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Measurement combined with feedback that aims to restore a presumed pre-measurement quantum
state will yield this state after a few measurement-feedback cycles even if the actual state of the
system initially had no resemblance to the presumed state. Here we introduce this mechanism of
self-fulfilling prophecy and show that it can be used to prepare finite-dimensional quantum systems
in target states or force them into target dynamics. Using two-level systems as an example we
demonstrate that self-fulfilling prophecy protects the system against noise and tolerates imprecision
of feedback up to the level of the measurement strength. By means of unsharp measurements the
system can be driven deterministically into arbitrary, smooth quantum trajectories.

PACS numbers: 03.65.Ta, 03.67.Pp,03.67.-a

The control of individual quantum systems, for exam-
ple of trapped atoms and ions or single photons, enabled
experimental tests of quantum theory [1] and its founda-
tions as well as the application of quantum effects for
information processing, communication and metrology
purposes [2, 3]. The monitoring of observables based
on continuous or sequential unsharp (sometimes called
weak) measurement [4–9] has paved the way for quan-
tum control in real-time with closed-loop feedback. This
kind of control already has been applied to photons in
microwave cavities [10] and superconducting qubits [11].

Here we introduce a new control scheme called self-
fulfilling prophecy (SFP), which is related to quantum
state monitoring [12–15]. Both schemes are based on the
convergence of different states to a common state subject
to sequential measurements with the same measurement
results. SFP allows one to prepare quantum systems in
a target state and protect it against decoherence in the
presence of noise and feedback errors. Moreover, it can
be employed to drive the system into target dynamics
and protect these dynamics.

The SFP technique uses unitary feedback to return
the system into a particular pre-measurement state. The
pre-measurement state can also be restored probabilis-
tically by means of filters or additional measurements.
Such measurement reversals have been used to suppress
decoherence [16–18] or to protect entanglement [19, 20].

In what follows, we first revise the formalism for mea-
surement and feedback and describe the protocol of SFP.
Then we address the question of which measurements
are needed for SFP for systems with finite-dimensional
Hilbert space and prove the convergence to the target
state for the ideal case without noise or feedback errors.
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By means of numerical simulations we study the asymp-
totic fidelity in the presence of noise and imperfect feed-
back for two-level systems. In addition, we employ SFP
to protect Rabi oscillation against noise. We close with
two examples of driving two-level systems into target dy-
namics – a figure of eight on the Bloch sphere and accel-
erated Rabi oscillations.

The statistics of measurements in quantum mechan-
ics can be described by means of positive operators Ei,
so-called effects, whose expectation values determine the
probabilities for the measurement results numbered by
the index i = 1, 2, . . ..

pi(ψ) = 〈ψ|Ei|ψ〉 . (1)

Since the probabilities sum to unity for any state |ψ〉, the
effects sum to the identity operator,

∑
Ei = I, and gener-

ate a so-called positive-operator valued measure (POVM)
[21]. On the other hand, the state of the system after the
measurement in general depends on the measurement re-
sult i and can be expressed by so-called Kraus operators
Mi [21]:

|ψ〉 result i−−−−−→ |ψi〉 ≡
Mi√
pi
|ψ〉 . (2)

The Kraus operators can be decomposed like complex
numbers into phase and modulus:

Mi = Ui|Mi| , (3)

where the phase operator Ui is unitary and can be in-
terpreted as measurement-outcome dependent feedback
which can be part of the measurement operation or ex-
ternally applied [6, 22]. The modulus is related to the

effect via |Mi| ≡
√
M†iMi =

√
Ei. An unsharp measure-

ment of a non-degenerate observableO =
∑d
j=1 oj |oj〉〈oj |

with measurement results o1, . . . , od is given by a POVM
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FIG. 1. In this example of Self-fulfilling Prophecy for a two-level system, the most probable outcome of an unsharp measurement
of the pseudo spin z-component σz drives the state |ψ〉 towards the north pole of the Bloch sphere (left diagram), which represents
the closest eigenstate of the observable. The unitary feedback U1 (right diagram) is chosen to compensate the back action M1

of the measurement and return the system into its pre-measurement state under the assumption that this was the target state
|ψT 〉. Afterwards, the system’s state |ψ1〉 is closer to the target state |ψT

1 〉 = |ψT 〉 (shaded angle in the right diagram) than
before (shaded angle in the left diagram).

with commuting effects

Ei =

d∑
j=1

λij |oj〉〈oj | where (λij) is invertible, (4)

such that from the statistics pi(ψ) = 〈ψ|Ei|ψ〉 the
probability to measure any oj can be determined via

|〈oj |ψ〉|2 =
∑
i λ
−1
ij pi(ψ). For example, for a two-

level system a measurement of the (pseudo-) spin z-
component, σz = | ↑〉〈↑ |−| ↓〉〈↓ |, is given by the effects:

E0 = (1− p0)| ↓〉〈↓ |+ p0| ↑〉〈↑ |
E1 = p0| ↓〉〈↓ |+ (1− p0)| ↑〉〈↑ | , (5)

Here the squared difference between the eigenvalues of
E0, 0 < (∆p)2 = (2p0−1)2 ≤ 1, measures the strength of
the measurement with (∆p)2 = 0 a fully weak (unsharp)
and (∆p)2 = 1 a strong (von Neumann) measurement of
σz [15, 22].

Self-fulfilling prophecy transfers a quantum system
with Hilbert space H of finite dimension d into a target
state |ψT 〉 ∈ H by assuming that the system is initially in
the target state |ψT 〉 (even though it may not be). After
a measurement unitary feedback is imposed which would
return the system into its pre-measurement state |ψT 〉,
had the assumption been correct. The condition for the
unitary reversal feedback Ui after a measurement with
Kraus operator |Mi| =

√
Ei thus reads

|ψT 〉 result i−−−−−→ |ψTi 〉 ≡
Ui
√
Ei√
wi
|ψT 〉 = |ψT 〉 , (6)

where the normalisation constant is given by wi =
〈ψT |Ei|ψT 〉. The SFP protocol consists of a number of
consecutive executions of the measurement-feedback cy-
cle described above on a system in an unknown state.

Executing the SFP protocol with suitable measure-
ments, the state of the system comes on average closer
to the target state in each measurement-feedback cycle.
This is explained graphically for the special case of a
qubit measurement in Fig.1. The proximity (similarity)
between the actual state |ψ〉 and the target state |ψT 〉
can be quantified by the target fidelity, i.e, the squared
modulus of the overlap between both states:

F (ψ,ψT ) = |〈ψ|ψT 〉|2 . (7)

The change of fidelity ∆F due to a measurement with
feedback averaged over the possible measurement results
amounts to

∆F =
∑
i

pi|〈ψi|ψTi 〉|2 − |〈ψ|ψT 〉|2.

=
∑
i

|〈ψ|Ei|ψT 〉|2

wi
− |〈ψ|ψT 〉|2. (8)

In general, any measurement carried out on two equal
systems with the same measurement result brings an ar-
bitrary pair of states |ψ〉, |ψT 〉 ∈ H on average closer
together or keeps the fidelity the same (monotonicity of
the average fidelity of selective operations) [23]. This can
be seen by rewriting the average change of fidelity ∆F ,
and observing that it is positive or zero:

∆F =
∑
i

|〈ψ|(I− |ψT 〉〈ψT |)Ei|ψT 〉|2

wi
≥ 0 . (9)

For SFP, we choose the measurements such that the av-
erage fidelity change due to measurement combined with
feedback is strictly positive unless the system is in the
target state, i.e., |ψ〉 = |ψT 〉. This implies that on aver-
age the fidelity between the state of the system and the
target state grows due to the sequence of measurements
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until the system reaches the target state. Since the tar-
get state is invariant under the action of SFP, the system
remains in the target state subsequently.

Here we show that there are different kinds of mea-
surement that lead to |ψ〉 = |ψT 〉 (i.e. F = 1) being
a necessary and sufficient condition for ∆F = 0. For
this purpose, we express the state of the system without
restriction of generality as |ψ〉 = α|ψT 〉 + β|ψR〉, where
|ψR〉 ∈ H is orthogonal to the target state |ψT 〉. It fol-
lows that α = 〈ψT |ψ〉. Moreover,

∆F = 0⇔
∑
i∈Ω

|〈ψ|(I− |ψT 〉〈ψT |)Ei|ψT 〉|2

wi
= 0. (10)

Since each summand in the last equation is greater or
equal to zero, all summands must vanish. This is the
case if, and only if,

〈ψ|Ei|ψT 〉 = wi〈ψ|ψT 〉 for all i ∈ Ω .

⇔ (α∗〈ψT |+ β∗〈ψR|)Ei|ψT 〉 = wi〈ψ|ψT 〉 for all i ∈ Ω .

⇔ β∗〈ψR|Ei|ψT 〉 = 0 for all i ∈ Ω . (11)

Hence, β∗ = 0 and thus |α|2 ≡ F = 1 if, and only if, the
vectors Ei|ψT 〉 span the Hilbert space H of the system,
i.e., for all states |ψR〉 ∈ H there is a measurement result
i such that 〈ψR|Ei|ψT 〉 6= 0. Thus we found a criterion
for SFP to drive a quantum system in the absence of
noise into the target state.

Accordingly, SFP works for any target state |ψT 〉 ∈
H with informationally-complete measurements, which
possess effects Ei that span the space of linear operators
on H. This follows from

0 = Tr
[
|ψT 〉〈φ|Ei

]
= 〈φ|Ei|ψT 〉 for all i ∈ Ω

⇒ |φ〉 = 0 . (12)

Another important kind of measurement suitable for
SFP are unsharp measurements of a non-degenerate ob-
servable. For such measurements with results i = 1, . . . d
the vectors Ei|ψT 〉 form a basis if, and only if,

0 6= det(E1|ψT 〉, . . . , Ed|ψT 〉) = det((λij〈oj |ψT 〉))
⇔ 0 6= det(Ψλ) = det(Ψ) det(λ) . (13)

This means that neither the determinants of Ψ ≡∑
l〈ol|ψT 〉|l〉〈l| nor the determinant of λ ≡

∑
ij λij |j〉〈i|

must vanish for SFP to work. This condition requires
the target state to be a superposition of all eigenstates
|ol〉 of the measured non-degenerate observable. Note,
that det(λ) 6= 0 is satisfied for sharp and unsharp mea-
surements of non-degenerate observables (Eq. (4)). For
sharp non-degenerate measurements the target state is
reached after one step of SFP - independent of the di-
mension of the Hilbert space of the system.

We now study the performance of the SFP protocol nu-
merically for qubit control with unsharp measurements,
with the example of the observable σz (5). Figure 2
shows convergence of the state preparation fidelity as
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FIG. 2. Demonstration of convergence of state preparation
fidelity. Even though the actual initial state of the system was
orthogonal to the target state, an asymptotic fidelity F = 1 is
reached. Here the dashed red line gives the average over 200
runs, while the black run shows the evolution of the fidelity
in a single run.

a function of the number of measurement-and-feedback
steps taken. In this case we chose the target state to be
|ψT 〉 = e−i

π
8 σ̂x |↓〉, and the initial actual state orthogo-

nal to it. The solid black line represents the fidelity in a
single run of the simulation, while the dashed red line is
the average over 200 runs. The individual measurement
strength was p0 = 0.45. It is conventional to define the
strength of a sequence of measurements as γ = ∆p2/τ ,
where τ is the measurement periodicity. Thus in this
case γ = 0.01 in units of the inverse measurement pe-
riodicity. Asymptotically a fidelity of F = 1 is clearly
reached demonstrating that successful state preparation
was achieved.

In this first example we assumed the absence of any
external noise influences. Now we test the behaviour
of the asymptotic fidelity both under the influence of
dephasing noise and imperfections in the measurement
reversal feedback angle. In both cases we assume that
the noise obeys a white noise spectrum and we charac-
terize the strength of the noise by comparing the root-
mean-square angular deviation, θNoise, that the noise
causes between successive measurements, to the measure-

ment reversal angle, θR := arccos(Re(〈ψT |U†i |ψT 〉)) =

arccos(Re(〈ψT |
√
Ei√
wi
|ψT 〉)), where Re indicates the real

part. In Fig. 3 we plot the asymptotic fidelity by av-
eraging over 6000 measurement and feedback operations
in a state preparation run, having used the target state
|ψT 〉 = (|↓〉+ i|↑〉/

√
2). Above 90% state preparation fi-

delity can be achieved as long as θNoise <∼ θR/2 for both
dephasing noise, circles, and noise in the reversal, dia-
monds. The error bars indicate the root-mean-square
deviations above and below the mean. This demon-
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FIG. 3. Comparison of loss of asymptotic state preparation
fidelity due to dephasing noise (black diamonds) or noise in
the reversal operations (blue circles). In both cases a white
noise spectrum was assumed.
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FIG. 4. SFP forces a qubit oscillating at frequency ΩR = 1
(red, dashed durve) to oscillate instead at a target frequency
ΩT = 1.01 (black curve). Measurement without reversal al-
lows state estimation [15], but also leads to significant broad-
ening of the oscillation spectrum (blue curve).

strates that the feedback scheme can preserve qubit
states asymptotically long with high fidelity while toler-
ating modest noise influences. The scheme does require
that the target qubit state is known.

Now we employ the measurement reversal protocol to
influence a separate underlying unitary dynamics. In
particular we study a qubit undergoing Rabi oscillations
at an angular frequency of ΩR = 1.00. We desire that
the qubit oscillates instead at a target angular frequency
of ΩT = 1.01. In addition, a target state is taken to
initially be orthogonal to the initial actual state. The
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FIG. 5. Suppression of noise using SFP. The red curve shows
the spectrum of a qubit oscillating in the presence of white
noise on the drive field amplitude. The black curve shows the
stabilized spectrum.

actual- and the target state are then time evolved by
Rabi oscillations at the actual- and target frequencies re-
spectively. To control the actual frequency a self-fulfilling
prophecy approach is again used. We simply assume that
the actual state is undergoing the dynamics of the target
state. A sequence of unsharp measurements are made on
the actual state, but each time the measurement is re-
versed by assuming that it is instead in the target state
as predicted by the target dynamics. In Fig. 4 we plot
the discrete Fourier transform of the probability for the
qubit to be in the upper state. Without measurement
and reversal the dashed red line indicates that the sys-
tem is oscillating at the Rabi frequency ΩR = 1. The
blue curve indicates that attempts to monitor the qubit
using unsharp measurements induce significant measure-
ment noise, leading to significant broadening of the os-
cillation spectrum. Once the reversals are initiated the
noise is suppressed and the frequency shifts to the target
frequency. This approach works as long as the sequential
measurement strength, γ, is larger than the frequency
detuning δ = ΩR − ΩT .

SFP can also be used to suppress noise present in the
unitary dynamics. In Fig. 5 we show the noise spectrum
of a qubit oscillating in the presence of white noise on
the amplitude of the drive field. The root-mean white
noise field amplitude was 1/2 the drive field strangth,
thus leading to the broadened spectrum (red curve). Im-
plementing SFP with γ = 0.4 clearly leads to a strong
suppression of the noise. We used 40 measurements per
Rabi oscillation cycle and p0 = 0.45.

Finally, we show that the state preparation scheme can
be adapted to elicit qubit dynamics on its own, without
an additional unitary dynamics. To this end we imagine
the target state to change dynamically and adapt the
feedback reversal to the instantaneous target state, but
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FIG. 6. A target dynamics forming a figure of eight on the
Bloch sphere is imagined. SFP forces a qubit to execute this
dynamics. Here the different gray curves are due to differ-
ent choices for the actual initial state. Each curve quickly
converges onto the target dynamics.

still execute the same unsharp measurement. As long as
the imagined dynamics is slow compared to the timescale
of convergence, the actual state will follow the target
dynamics. This expectation is clearly borne out in Fig. 6.

Here we chose a figure-of-eight trajectory on the Bloch
sphere for the target dynamics and three different start-
ing points for the actual state. Over the trajectory com-
pletion time 10 000 measurements were executed using
p0 = 0.45 as the strength of individual meausurements.
In units of the trajectory completion time the strength
of the measurement sequence was γ = 100, indicating
that the dynamics is strongly dominated by the mea-
surement and feedback. From all three starting points
the actual state quickly converges to the target state and
then dynamically follows it. In the continuous measure-
ment limit this constitutes a new class of measurement
and feedback driven qubit dynamics. Unlike pure unitary
evolution the dynamics can be preserved in the long time
limit even in the presence of modest noisy influences.
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