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A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation
pressure is commonly used as an ultimate tool for studying system behavior in opto-mechanics. This Hamilto-
nian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation
with time-varying boundary conditions. We show that this approach is deficient for studying higher order nonlin-
ear effects in an open resonant opto-mechanical system. Opto-mechanical interaction induces a large mechanical
nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the
mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative
nonlinearity cannot be inferred from the standard Hamiltonian formalism.

PACS numbers: 42.65.Sf,42.50.Wk

I. INTRODUCTION

Opto-mechanics attracted a lot of attention as a tool for
transferring purely theoretical quantum mechanical notion to
experimental labs [1]. Interaction of mechanical objects with
light resulted in an efficient cooling of mechanical degrees of
freedom [2–4] so single mechanical quanta became accessi-
ble. The light is able to manipulate the mechanical quanta,
squeeze or entangle mechanical degrees of freedom [5–10].
Emission of coherent phonon radiation became possible [11].

Mechanical systems influence light as well, creating quan-
tum entangled states between photons and phonons [12].
Quantum state transfer becomes possible between light and
a mechanical system [13]. Finally, mechanical systems can
modify the quantum properties of light, for instance, create
squeezed light [14–16].

Nonlinear physics also benefitted from the opto-mechanics
[4, 17, 18]. High spectral purity opto-mechanical oscillators
were created [19, 20]. Efficient optical frequency harmonics
arising from the stimulated Brillouin scattering were used to
generate narrow linewidth light [21] as well as low noise ra-
dio frequency signals [22]. Generation of a phonon frequency
comb as well as mode locking of a mechanical distributed sys-
tem was demonstrated [23].

The beauty of an opto-mechanical interaction is in its clear
physical picture based on Maxwell equations. Optical wave
impinging on a mechanical object transfers its momentum to
the object. Both cavity frequency and photon number changes
as the result of such an interaction. Intricate physical phe-
nomena can occur in the system if the mechanical body is
moving fast, if it absorbs or scatters light, if its size is com-
parable with the optical wavelength, etc. However, the sys-
tem simplifies significantly when optical photons confined in
a closed (lossless) cavity interact with the nonrelativistic mov-
able totally reflective cavity boundaries. Hamilton approach
is usually applied to describe this kind of opto-mechanical
interaction. In this paper using an example of a 1-D Fabry-
Perot cavity we show that the Hamilton approach is deficient

if one considers an externally pumped cavity. The energy ex-
change between the cavity and the optical pumping strongly
depends on the position of the mirror, x, so the photon num-
ber in the optical mode changes significantly if the mirror mo-
tion is slow enough. This energy exchange dominates over
high-order nonlinear by x phenomena observed in the case
of closed (lossless) optical cavity and this behavior cannot be
predicted using a conventional opto-mechanical Hamiltonian.
We show that the attenuation assisted nonlinearity can be so
large, that high order mechanical harmonics can be readily
generated in a mechanical system pumped with continuous
wave light.

II. HAMILTONIAN APPROACH TO OPTO-MECHANICS

Interaction of a single optical mode and a single mechanical
degree of freedom can be presented in quasistatic approxima-
tion in form [15, 24]

Hint = −~gâ†âx̂, (1)

where â and â† are photon creation and annihilation operators,
x̂ is a mechanical coordinate measured from the mechanical
equilibrium point in the case of no light present, and g is an
opto-mechanical coupling constant. In the case of a 1D Fabry-
Perot cavity with a movable mirror (Fig. 1) this coupling con-
stant is simply ω0/L [15], where ω0 is the carrier frequency
of the light and L is the distance between the mirrors. The
photon number does not change in this case. Motion of the
mirror results in change of the optical frequency.

Hamiltonian (1) is not exact. To obtain it one has to utilize
an adiabatic approximation in which the optical cavity is con-
sidered as a lumped system. The Hamiltonian also neglects by
the nonlinear terms resulting from the change of the resonant
optical frequency when the cavity dimension changes.

We are interested in nonlinear behaviour of the opto-
mechanical system and would like to derive a Hamiltonian
that takes into account terms nonlinear in the mechanical co-
ordinate x̂. The expression (1) directly follows from Maxwell
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equations. It is possible to write for electric field amplitude
of light confined in an empty 1D Fabry-Perot cavity with to-
tally reflecting mirrors (strictly speaking for steady state) the
following equation

â(t) = â[t− 2(L+ x̂)/c], (2)

where c is speed of light in the vacuum.
Assuming that x̂/L � 1, in quasi-static approximation

L/c� ˆ̇x/x, we can directly verify that expression

â = â(0)e±iπclt/(L+x̂), (3)

(where l is the mode number) is a solution of Eq. (2). The
quasi-static approximation is needed to prohibit photon ex-
change between the modes and to require photon conservation
in the mode. Since the system is unitary, this is equivalent
to saying that the mode frequency depends on coordinate as
πcl/(L + x̂) and the total Hamiltonian of a selected mode of
the system is

H = ~ω0â
†â

L

L+ x̂
, (4)

where the mode frequency is defined as ω0 = πcl0/L (l0 is
integer, corresponding wavelength λ0 = 2πc/ω0). The inter-
action Hamiltonian, defined asHint ≡ H−~ω0â

†â, becomes

Hint = −~gâ†â x̂

1 + x̂/L
. (5)

In general, this Hamiltonian should be utilized instead of (1)
to take the nonlinear terms x̂n into account.

The Hamiltonian can be derived in a more explicit way
using Eq. (2). Introducing slow amplitude Â, so that â =

Â exp(−iω0t), we rewrite Eq. (2) as

Â(t) = Â[t− 2(L+ x̂)/c]e4iπx̂/λ0 . (6)

The slow amplitude does not change much during the cavity
round trip, which allows to use Taylor series

Â[t− 2(L+ x̂)/c] ' Â(t)− 2

c
(L+ x̂) ˆ̇A (7)

to simplify Eq. (6)

ˆ̇A '
(

1− e−4iπx̂/λ0

) c

2(L+ x̂)
(8)

or, for the case of small mechanical amplitude, λ0 �
4π|〈|x̂|〉| (〈. . . 〉 stands for the expectation value), to a simpler
differential equation

ˆ̇A ' iω0A
x̂

x̂+ L
. (9)

This equation is generated by Hamiltonian in the interaction
picture

H̃int = −~ω0A
†A

x̂

L+ x̂
, (10)

which is equivalent to Eq. (5) if g = ω0/L.
The Hamiltonian (5) results in the equation for the mechan-

ical degree of freedom

¨̂x+ω2
M

[
1 + αom1

(
1− 3

2

x̂

L
+ 2

x̂2

L2

)]
x̂ =

~g
m
â†â+

Fs(t)

m
,

(11)
where we truncated the nonlinear terms of the order higher
than (x̂/L)3 and introduced an classical mechanical force
Fs(t); m and ωM are the mass and frequency of the mechan-
ical system, respectively. To derive this equation we first dif-
ferentiate Eq. (5) by x̂ and then decompose the result by pow-
ers of small parameter x̂/L.

The nonlinearity of the system is defined by a dimension-
less parameter

αom1 =
~ω0â

†â

mω2
ML

2
. (12)

where we utilized g = ω0/L. The magnitude of αom1 is de-
fined by the expectation value of the normalized DC shift of
the mirror αom1 ∼ 2〈x̂〉/L� 1.

Nonlinear terms appearing in Eq. (5), (x̂/L)n, where n > 1
is an integer, can result in generation of higher order mechan-
ical harmonics if the size of the cavity is small enough. How-
ever, increase of the size to a kilometer range practically nulli-
fies the effect. Moreover, the intrinsic mechanical nonlinearity
of a micromechanical structure can be much larger if com-
pared with the opto-mechanical part. For instance, similarly
normalized mechanical nonlinearity parameter found from the
Euler-Bernoulli theory applied to a micro-electro-mechanical
system (MEMS) cantilever can exceed unity by an order of
magnitude [25–27]. The lossless cantilever motion obeys to
equation (please see [25] for derivation)

ẍ+ ω2
M

[
1 +

βgeom
mω2

M

x2

L2
+
βiner
mω2

M

ẋ2 + xẍ

L2

]
x =

Fs(t)

m
,

(13)
where L is the cantilever length scaling in the micrometer
range, βgeom and βiner are geometrical and inertial nonlin-
ear coefficients, respectively. It was shown that the effective
dimensionless nonlinearity parameter α = (βgeom/(mω

2
M )−

2βiner/(3m) can exceed−20 for a real physical system. This
is a much larger value if compared with the expected opto-
mechanical nonlinearity αom1 involving reasonably small op-
tical power. Therefore, it is reasonable to neglect by the
ponderomotive mechanical nonlinearity in a unitary opto-
mechanical system and consider only mechanical one.

III. OPEN OPTO-MECHANICAL SYSTEM

We found, though, that there is a dissipation-associated
mechanism that results in several orders of magnitude in-
crease of the light-mitigated mechanical nonlinearity. The ef-
fect has common features with additional rigidity arising in an
opto-mechanical system when a mechanical degree of free-
dom modulates the damping rate of a driven optical cavity
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FIG. 1: Schematic of the 1D Fabry Perot resonator with movable
mirror.

[28, 29]. In what follows we derive the nonlinear terms using
wave equation.

Let us consider an empty 1D Fabry-Perot resonator pumped
with a plain wave ain(X, t) = Ain(X, t) exp[−i(ωt− kX)],
where k = ω/c is the wave vector and X is the coordinate
(Fig. 1). The front mirror of the resonator, characterized with
the power transmission T , is placed at position X1 = 0, and
the back, total, mirror is movable, so its coordinate becomes
X2 = L + x̂(t), where L is the distance between the mirrors
and x̂(t) is the time dependent part of the total mirror coor-
dinate. Standard equations describing electric field inside and
outside of the resonator at the boundary of the input mirror
(X = 0) are

â(t) =
√

1− T b̂(t) + i
√
T âin(t), (14)

âout(t) = i
√
Tb(t) +

√
1− T âin(t), (15)

b̂(t) ' â
(
t− 2[L+ x̂(t− L/c)]

c

)(
1− 2

ˆ̇x(t)

c

)
. (16)

Here term proportional to ˆ̇x results from Doppler effect.
While this term is usually small, it is necessary to keep it to
sustain the right commutation relation for the coordinate and
momentum of the mechanical system [30].

Substituting Eq. (16) to Eq. (14) we arrive to the equation
for the field inside the resonator

â−
√

1− T â
(
t− 2[L+ x̂(t− L/c)]

c

)(
1− 2

ˆ̇x(t)

c

)
= i
√
T âin. (17)

Equation (17) coincides with Eq. (2) for the nonrelativistic
case and closed (lossless, T ≡ 0) resonator.

Equation (17) has to be supplied with with equation for the
coordinate of the movable mirror, that reads

ˆ̈x(t) + 2γM ˆ̇x+ ω2
M x̂(t) =

~ω0

2mL
× (18)

×
[
â†
(
t− L+ x̂(t)

c

)
â

(
t− L+ x̂(t)

c

)
+

+ b̂†
(
t+

L+ x̂(t)

c

)
b̂

(
t+

L+ x̂(t)

c

)]
+
Fs(t)

m
.

Here force Fs(t) includes both the signal and Langevin terms;
mechanical attenuation γM is small.

In this equation we notice that the ponderomotive force act-
ing at the mirror results from the falling and reflecting light.
In the particular case of the closed cavity the photon number
in the cavity does not change. In an open cavity a part of the
wave falling at the mirror can pass through the mirror, so we
have to distinguish between â(t) and b̂(t). In addition, the
time in our model is counted with respect of the light enter-
ing the system. It means that the photons that hit the movable
mirror are delayed by the half of the round trip time while the
photons that reflect from the mirror are advanced by the half
of the round trip time. In other words, if at the fields, falling
on and reflecting from front mirror, are described by operators
â(t) and b̂(t), than on the back mirrors the fields are â(t−L̃/c)
and b̂(t+ L̃/c). The distance between the mirrors (L̃) also de-
pends on time as the position of the back mirror changes while
the light front propagates from one mirror to the other. That is
why we consider the sum of the photon number at two differ-
ent times (one retarded and one advanced) in the equation for
the mechanical degree of freedom.

There are two general cases when set (17) and (18) can be
simplified: ωML/c << 1 and ωML/c = πj, where j is a nat-
ural number. In the first case the opto-mechanical interaction
results in generation of optical harmonics localized within sin-
gle optical mode. In the second case the mechanical frequency
corresponds to the free spectral range of the resonator, so sev-
eral optical modes (optical frequency comb) are generated due
to the opto-mechanical interaction. For the case of a small op-
tical cavity (a microcavity) the frequency of the mechanical
mode is usually much smaller than the free spectral range of
the cavity, so condition ωML/c << 1 works. For the case
of a large optical cavity it is possible to find a configuration
when ωML/c = πj. In this paper we consider both the cases.
There are other configurations when the set of equations can
be simplified. For instance, in a LIGO-type interferometer it
is possible to find a mechanical mode that has frequency equal
to the frequency difference of two optical modes belonging to
two different mode families. We do not consider them here.

Let us introduce slow amplitude for the intracavity field
â(X, t) = Â(X, t) exp[−i(ωt − kX)]. The Taylor decom-
position results in transformation of the equations involving
operators depending on retarded time to standard ordinary dif-
ferential equations (see Eq. (7) for the transformation details).
In the case of short enough optical cavity (Â � L

˙̂
A/c) we

derive from Eq. (17), a simplified equation for the slow intra-
cavity field amplitude

ˆ̇A+ [Γ(x̂)− i∆(x̂)] Â =
i
√
T

τ
Âin, (19)

where the coordinate-dependent optical attenuation and dis-
persion are given by formulas

Γ(x̂) =
1

τ
(1−

√
1− T cos[2k(L+ x̂(t))]), (20)

∆(x̂) =
1

τ

√
1− T sin[2k(L+ x̂(t))], (21)
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τ = 2L/c is the cavity round trip time. Neglecting by the
small terms associated with the Doppler effect as well as as-
suming ωMτ << 1 we also simplify the equation (18) for the
mechanical system

ˆ̈x+ 2γM ˆ̇x+ ω2
M x̂ =

~ω0

mL
Â†(t)Â(t) +

Fs(t)

m
. (22)

To solve this set of equations we assume that Fs(t) is small
and look for the solution in the vicinity of steady state defined
by expectation values for the field and mechanical amplitudes

A ' i
√
T

τ

Âin
Γ0 − i∆0

, (23)

x0 '
~ω0

mω2
ML
|A|2, (24)

where

Γ0 =
1

τ
(1−

√
1− T cos[2k(L+ x0)]), (25)

∆0 =
1

τ

√
1− T sin[2k(L+ x0)]. (26)

It is also assumed for convenience that x0 includes all the
smaller order DC terms appearing during the analysis of the
nonlinear system. In the following analysis we consider only
time dependent part of coordinate δx̂ = x̂− x0.

General analysis of the opto-mechanical system is rather
involved. We are interested in evaluation of the nonlinear re-
sponse and consider the exact resonant case (∆0 = 0). We
formally solve Eq. (19) for the field amplitude and substitute
the solution into Eq. (18). Linear in the coordinate terms re-
sponsible for the well known ponderomotive attenuation and
rigidity disappear for the resonant tuning of the pump light.
The cubic nonlinearity terms also proportional to the opti-
cal detuning disappear as well. Only quadratic in coordinate
terms survive.

The nonlinear equation for the mechanical degree of free-
dom with excluded optical variables can be presented in form
(see Appendix)

δ ˆ̈x+ 2γMδ ˆ̇x+ ω2
M

[
1 + αom2

δx̂

L

]
δx̂ =

Fs
m
, (27)

where the dimensionless quadratic nonlinearity parameter
αom2 depends on the frequency of the forced oscillation. For
instance, for the case of resonant mechanical force (Fs =
fs cosωM t) and relatively low quality factor of the optical
cavity (Γ0 � ωM ) the nonlinearity parameter is

αom2 = −4
~ω0|A|2

mω2
M

Q2

L2
. (28)

It is obtained using expression Q = ω0/(2Γ0) for the optical
quality factor.

The equation (11) for the mechanical coordinate obtained
for the closed (unitary) opto-mechanical system, also contains
a quadratic term αom1 (12) which is 4Q2 � 1 times smaller
than αom2. Therefore, to find the nonlinearity in a correct way
the unitary model has to be adjusted.

An approximate solution of the equation with respect to the
expectation value of coordinate is

δx ' fs
2mγMωM

sin(ωM t)+ (29)

αom2

L

(
fs

2mγMωM

)2

cos(2ωM t),

where we omitted the zero frequency term assuming it to be a
part of x0. Equation (29) shows that analysis of the mechan-
ical spectrum allows evaluating the opto-mechanical nonlin-
earity.

For some practical applications it is useful to consider the
case of high frequency force Fs = fs cos(ωf t), where ωf �
ωm, but ωfτ � 1. In this case the nonlinearity reduces, but
still is large

δx ' − fs
mω2

f

sin(ωf t)+ (30)

+
ω2
M

16ω2
fL

[
αfm
om2e

2iωf t + αfm∗
om2e

−2iωf t
]( fs

mω2
f

)2

,

αfm
om2 = 4

~ω0|A|2

mω2
M

Q2

L2
S, S =

−Γ3
0

(Γ + iωf )2(Γ0 + 2iωf )
.

(31)

Presence of the strong quadratic opto-mechanical nonlin-
earity contrasts with the absence of the similar term in the
purely mechanical nonlinearity of the system. The physical
nature of this opto-mechanical nonlinearity is related to the
reduction of the intracavity power when the system deviates
from the optical resonance. The power drops independently
on the direction of the mechanical motion.

The pure mechanical nonlinearity is of cubic nature
(Eq. 13). The nonlinearity of the unitary system contain
a small cubic part 2αom1 for the normalization selected in
Eq. 11. The cubic nonlinearity terms are also introduced to
the open opto-mechanical system for ∆0 ∼ Γ0. Omitting
lengthy derivations we write for the corresponding cubic non-
linear coefficient

αom3 '
k3L~ω0|A|2

mω2
MT

3
. (32)

It is easy to see that this nonlinearity is k3L3/T 3 � 1 times
larger than the nonlinearity αom1 of the optically closed (loss-
less) opto-mechanical system. The reason for the nonlinearity
enhancement is again the interaction of the opto-mechanical
system with continuum resulting in the change of the optical
power in the cavity when the position of the mirror changes.

The magnitude αom3 can exceed the unity and be compara-
ble with MEMS nonlinearity parameter α for a small num-
ber of optical photons in the cavity. Really, for an opto-
mechanical system with MEMS mirror we get αom3 ' 103

for λ = 532 nm, L = 0.1 cm, |A|2 = 102, m = 1 mg,
ωM = 2π × 1 MHz, and T = 10−3.

The results of our calculations have qualitative match with
experimental data. Opto-mechanical systems used to demon-
strate generation of multiple equidistant optical harmonics
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separated by the mechanical frequency. The neighboring har-
monics are approximately of the same magnitude. It means
that the system has both strong odd and even nonlinear terms.
Pure mechanical nonlinearity tends to have mostly odd terms.
Presence of even terms is also possible if the system is pre-
stressed, however their magnitude is usually small. Pres-
ence of the significant quadratic nonlinearity of the opto-
mechanical system explains observed experimentally efficient
generation of the optical sidebands separated from the pump
carrier by the doubled mechanical frequency.

IV. FREE MASS INTERFEROMETER

It is interesting to estimate the opto-mechanical nonlinear-
ity in the case of ωM → 0 since the nonlinearity increases
with ωM decrease. Such a configuration is practically realized
in the Advanced Laser Interferometric Gravitational Observa-
tory (aLIGO) [31, 32] which can be reduced to an equivalent
1D Fabry-Perot cavity [33] (corresponding to so called signal
recycling mode) with movable mirror having massm = 10 kg
and frequency ωM/2π ∼ 0.1 Hz. The bandwidth of the op-
tical cavity is about working bandwidth of aLIGO (it is var-
ied by position of signal recycling mirror), in estimates be-
low we assume Γ0/2π ∼ 300 Hz. The zero and first order
opto-mechanical effects are very important in this case. The
zero order pondoromotive effect associated with the radiation
pressure results in accelerated motion of the mirror that can-
not be tolerated. To handle this effect, an electronic feedback
is involved [31, 34]. Because of the feedback loops the opto-
mechanical system cannot be considered using the simplest
model presented above, however the mirror can be treated as
a free mass in 30-1,000 Hz frequency range.

We can use Eq. (31) to evaluate nonlinearity in this case
for LIGO parameters [31]. Selecting Γ0 = 2π × 300 rad/s,
ωf = 2π × 102 rad/s, P = 800 kW, m = 10 kg (reduced
mass), L = 4 km, ~ω0|A|2 = 2LP/c, λ = 1064 nm, we
arrive at

|αfm
om2|ω2

M

8ω2
fL

= Q2

(
P

mω2
fL

2c

)
|S| ' 8 · 106 m−1 . (33)

In other words, if the magnitude of the first mechanical har-
monic is fs/(mω2

f ) = 0.01 nm, the magnitude of the second
mechanical harmonic is about 8× 10−16 m.

This can be easily detected in Advanced LIGO [31, 32, 35].
The unitary model predicts the magnitude to be many orders
of magnitude smaller, which is practically undetectable in the
system.

V. CONCLUSION

In this paper we have shown theoretically that opto-
mechanical nonlinearity induced due to the open nature of the
system can be much larger if compared with the nonlinearity
of a optically closed (lossless) opto-mechanical system having

the same other parameters. The effect arises due to the varia-
tion of the intracavity photon number in the open system as a
function of the mechanical coordinate. In contract, the photon
number of the lossless opto-mechanical system is conserved
and only the frequency of the photons change due to varia-
tions of the mechanical degree of freedom. We found that the
mechanical nonlinearity induced by the optical degree of free-
dom can be comparable with purely mechanical nonlinearity
both in small scale for micro-mechanical cantilevers and in
large scale for 40 kg free masses (mirrors) in Advanced LIGO
interferometer.
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Appendix

We provide derivation of Eqs. (19) and (27) in this Ap-
pendix. Let us start from Eq. (17) and introduce slow field
amplitudes

â = Â exp[−i(ωt− kX)]. (34)

Assuming nearly resonant tuning of the optical system
(exp(ikL) ' 1), neglecting by the Doppler term (∼ ˆ̇x/c),
assuming that the mechanical frequency is small enough,
T/2τ � ωM (so that x̂(t − τ) ∼ x̂(t)), and using Taylor
series

Â(t− τ) ' Â(t)− τ ˆ̇A(t) (35)

we arrive at

ˆ̇A
√

1− T
[
1− D(t− τ)

]︸ ︷︷ ︸
'1

+ (36)

+
Â

τ

(
1−
√

1− T
[
1− D(t− τ)

])
=
i
√
T Âin(t)

τ
,

D = 1− e2ikx̂(t−τ) ' 1− e2ikx̂(t)

Equation (36) results in Eqs. (19) and (21).
To find the nonlinearity introduced to the mechanical de-

gree of freedom by the optical degree of freedom we decom-
pose the mechanical coordinate into time independent and
time dependent parts

x̂(t) = x0 + δx̂(t) (37)

In this case

Γ(x̂) ≈ Γ0 + ω0
k(δx̂)2

L
,∆(x̂) ≈ ∆0 + ω0

δx̂

L
, (38)

For the sake of simplicity we consider a particular case and
assume that the mechanical force is monochromatic (Fs =
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fs cos(ωM t)), that optical pump is resonant ∆0 = 0, and that
the optical pump is classical and its phase selected so that
iÂin = |Ain|. The optical and mechanical amplitudes can
be presented in a form of decomposition by the harmonics of
the frequency defined by the mechanical force

A =

∞∑
j=−∞

Aje
ijωM t, δx =

∞∑
j=−∞

xje
ijωM t. (39)

Substituting the decompositions into the nonlinear equations
we obtain

A+1 ' iω0
x+1

L(Γ0 + iωM )
A0, (40)

A−1 ' iω0
x−1

L(Γ0 − iωM )
A0. (41)

Because we assumed that A0 = A∗0 and since x∗−1 = x+1, we
have A∗−1 = −A+1.

For the second order harmonics we derive

A+2 ' iω0
x+2A0

L(Γ0 + 2iωM )
− (42)

−
ω2
0x

2
+1

L2(Γ0 + iωM )(Γ0 + 2iωM )
A0,

A−2 ' iω0
x−2A0

L(Γ0 − 2iωM )
− (43)

−
ω2
0x

2
−1

L2(Γ0 − iωM )(Γ0 − 2iωM )
A0

Using similar reasoning we obtain expressions for mechan-
ical harmonics

x+1 '
}ω0

2iγMωMmL
A0

(
A+1 +A∗−1

)
+ f+, (44)

x−1 ' −
}ω0

2iγMωMmL
A0

(
A−1 +A∗+1

)
+ f−, (45)

f± ≡
±fs

4iγMωMm
(46)

x+2 ' −
}ω0

3mLω2
M

(
A∗−1A+1 +A0A+2 +A0A

∗
−2
)

=

− }ω0

3mLω2
M

(
A∗−1A+1 +A0

[
A+2 +A∗−2

])
, (47)

x−2 ' −
}ω0

3mLω2
M

(
A−1A

∗
+1 +A0A

∗
+2 +A0A−2

)
=

− }ω0

3mLω2
M

(
A−1A

∗
+1 +A0

[
A∗+2 +A−2

])
, (48)

Using the expressions presented above we derive expressions
for the first and second harmonics of the mechanical and opti-
cal amplitudes

A+1 = −A∗−1 =
fs

4γMωMmL

ω0

Γ0 + iωM
, (49)

x+1 = x∗−1 =
fs

4iγMωMm
; (50)

and

x+2 = x∗−2 = − }ω0

3mLδ2
(
−β2 + 2ββ2

)
f2+, (51)

A+2 = β2x+2 +
ββ2f

2
+

A0
, (52)

A−2 = −β∗2x−2 +
β∗β∗2f

2
−

A0
, (53)

β =
iω0A0

L (Γ0 + iωM )
, (54)

β2 =
iω0A0

L (Γ0 + 2iωM )
. (55)

Comparing these expressions with Eq. (29) we get Eq. (28)
for αom2.
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