0〉〈0|W ) ≥ F (σS ⊗ |1〉〈1|W ), (4)

where HSW = HS + HW and S(ωSW ) = −Tr[ωSW logωSW ]. Using the fact that Tr[HW |0〉〈0|W ] = 0 and
Tr[HW |1〉〈1|W ] = Wgain(ρS → σS), we can use (4) to obtain the following upper bound on the amount of work
that we can hope to obtain

Wgain(ρS → σS) ≤ F (ρS)− F (σS). (5)

That is, the entropy production upper bounds the deterministic work that can be extracted along a transition ρS → σS .
In regimes in which the second law gives necessary and sufficient conditions for particular transitions ρS → σS to

be possible, it follows that (4) can be saturated for any states ρS and σS , in which case we have a very tight relation
between entropy production and work. An example of a regime where (5) gives necessary and sufficient conditions
occurs if we consider a non-deterministic work paradigm and allow the amount of work to fluctuate arbitrarily, in
a transition in which the states are both diagonal in the energy eigenbasis and work is characterised by the mean
value of the battery only [30]. Other examples are those in which the systems are extremely large [29] or if we allow
for a slightly inexact catalysis [21]. Specifically, if an arbitrary catalyst can be used, what we mean by this is that
the “error per particle” in the output catalyst is bounded as ‖ηinC − ηoutC ‖1 ≤ ε/ log dC , where dC is the dimension
of the catalyst and ε > 0 is some tolerance [21]. Similarly, if inexact catalysis takes on the form of allowing small
correlations in the output catalyst, only the standard free energy is relevant [11]. A small caveat is that this regime
is only achieved in transitions in which both ρS and σS are diagonal in the energy eigenbasis [31].
It is convenient to note [32] that the free energy can also be expressed in terms of the quantum relative entropy.

Specifically, F (ρS) = kT [D(ρS‖τS) − logZS ], where τS = exp(−βHS)/ZS is the thermal state of the system at the
temperature T of the ambient bath. The relative entropy is defined as [33]

D(ρ‖τ) := Tr[ρ log ρ]− Tr[ρ log τ ], (6)

when supp(ρ) ⊆ supp(τ) and equal to +∞ otherwise. Since we do not change the Hamiltonian of the system, we can
hence express the amount of work in regimes in which the standard free energy is relevant as

Wgain(ρS → σS) = kT∆, (7)

2 All logarithms in this paper are base e. Furthermore, here and throughout, we take the convention that the operator logarithm is
evaluated only on the support of its argument.
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where we define the difference ∆ of relative entropies, which plays a special role as it is proportional to the entropy
production

∆ ≡ D(ρS‖τS)−D(σS‖τS) = βF (ρS)− βF (σS). (8)

We also define a related quantity, which is the work that needs to be invested in doing the opposite transition, as
Winv(σS → ρS). This is how much work is needed to go deterministically from σS to ρS . In the nano-regime, it is
possible that Wgain 6= Winv. In fact, in general, we have the following relation:

Wgain(ρS → σS) ≤ F (ρS)− F (σS) ≤ Winv(σS → ρS). (9)

This also means that in the regimes in which the free energy gives necessary and sufficient conditions, Wgain(ρS →
σS) = Winv(σS → ρS); i.e., the amount of energy that we need to invest to transform ρS to σS is precisely equal to
the amount of work that we can gain by transforming σS back to ρS . Thus in this “standard” free energy regime
governed by the Helmholtz free energy F (ρS), we see that we do not need to treat the amount of work gained as a
separate case, but rather it can be understood fully in terms of the transformation of σS back to ρS in which work
needs to be spent.
It is useful to note that for systems S that are truly small [13], or when we are interested in the case of exact

catalysis, this is not the case in general. In these situations, the standard second law needs to be augmented with
more refined conditions [21] that lead to differences. With some abuse of terminology, we refer to this as the nano
regime. In place of just one free energy, the nano regime requires that a family of free energies Fα satisfies

Fα(ρS) ≥ Fα(σS), (10)

for all α ≥ 0. These generalized free energies can be expressed in terms of the α-Rényi divergences as

Fα(ρS) = kT [Dα(ρS‖τS)− logZS], (11)

where the general definition of Dα
3 takes on a simplified form if ρS is diagonal in the energy eigenbasis. More

precisely,

Dα(ρS‖τS) =
1

α− 1
log

∑

j

ραj τ
1−α
j , (12)

where ρj and τj are the eigenvalues of ρS and τS respectively. The standard free energy is a member of this family
for α → 1. A short calculation [21] yields that in this regime

Wgain(ρS → σS) ≤ inf
α≥0

kT [Dα(ρS‖τS)−Dα(σS‖τS)] , (13)

Winv(σS → ρS) ≥ sup
α≥0

kT [Dα(ρS‖τS)−Dα(σS‖τS)]

≥ kT [D(ρS‖τS)−D(σS‖τS)] , (14)

where (the first) inequalities are again attained if ρS is diagonal in the energy eigenbasis.

III. RESULT

Our main result is the following relation between entropy production along a change of state and how well a
particular change can be undone. It takes the following form:

F (ρS)− F (σS) ≥ kT D(ρS‖Rσ→ρ(σS)), (15)

where Rσ→ρ is a thermal reversal operation using a bath at temperature T that, when F (ρS)−F (σS) is small, takes
σS close to the original state ρS . If ρS → σS through a map of the form of (1), this reversed channel is defined as

Rσ→ρ(·) = TrB[U
†((·)⊗ τB)U ]. (16)

3 For arbitrary states ρS , we have for 0 ≤ α < 1/2 that Dα(ρS‖τS) = 1
α−1

log Tr[ραSτ
1−α
S ] [34] and for α ≥ 1/2, Dα(ρS‖τS) =

1
α−1

log
[

Tr
(

τ
(1−α)/(2α)
S ρSτ

(1−α)/(2α)
S

)α]

[35, 36].
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That is, the global unitary is reversed after using a new copy of the thermal bath state. This way, in the reversal
operation we are ignoring both the correlations with the bath, and its change of state. We now relate the inequality
in (15) to the work relative to the transition ρS → σS .
Investing work. As outlined above, in the general regime in which not only the standard free energy is relevant,

the amount of work Winv(σS → ρS) ≥ 0 we need to invest to transform σS to ρS is larger than the entropy production.
Thus (15) together with (14) guarantee that

Winv(σS → ρS) ≥ kT D(ρS‖Rσ→ρ(σS)), (17)

where Rρ→σ is again the reversal operation. This says, for instance, that if not very much work needs to be spent
in restoring ρS from σS , then a particular thermal operation not involving any work would also recover ρS from σS

well, as measured by the relative entropy distance.
This may not always be the case as for example the erasure of a thermal state σS = τS to a pure state ρS costs a

significant amount of work. There, the operation Rρ→σ will not change the thermal state of the system, effectively
not recovering at all. Indeed this inequality also says that if the relative entropy is large, then the amount of work
that we need to invest is large too. We illustrate this application of our result in Section V by means of a simple
example of a harmonic oscillator bath.
Gaining work. Let us focus on particular situations in which W is characterized by the standard free energy

(for physical examples of this regime see paragraph after that containing (5) in Section II). There, we have that
kT∆ = Wgain(ρS → σS). In that case (15) states that the amount of work Wgain(ρS → σS) ≥ 0 gained when
transforming ρS to σS can be characterized by how well we can recover the state ρS from σS using a thermodynamic
operation of the same class which requires no work at all. More precisely

Wgain(ρS → σS) ≥ kT D(ρS‖Rσ→ρ(σS)). (18)

In this particular case a link is established between the reversibility of some transition and the amount of work
that could be drawn from it. Loosely speaking, if little work can be obtained when transforming ρS to σS with a
thermodynamic operation, then there exists a thermodynamic operation of the same class that can recover ρS from σS

quite well. Or stated differently, if this thermodynamic operation performs badly at recovering ρS , then the amount
of work that can be obtained in the transition ρS → σS can be large.

IV. PROOF FOR THERMAL OPERATIONS

We now give details of our main result, which applies to the set of thermal operations (TO) without catalysts.
Section VI contains details of other, more general sets of operations.
Let us first suppose that we can draw a positive amount of work by transforming ρS to σS , so that ∆ > 0. Note

that in regimes dictated by the standard free energy, ∆ > 0 implies that there exists a different thermal operation
taking ρS to σS without drawing any work at all [21, 22]—in this case the additional energy can be deposited into
the bath. Let V be the energy-conserving unitary that realizes this latter thermal operation, and let (τ̂B, HB) be the
thermal state and Hamiltonian of the bath, such that σS = TrB[V (ρS ⊗ τ̂B)V

†]. Note that V acts on systems S and
B and [V,HS +HB] = 0. We have the following theorem:

Theorem 1. Let T be a thermal operation given by

T (·)S = TrB[V ((·)S ⊗ τ̂B)V
†], (19)

where V and τ̂B are defined above. Then it obeys the inequality

D(ρS‖τS)−D(σS‖τS) ≥ D(ρS‖R(σS)), (20)

where R(·) is a recovery channel, which is another thermal operation given by

R(·) = TrB[V
†((·)S ⊗ τ̂B)V ]. (21)

Proof. Our proof is divided into two main steps.
Step 1: Rewriting the relative entropy difference.

Our first step is to rewrite ∆ = D(ρS‖τS)−D(σS‖τS) as an equality involving the operation V . Observe that

D(ρS‖τS) = D(ρS ⊗ τ̂B‖τS ⊗ τ̂B) (22)

= D(V (ρS ⊗ τ̂B)V
†‖V (τS ⊗ τ̂B)V

†) (23)

= D(V (ρS ⊗ τ̂B)V
†‖τS ⊗ τ̂B), (24)
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where we have used the facts that the relative entropy is invariant with respect to tensoring an ancilla state or applying
a unitary, and V is an energy-conserving unitary so that V (τS ⊗ τ̂B)V

† = τS ⊗ τ̂B .
For density operators ηCD and θCD such that supp(ηCD) ⊆ supp(θCD), it is possible to write

D(ηCD‖θCD)−D(ηD‖θD) = Tr(ηCD[log ηCD − log θCD − log IC ⊗ ηD + log IC ⊗ θD]). (25)

Using these two facts, we can rewrite ∆ as follows:

D(ρS‖τS)−D(σS‖τS) = Tr
(

V (ρS ⊗ τ̂B)V
†[logV (ρS ⊗ τ̂B)V

† − log τS ⊗ τ̂B − log σS ⊗ IB + log τS ⊗ IB]
)

. (26)

We can simplify the operator consisting of the last three terms on the right above as

− log τS ⊗ τ̂B − log σS ⊗ IB + log τS ⊗ IB = − log IS ⊗ τ̂B − log σS ⊗ IB (27)

= − log σS ⊗ τ̂B, (28)

and thus conclude that

D(ρS‖τS)−D(σS‖τS) = D(V (ρS ⊗ τ̂B)V
†‖σS ⊗ τ̂B). (29)

Hence we have that the right-hand side is equal to

D(V (ρS ⊗ τ̂B)V
†‖σS ⊗ τ̂B) = D(ρS ⊗ τ̂B‖V †(σS ⊗ τ̂B)V ). (30)

Putting everything together, we see that

D(ρS‖τS)−D(σS‖τS) = D(ρS ⊗ τ̂B‖V †(σS ⊗ τ̂B)V ). (31)

Thus, the quantity ∆ related to the work gain in (7) is exactly equal to the “relative entropy distance” between
the original state ρS ⊗ τ̂B and the state resulting from the following thermal operation:

σS → V †(σS ⊗ τ̂B)V, (32)

which consists of adjoining σS with a thermal state τ̂B and performing the inverse of the unitary V . Note that this
statement is non-trivial, since σS ⊗ τ̂B 6= V (σS ⊗ τ̂B)V

†. The forward unitary operation V can create correlations
between the system and the bath, whereas V † is applied to a fresh and entirely uncorrelated bath, making it a thermal
operation.

Step 2: A lower bound using the recovery map. Due to the fact that the quantum relative entropy can never
increase under the action of a partial trace [37, 38], we can conclude from (31) that the following inequality holds

D(ρS‖τS)−D(σS‖τS) ≥ D(ρS‖Rσ→ρ(σS)), (33)

where

Rσ→ρ(σS) = TrB[V
†(σS ⊗ τ̂B)V ]. (34)

This concludes the proof. Note that this operation is a thermal operation, and requires no work.

A. Remark: Petz recovery map

We remark that R is actually a special quantum map, called the Petz recovery map [39–42]. For a general quantum
channel N and a given density operator θ, this recovery map is defined as

Ñ (·) = θ1/2N †[N (θ)−1/2(·)N (θ)−1/2]θ1/2, (35)

where N † is the adjoint of the channel N [43]. As a consequence, we can conclude that the main conjecture from [44]
holds for the special case of thermal operations. We show this in the following lemma.

Lemma 1. The map R(·) in (34) is the Petz recovery map of the original thermal operation, provided we choose the
state θ in (35) to be the thermal state τS .
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Proof. Consider that to two density operators η and θ and a quantum channel N , we can associate the relative entropy
difference D(η‖θ)−D(N (η)‖N (θ)) and the Petz recovery channel of Eq. (35) above. For our case, we have that

η = ρS , θ = τS , N (·) = TrB[V ((·)S ⊗ τ̂B)V
†], (36)

which implies that N (θ) = τS . Using the definition of the adjoint, one can show that

N †(·) = TrB

[

τ̂
1/2
B V †[(·)S ⊗ IB]V τ̂

1/2
B

]

, (37)

which implies for our case that the Petz recovery channel takes the following form:

Ñ (·) = τ
1/2
S TrB

[

τ̂
1/2
B V †[τ

−1/2
S (·)Sτ−1/2

S ⊗ IB ]V τ̂
1/2
B

]

τ
1/2
S . (38)

We can rewrite this as follows:

TrB

[

(τ
1
2

S ⊗ τ̂
1
2

B )V †[τ
− 1

2

S (·)Sτ−
1
2

S ⊗ IB ]V (τ
1
2

S ⊗ τ̂
1
2

B )
]

= TrB

[

(τS ⊗ τ̂B)
1
2V †[τ

− 1
2

S (·)Sτ−
1
2

S ⊗ IB ]V (τS ⊗ τ̂B)
1
2

]

(39)

= TrB

[

V †(τS ⊗ τ̂B)
1
2 τ

− 1
2

S (·)Sτ−
1
2

S ⊗ IB ](τS ⊗ τ̂B)
1
2 V

]

(40)

= TrB[V
†((·)S ⊗ τ̂B)V ], (41)

where we have used that [V, τS ⊗ τ̂B] = 0.

V. EXAMPLE FOR THERMAL OPERATIONS

Let us illustrate the reversal operation Rσ→ρ by means of a simple example. Let S be a two-level system, with
Hamiltonian HS = ES |1〉〈1|. Let us take ρS = |0〉〈0|S and σS = p0|0〉〈0|S + p1|1〉〈1|S with p0 ∈ [1 − e−βES , 1]. When
p0 = 1/2, the opposite operation σS → ρS corresponds to Landauer erasure. Recall that the reversal operation
associated with the lower bound for the work in (17) is determined by the operation that takes ρS = |0〉〈0|S to σS

without drawing any work.
For our simple example, consider a bath comprised of a harmonic oscillator HB =

∑∞
n=0 En|n〉〈n|B where En =

n~ω.4 Note that, for each n, the gap between n and n + 1 is constant: G = En+1 − En = ~ω. To illustrate, let
us consider the energy gap of the system to be equal to ES = ~ω—an example in which ES is a multiple of ~ω is
analogous.

1. Transforming ρS to σS

Our first goal is to find the explicit operation that takes ρS to σS , which has the effect of mixing the ground state
of the system. Note that since U conserves energy, U is block diagonal in the energy eigenbasis belonging to different
energies. More precisely, if the total Hamiltonian H = HS + HB is block diagonal H =

⊕

n EnΠEn
where ΠEn

is
the projector onto the subspace of energy En = n~ω spanned by |0〉S |0〉B for n = 0 and {|0〉S |n〉B , |1〉S |n− 1〉B}
for n = 1, 2, 3, . . ., then U =

⊕

n UEn
, where UEn

is a unitary acting only on the subspace of energy En. That is,
ΠEn

UEn
ΠEn

= UEn
.

Consider the unitary transformations UEn
defined by the following action:

UE0
|0〉S |0〉B = |0〉S |0〉B =: |ΨE0

〉 , (42)

UEn
|0〉S |n〉B =

√
b |0〉S |n〉B +

√
1− b |1〉S |n− 1〉B =: |ΨEn

〉 for n = 1, 2, 3, . . . , (43)

UEn
|1〉S |n− 1〉B =

√
1− b |0〉S |n〉B −

√
b |1〉S |n− 1〉B =:

∣

∣Ψ⊥
En

〉

for n = 1, 2, 3, . . . , (44)

where 0 ≤ b ≤ 1 is a parameter that will be chosen in accordance with the desired target state ρS below. It is useful
to observe that in the subspace {|0〉S |n〉B , |1〉S |n− 1〉B}, the unitary UEn

can be written as

UEn
=

( √
b

√
1− b√

1− b −
√
b

)

, (45)

4 We could have also written En = (2n + 1) ~
2
ω, which is the same after re-normalizing. For notational convenience we have subtracted

the constant ~

2
ω.
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which makes it easy to see that U = U † is Hermitian. Note that the states are normalized and 〈ΨEn
|Ψ⊥

En
〉 = 0 for

n = 1, 2, 3, . . .. The bath thermal state is

τ̂B =
1

ZB

∞
∑

n=0

e−nESβ |n〉〈n|B, (46)

where ZB =
∑∞

n=0 e
−nESβ = 1/(1 − e−ESβ) is the partition function of the bath, and we have used the fact that

En = n~ω = nES . The unitary thus transforms the overall state as

U(|0〉〈0|S ⊗ τ̂B)U
† =

1

ZB

∞
∑

n=0

e−nESβU (|0〉S |n〉B S〈0| B〈n|)U † (47)

=
1

ZB

∞
∑

n=1

e−nESβU (|0〉S |n〉B S〈0| B〈n|)U † +
1

ZB
U (|0〉S |0〉B S〈0| B〈0|)U † (48)

=
1

ZB

∞
∑

n=1

e−nESβ|ΨEn
〉〈ΨEn

|+ 1

ZB
|0〉〈0|S ⊗ |0〉〈0|B (49)

=: σ0
SB. (50)

By linearity of the partial trace operation, we have that

TrB(σ
0
SB) =

ZB − 1

ZB
(b|0〉〈0|S + (1− b)|1〉〈1|S) +

1

ZB
|0〉〈0|S (51)

= p0|0〉〈0|S + p1|1〉〈1|S, (52)

where

p0 =
1

ZB
((ZB − 1)b+ 1) , (53)

p1 = 1− p0. (54)

Note that since 0 ≤ b ≤ 1, p0 ∈ [1/ZB, 1] = [1− e−ESβ , 1]. Solving (53) for b gives

b =
p0ZB − 1

ZB − 1
. (55)

2. The reversal operation

Let us now construct the reversal map Rσ→ρ. This map can be written as

Rσ→ρ(σS) = TrB
[

U †(σS ⊗ τ̂B)U
]

= TrB
[

U(σS ⊗ τ̂B)U
†
]

, (56)

where we have used the fact that U = U †. To evaluate the reversal map for arbitrary σS , let us first note that by a
calculation similar to the above

U(|1〉〈1|S ⊗ τ̂B)U
† =

1

ZB

∞
∑

n=0

e−nESβ |Ψ⊥
En+1

〉〈Ψ⊥
En+1

| =: σ1
SB . (57)

Using the linearity of the partial trace, we furthermore observe that

TrB
[

σ1
SB

]

= (1− b)|0〉〈0|S + b|1〉〈1|S. (58)

Using (50) and (57) together with (52) and (58), we then have

Rσ→ρ(σS) = TrB
[

U(σS ⊗ τ̂B)U
†
]

(59)

= p0TrB
[

σ0
SB

]

+ p1TrB
[

σ1
SB

]

(60)

= p0 (p0|0〉〈0|S + p1|1〉〈1|S) + p1 ((1− b)|0〉〈0|S + b|1〉〈1|S) (61)

= PR
0 |0〉〈0|S + PR

1 |1〉〈1|S , (62)
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with

PR
1 := 1− PR

0 , (63)

PR
0 := (p0)

2
+ (p1)

2 ZB

ZB − 1
= (p0)

2
+ (1− p0)

2
eESβ , (64)

where we have used the fact that p0 + p1 = 1 and ZB = 1/(1 − e−ESβ). We can now compute the lower bound for
Winv(σS → ρS). We find

Winv(σS → ρS) ≥ kTD(ρS‖Rσ→ρ(σS)) (65)

= −kT logPR
0 . (66)

Plugging in (64) into (65) we find

Winv(σS → ρS) ≥ −kT log
[

(p0)
2 + (1 − p0)

2eESβ
]

, (67)

where we recall p0 ∈ [1/ZB, 1] = [1− e−ESβ , 1].

3. Three special cases

We examine three special cases of (67):

1) Consider p0 = 1. In this case we want to form the state |0〉〈0|S from the state |0〉〈0|S . The work invested must
clearly be zero in this case. The RHS of (67) is also zero, and hence the bound (17) is tight for this case.

2) Consider p0 = 1/ZS = 1/(1 + e−ESβ). That is, we want to “recover” from a thermal state σS = τS , as to get
close to a ground state. In this case, the RHS of (67) simplifies to kTD(ρS‖Rσ→ρ(σS)) = kT logZS . By direct
calculation using the 2nd laws (using (13)–(14)) we find W nano

gain = W nano
inv = (logZS)/β and thus the bound is

also tight for this case.

3) Consider p0 = 1/ZB. That is, we want the recovery map to approach to a pure state from the state whose
ground state population is the same as the ground state population of the harmonic oscillator bath. In this
case, (67) reduces to kTD(ρS‖Rσ→ρ(σS)) = −kT log[1 + e−2ESβ − e−ESβ ].

VI. EXTENDING TO MORE GENERAL OPERATIONS INVOLVING CATALYSTS

We now prove the following lemma, which highlights the condition that a given map has to obey for the proof of
Section IV to still hold.

Lemma 2. Let T (·) be a quantum channel with a full-rank steady state τS = T (τS) specified as

T (·)S = TrE [U((·)S ⊗ ρE)U
†], (68)

for some unitary U and an environment state ρE, such that

U(τS ⊗ ρE)U
† = τS ⊗ ρ′E . (69)

That is, at the fixed point no correlations with the environment are created. It then holds for an arbitrary initial state
ρS, and σS = T (ρS) that

D(ρS‖τS)−D(σS‖τS) ≥ D(ρS‖R(σS)), (70)

where R(·) is the Petz recovery map for the channel T (·), given by

R(·) = TrE [U
†((·)S ⊗ ρ′E)U ]. (71)



9

Proof. Our proof follows similar steps to those of the particular case of thermal operations shown previously. We first
write

D(ρS‖τS) = D(ρS ⊗ ρE‖τS ⊗ ρE) (72)

= D(U(ρS ⊗ ρE)U
†‖U(τS ⊗ ρE)U

†) (73)

= D(U(ρS ⊗ ρE)U
†‖τS ⊗ ρ′E), (74)

where we have used the main assumption of the lemma from (69) and the facts that the relative entropy is invariant
with respect to tensoring an ancilla state or applying a unitary.
Now we recall the identity of (25) from the proof of Theorem 1:

D(ηCD‖θCD)−D(ηD‖θD) = Tr(ηCD[log ηCD − log θCD − log IC ⊗ ηD + log IC ⊗ θD]), (75)

where supp(ηCD) ⊆ supp(θCD). We use it together with (72) to write

D(ρS‖τS)−D(σS‖τS) = Tr(U(ρS ⊗ ρE)U
†[logU(ρS ⊗ ρE)U

† − log τS ⊗ ρ′E − log σS ⊗ IE + log τS ⊗ IE ]). (76)

The last three terms on the right-hand side above can be simplified significantly

− log τS ⊗ ρ′E − log σS ⊗ IE + log τS ⊗ IE = − log IS ⊗ ρ′E − log σS ⊗ IE (77)

= − logσS ⊗ ρ′E , (78)

which leads to

D(ρS‖τS)−D(σS‖τS) = D(U(ρS ⊗ ρE)U
†‖σS ⊗ ρ′E). (79)

We also have that

D(U(ρS ⊗ ρE)U
†‖σS ⊗ ρ′E) = D(ρS ⊗ ρE‖U †(σS ⊗ ρ′E)U). (80)

Putting everything together, we see that

D(ρS‖τS)−D(σS‖τS) = D(ρS ⊗ ρE‖U †(σS ⊗ ρ′E)U) (81)

≥ D(ρS‖R′(σS)). (82)

What is left is to show that the recovery map R is indeed the Petz recovery map. Again this follows by the same
reasoning as given previously for thermal operations.
The adjoint of the map T (·) is as follows

(·)S → TrE

[

ρ
1/2
E U † ((·)S ⊗ IE)Uρ

1/2
E

]

, (83)

and, by definition the Petz recovery channel is given as

(·)S → τ
1/2
S TrE

[

ρ
1/2
E U †

(

τ
−1/2
S (·)S τ

−1/2
S ⊗ IE

)

Uρ
1/2
E

]

τ
1/2
S . (84)

By a series of steps similar to those shown previously, we have that

τ
1/2
S TrE

[

ρ
1/2
E U †

(

τ
−1/2
S (·)S τ

−1/2
S ⊗ IE

)

Uρ
1/2
E

]

τ
1/2
S

= TrE

[

(τS ⊗ ρE)
1/2

U †
(

τ
−1/2
S (·)S τ

−1/2
S ⊗ IE

)

U (τS ⊗ ρE)
1/2

]

(85)

= TrE

[

U † (τS ⊗ ρ′E)
1/2

(

τ
−1/2
S (·)S τ

−1/2
S ⊗ IE

)

(τS ⊗ ρ′E)
1/2

U
]

(86)

= TrE
[

U † ((·)S ⊗ ρ′E)U
]

(87)

= R (·) , (88)

We note that from (69), multiplying by U and U † and taking the square root on both sides of the equation allows us
to conclude (τS ⊗ ρE)

1/2U † = U †(τS ⊗ ρ′E)
1/2 and U(τS ⊗ ρE)

1/2 = (τS ⊗ ρ′E)
1/2U . These equalities allow us to go

from the second to the third line by using the assumption of (69).
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This lemma implies that for any quantum channel that has a dilation satisfying the condition in (69), we arrive at
an inequality like that in (33). In the next lemma, we define a further set of maps for which the condition in (69) holds.
We say there is an isentropic catalytic thermal operation (ICTO) from ρS to σS , if there exists an energy-conserving
unitary V acting on the system S, the bath B, and a set of n isentropic catalysts ⊗n

i=1ηCi
=: ηC on C =

⊗n
i=1 Ci

with initial states ηCi
, such that

TrB
[

V (ρS ⊗ τ̂B ⊗ ηC)V
†
]

= σSC , (89)

where TrC [σSC ] = σS . The unitary V conserves the energy of the bath, the system, and all the catalysts, so that
[V,HS + HB + HC ] = 0, where HC :=

∑n
i=1 HCi

are the Hamiltonians of the catalysts. This said, correlations
between the different catalysts ηCi

are allowed in the final state. For every ICTO, we can define an associated channel
HS → HS :

TICTO(·) := TrBC [σ′
SBC(·)] , σ′

SBC(·) := V ((·)⊗ τ̂B ⊗ ηC)V
†. (90)

The isentropic catalysts are required to satisfy the following:

1) S(TrS C\Cl
[σSC ]) = S(ηCi

)∀ i, meaning that the local states of the catalysts return to states of equal entropy to
the initial states.

2) When the input to the channel in (90) is the thermal state τS of the system, the entropy and mean energy of
the catalysts are non-increasing and non-decreasing respectively: S(ηC) ≥ S(σ′

C) and Tr[HCηC ] ≤ Tr[HCσ
′
C ].

Condition 1) guarantees that the catalysts are not degraded in the sense of an entropy change, while (as will become
evident in the following lemma) condition 2) guarantees that the channel TICTO(·) is Gibbs preserving, which is a
physically relevant condition for a channel resulting from a thermodynamic process. This new class of operations is
between TO and Gibbs preserving maps.
These conditions are different from the ones that apply to catalytic thermal operations as usually defined in the

literature [21]. For those, a stronger version of condition 1) holds, but condition 2) does not necessarily hold. However,
since condition 2) is only required to hold for the von Neumann entropy and mean energy, rather than requiring exact
catalysis, it is feasible (given what is known about work embezzlement with inexact catalysts [10]) that one can always
construct a catalyst large enough, such that for every catalytic thermal operation transforming ρ → σ, there exists
another catalytic thermal operation also transforming ρ → σ (possibly with a larger catalyst) such that condition 2)
is satisfied. If such a family of catalytic thermal operations exists, it would be very satisfying since via the following
lemma it would mean that there is a subset of catalytic thermal operations which allow for all possible transformations
as the full set, yet with the additional physically relevant property of belonging to the class of Gibbs preserving maps.
We now show that given the assumptions above, the operations defined as such obey the conditions of Theorem 2.

Lemma 3. For every ICTO channel as defined in (90) the following hold:

1) The channel is Gibbs preserving: TICTO(τS) = τS .

2) The isentropic catalysts do not become correlated with the bath or the system when the input to the channel is
thermal:

V (τS ⊗ τ̂B ⊗ ηC)V
† = τS ⊗ τ̂B ⊗ σ′

C . (91)

Proof. Let ρ̂SB = TrC [V (τS ⊗ τ̂B ⊗n
i=1 ηCi

)V †] denote the local state of the system and the bath after the transfor-
mation, and denote the total Hamiltonian as H = HS +HB +

∑n
i=1 HCi

, the sum of all the local ones. Conservation
of energy before and after the operation corresponds to the following:

Tr[HV (τS ⊗ τ̂B ⊗n
i=1 ηCi

) V †] = Tr[H(τS ⊗ τ̂B ⊗n
i=1 ηCi

)] = (92)

Tr[(HS +HB)(τS ⊗ τB)] + Tr[HCηC ] ≤ Tr[(HS +HB)(τS ⊗ τB)] + Tr[HCσ
′
C ]. (93)

Also, the total average energy is the sum of the local energies

Tr[HV (τS ⊗ τ̂B ⊗n
i=1 ηCi

)V †] = Tr[(HS +HB)ρ̂SB ] + Tr[HCσ
′
C ], (94)

and hence Tr[(HS +HB)ρ̂SB ] ≤ Tr[(HS +HB)(τS ⊗ τ̂B)]. Let T
′ be the temperature of the Gibbs state τ ′SB such that

Tr[(HS+HB)ρ̂SB ] = Tr[(HS+HB)τ
′
SB ]

5. For a given fixed energy, the thermal state is the unique state with the highest

5 Note that such a T ′ ≥ 0 always exists since T ′ = 0 is the ground state, the Gibbs state mean energy is monotonically increasing with
its temperature, and the mean energy of ρ̂SB is upper bounded by a thermal state of the same Hamiltonian
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entropy [45, Theorem 1.3], and hence S(τ ′SB) ≥ S(ρ̂SB). Yet, since, Tr[(HS +HB)τ
′
SB ] ≤ Tr[(HS +HB)(τS ⊗ τ̂B)], it

follows that the temperature T of state τS ⊗ τ̂B satisfies T ≥ T ′, and thus by direct calculation S(τS ⊗ τ̂B) ≥ S(τ ′SB).
So we conclude that

S(τS ⊗ τ̂B) ≥ S(ρ̂SB). (95)

Now we consider the entropy before and after the transformation. Since the joint operation is a unitary, we have from
unitary invariance and sub-additivity of quantum entropy that

S(τS ⊗ τ̂B) + S(ηC) = S(V (τS ⊗ τ̂B ⊗ ηC)V
†) (96)

= S(ρ̂SBC) (97)

≤ S(ρ̂SB) + S(σ′
C) (98)

≤ S(ρ̂SB) + S(ηC), (99)

where we have defined ρ̂SBC := V (τS ⊗ τ̂B ⊗ ηC)V
†. Hence S(τS ⊗ τ̂B) ≤ S(ρ̂SB). Given our conclusion in (95)

regarding conservation of energy, it must then be the case that S(τS ⊗ τ̂B) = S(ρ̂SB). At fixed von Neumann entropy,
the thermal (Gibbs) state minimises the mean energy, and thus S(τS ⊗ τ̂B) = S(ρ̂SB) implies Tr[(HS +HB)ρ̂SB] ≥
Tr[(HS +HB)(τS ⊗ τ̂B)]. Since previously we concluded Tr[(HS +HB)ρ̂SB] ≤ Tr[(HS +HB)(τS ⊗ τ̂B)], we then have
that Tr[(HS +HB)ρ̂SB] = Tr[(HS +HB)(τS ⊗ τ̂B)]. Thus the last equality together with S(τS ⊗ τ̂B) = S(ρ̂SB) implies

τS ⊗ τ̂B = ρ̂SB = ρ̂S ⊗ ρ̂B. (100)

Using (100), (99), and noting that by definition ρ̂C = σ′
C , we conclude

S(ρ̂SBC) ≤ S(ρ̂S ⊗ ρ̂B ⊗ σ′
C) = S(ρ̂S ⊗ ρ̂B ⊗ ρ̂C) ≤ S(ρ̂S ⊗ ρ̂B ⊗ ηC) = S(ρ̂SBC) (101)

Hence S(ρ̂S ⊗ ρ̂B ⊗ ρ̂C) = S(ρ̂SBC), which is true iff ρ̂SBC = ρ̂S ⊗ ρ̂B ⊗ ρ̂C . Writing this in terms of τS , τ̂B, σ
′
C and

V (τS ⊗ τ̂B ⊗n
i=1 ηCi

)V † gives us (91), completing the proof.

Putting together Lemmas 2 and 3 and taking the environment state ρE from Lemma 2 to be the state of the bath
and the set of catalysts (i.e., ρE ≡ τ̂B ⊗ ηC), we arrive at the following conclusion:

Theorem 2. Let TICTO(·) be an ICTO channel of the form in (90) given by

TICTO(·) = TrBC [U((·)S ⊗ τ̂B ⊗ ηC)U
†]. (102)

Then it obeys the inequality

D(ρS‖τS)−D(σS‖τS) ≥ D(ρS‖R(σS)), (103)

where R(·) is the Petz recovery map given by

R(·) = TrBC [U
†((·)S ⊗ τ̂B ⊗ σ′

C)U ]. (104)

The Petz recovery map preserves the Gibbs state R(τS) = τS.

Proof. (103) and (104) are a direct consequence of Lemmas 2 and 3. The fact that the Petz recovery map preserves
the thermal state follows from Lemma 3 by inspection.

VII. GIBBS PRESERVING MAPS

A general set of maps to which the conditions of Lemma 2 do not apply is that of Gibbs preserving maps [46], and
we hence need a different method to prove an analogous result. To prove a bound in (20), we use the following general
result for quantum maps from [47]:

Theorem 3. Let N (·) be a quantum channel, and let η and θ be quantum states. We have that

D(η‖θ)−D(N (η)‖N (θ)) ≥ −
∫

R

dt p(t) logF (η, Ñt(N (η))), (105)

where F (ρ, σ) = (Tr[
√√

σρ
√
σ])2 is the quantum fidelity, the map Ñt is the following rotated recovery map

Ñt(·) = θit/2Ñ (N (θ)−it/2(·)N (θ)it/2)θ−it/2, (106)

with Ñ defined as in (35) and p(t) = π
2
(cosh(πt) + 1)−1 is a probability density function.
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In the same way as in Theorem 2, it can be seen by inspection that if we take the map N to be Gibbs-preserving so
that τS = N (τS) and if we set θ = τS , then the rotated recovery map is Gibbs-preserving as well, namely Ñt(τS) = τS .
More explicitly, the bound on ∆ is as follows:

∆ = D(ρS‖τS)−D(σS‖τS) ≥ −
∫

R

dt p(t) logF (ρS , Ñt(σS)), (107)

where instead of having the relative entropy, we have the fidelity in the lower bound for the decrease of free energy.

VIII. CONCLUSION

We have shown how the amount of entropy produced along a thermal process that takes ρS to σS is directly linked
to the reversibility of the process. Specifically, we see that if this quantity is small, then there exists a recovery
operation that approximately restores the system to its initial state at no work cost at all. For thermal operations,
this map is another operation in the same set and can be taken to be Rσ→ρ.
Our main result applies to the decrease of standard free energy, and it is a very interesting open question to extend

our result to regimes in which we require the full set of second laws [21]. What makes this question challenging
is that (25) does not carry over to the regime of Dα for α 6= 1, and indeed recent work [48] suggests that other
quantities naturally generalize the difference of relative entropies—and this generalization does not always result in
the difference of α-Rényi relative entropies. It hence forms a more fundamental challenge to understand whether the
difference of such α-relative entropies, or the quantities suggested in [48] should be our starting point. However, the
quantities in [48] would require a proof of a new set of second laws.
We have applied our analysis to the case of investing work, which in the regime where only the standard free energy

is relevant can be characterized fully by how much work can be gained by the inverse process. This relation to the
inverse process is not true in the nano-regime where all the refined second laws of [21] become relevant. Nevertheless,
we have shown that the reversal operation of said inverse process can indeed be used to understand the amount of
work that needs to be invested, adding another piece to the growing puzzle that is quantum thermodynamics.
Since this initial work, there have been a series of recent results consisting in giving lower bounds to the decrease

of relative entropy in different cases of interest, covering a number of different branches within quantum information
theory, such as [49–53], which shows the importance of the concept of recoverability and of recovery maps.
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