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Abstract 
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comb generation. We find that the two effects necessary for comb generation - spatial hole 
burning (leading to multimode operation) and four-wave mixing (leading to phase locking) - are 
indeed present in some quantum well systems. The physics of comb generation in quantum wells 
is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the 
spectral phase and some important material parameters of these diode lasers. 
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I. INTRODUCTION 
 
Optical frequency combs consist of discrete, narrow, equally-spaced spectral lines that have a 

fixed phase relationship between them.  These combs can span a frequency range that exceeds an 

octave in some cases and have found important applications in areas such as metrology, 

spectroscopy, and optical communications [1-4].  Methods for generating frequency combs 

include the mode locking of bulk lasers such as Ti-Sapphire and fiber lasers and the nonlinear 

process of four-wave mixing in microresonators.  These methods result in periodic trains of short 

pulses in the time domain whose Fourier transform corresponds to a frequency comb spectrum.  

Another approach that has attracted recent interest is the direct generation of frequency combs 

from semiconductor lasers through a spontaneous phase-locking process that yields a frequency 

modulated (FM) but continuous-wave (CW) or quasi-CW output. The CW operation avoids the 

detrimental phase effects of intracavity high intensity pulse propagation [5] while the 

semiconductor platform offers the possibility of a portable, chip-scale device with low power 

consumption. FM combs have been experimentally demonstrated in quantum well (QW) [6, 7], 

quantum dot (QD) and quantum dash (QDash) lasers [8, 9], as well as in quantum cascade lasers 

(QCLs) [10]. While there have been theoretical explanations for FM comb generation in QCLs 

[11] and in QD lasers [12, 13], the physics of FM comb generation in QW systems has been 

largely unexplored. 

 The formation of passively mode-locked FM combs in QD lasers and QCLs has been 

attributed to a variety of physical effects. Models of QD and quantum dash lasers, had shown the 

importance of longitudinal spatial hole burning (SHB), treated as a gain compression term [12], 

or as a carrier grating term [13] which gives rise to multimode operation. The large 

inhomogeneous gain broadening provided by the QD gain medium, requires great effort to 

properly model the inhomogeneous distribution of quantum dots. Additional physical effects 

have also been proposed as important in affecting comb generation in QD lasers, including four-

wave mixing (FWM), Kerr nonlinearities, and group velocity dispersion (GVD) [15, 16]. Both 

FWM and Kerr nonlinearities are important to the locking of phases, while a minimal GVD is 

typically desirable for phase-locking especially at large bandwidths. For QCLs, the effect of the 

short upper state population lifetime for intraband transitions have been the focus [12, 16]. The 

short gain recovery in QCLs has been identified as a mechanism that naturally favors the FM 

mode-locked state as opposed to the traditional mode-locking that generates a pulse train. Despite 
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the plethora of effects that have been investigated in other systems, all of which can contribute to 

the generation of FM combs, there is still a need to clarify the essential mechanisms that allow 

some single-section diode lasers to produce such phase-locked combs without a saturable 

absorber.  

Our goal is to explore and elucidate the essential physical effects for the generation of FM 

combs in QW diode lasers, showing that FM comb generation from QW systems is certainly 

possible for certain material parameters. We find only two requirements for FM comb generation: 

a mechanism for phase-locking, which is fulfilled by FWM facilitated by population pulsations 

[17], and a mechanism for multimode generation, which is fulfilled by SHB due to standing wave 

effects in the laser cavity that gives rise to multimode lasing. This conclusion may be surprising, 

as previous papers have argued that SHB can be ignored in QW lasers due to the long diffusion 

length (~2 - 3 µm) relative to the wavelength, smearing out the spatial carrier grating [17-19]. We 

find that in the case of a free running Fabry-Perot laser operating under a quasi-CW state, the 

carrier lifetime is significantly shortened due to the continuous presence of stimulated emission 

[20]. Such a difference not only improves FWM, but greatly reduces the diffusion length and 

allows SHB to occur. 

 

II. BACKGROUND 

The realization that FWM and SHB is present in interband laser diodes is not new. There have 

been many experimental and theoretical papers investigating FWM in bulk and QW 

semiconductor optical amplifiers (SOAs) and lasers [17, 21, 23]. In particular, significant FWM 

effciency in SOAs even up to detunings of 10 nm or about 1 THz at the 1550 nm operating point 

has been shown [23]. This detuning is much larger than the normal free spectral range (FSR) of a 

typical semiconductor diode laser, which has longitudinal mode spacing of 10 GHz - 100 GHz. 

This result suggests that FWM should be significant in QW lasers. Indeed, it has been shown that 

FWM is responsible for the passive mode locking that leads to self-pulsations in QW distributed 

Bragg reflector (DBR) lasers [24]. On the other hand, SHB has been clearly linked to multimode 

operation [25, 26]. In QW lasers, both of these effects can be strong given the right parameters, 

leading to an FM mode-locked state. 

We begin our investigation from a set of simplified equations (Equations 1 and 2), 

derived from the Maxwell-Bloch equations. They consist of a single carrier population equation, 



4 

a population grating equation, and a multimode electric field equation. These equations resemble 

the higher-order equations in Chow, Koch, and Sargent III [27] in which the polarization has 

been adiabatically eliminated. This approach allows for a more accurate theory than the third-

order perturbation approach while simultaneously reducing the number of equations to solve. The 

resulting equations are 

 

∂ρqw

∂t
= ηIin

qNqw
(1− ρqw) −

ρqw

τ sp
− R(2ρqw −1)Re(E+

*F+ + E−
*F− )

∂ρg

∂t
= −

ρg

τ sp

− 4k0
2Dρg − R 1

2
(E+

*F− + F+
*E− )(2ρqw −1) + 2Re(E+

*F+ + E−
*F− )ρg

⎡

⎣
⎢

⎤

⎦
⎥

  ( 1) 

 ± ∂E±

∂z
+ 1

vg

∂E±

∂t
= −α

2
E± + g

2
(2ρqw −1)F± + 2ρg

(*)F∓
⎡
⎣

⎤
⎦+ Ssp   ( 2) 

where, qwρ  is the quantum well population, gρ  is the population grating amplitude, η  is the 

quantum efficiency, inI  is the input current, qwN  is the effective, reduced 2-D number of electron 

and hole states available, spτ  is the spontaneous emission lifetime, spS  is spontaneous emission 

noise, D  is the ambipolar diffusion coefficient,  is the recombination factor, L is the 

length of the device, and 0ω  is the transition frequency. qwN  is related to the traditional joint 2-D 

density of states, , where  eff qwV h W L=  is the total effective volume of the 

QW, and Γ is the homogenous linewidth. The filtered field variable 

 F± = Γ d
−∞

t

∫ ′t e−Γ(t− ′t )E± (z, ′t )  ( 3) 

 
is derived from assuming the microscopic polarization decoheres fast enough to adiabatically 

follow the electric fields, which results in a Lorentzian distribution of the gain profile with half 

linewidth Γ . This convenient way to write the multimode electric field avoids introducing 

additional envelope variables and is easily numerically calculated. 

These equations contain the physical effects of FWM via population pulsations in qwρ  

(driven by the beating between field components) and the physical effects of SHB via the 

presence of gρ . It is important to note that, while other physical effects including chromatic and 
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waveguide dispersion, Kerr nonlinearities, and inhomogeneous gain broadening are certainly 

important and can greatly affect comb performance, we discard them here to show that they are 

not essential for comb formation. In fact, these effects often inhibit comb formation, but because 

we have already demonstrated the viability of comb generation with these effects included [28], 

our goal here is to focus on the reduced model and extract some physical understanding. 

We first apply a simplified analytic approach to Equations 1, 2 and perform a perturbation 

analysis on the behavior of the side modes of the laser. Then to verify our analytic results, we 

solve Equations 1 and 2 numerically for two material systems, GaAs QWs and InGaAsP QWs, 

each with a different central lasing wavelength and diffusion coefficient. We pay specific 

attention to the effects of carrier grating terms responsible for SHB in these solutions. 

 
III. PERTURBATION ANALYSIS 
 
We take a closer look at the important physics behind the system by applying a perturbative 

approach to Equations 1 and 2, showing specifically where FWM and SHB are significant and 

how they affect laser operation. Our approach is to first assume steady state, single mode 

operation for the laser, and then look at the evolution of the side-bands as a perturbative effect. 

The amplitude stability of the side-band modes indicates whether the laser tends to multimode 

operation, while the phase evolution indicates if, and how, the modes lock together. The initial 

assumption of single-mode operation may seem restrictive, and certainly the results are less 

applicable once the laser assumes multimode operation, but because we are looking at the 

stability of the side modes, much understanding can still be gained on the conditions in which the 

laser deviates from single mode. 

 
A. Single Mode Operation 

 
We write the electric field and carrier population equations for single mode operation as is 

typically done for interband semiconductor lasers. We ignore the carrier grating term and carrier 

pulsations for now, but will include them again later in our multimode analysis. The electric field 

and population variables simplify to 0 0 0, ., qwE A E B ρ ρ+ −→ → →  Under this assumption, the 

filtered field is 0 0,F A B± = . The steady state solution for the population is 

 ρ0 = τ cw

ηIin

qNqw

+ τ cwR(| A0 |2 + | B0 |2 )   ( 4) 
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where  

 τ cw =
ηIin

qNqw

+ 1
τ sp

+ 2R(| A0 |2 + | B0 |2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 . ( 5) 

 

Using Eq. (4) in Eq. (2), we obtain the equations for the steady state the electric field  
 

 
0

0 0

0
0 0

2 2

2 2

eff

eff

gdA A A
d
d
dz

z
gB B B

α

α

= − +

− = − +
  ( 6) 

with total effective gain   

 geff = g 2τ cw

ηIin

qNqw

+ 2τ cwR(| A0 |2 + | B0 |2 ) −1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 . ( 7) 

 
Despite the highly nonlinear nature of Eqs. (6) (especially due to cwτ ), we can obtain semi-

analytic solutions for the effective gain. We introduce an auxiliary variable ( )zθ  where 

/ / 2 / 2effd dz gθ α= − + [29]. Substituting into Eqs. 6, we obtain much simpler equations with 

solutions 

 
0 1 0

0 2 0

1exp
2 2

1exp
2 2

z

eff

z

eff

zA C dz g

zB C dz g

α

α

⎛ ⎞′= − +⎜ ⎟
⎝ ⎠
⎛ ⎞′= −⎜ ⎟
⎝ ⎠

∫

∫
 . 

We can apply the two reflective boundary conditions, 0 0(0) (0)A rB=  and 0 0( ) ( )B L r A L= , 

where r is the power reflection coefficient. These boundary conditions result in an expression for 

the effective gain in steady state 

 2

0

1 1 ln(1/ )
2

L

eff thdzg r g
L L

α= + =∫  .  ( 8) 

 

The fact that the total integrated gain (or simply gain if it is a constant) clamps to the threshold 

gain in steady state is a well known feature of CW lasers. This fact is important in our subsequent 
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stability analysis, as it suggests the side band modes will have difficulty achieving threshold due 

to gain clamping. 

B. Four-Wave Mixing  
 
We now add in the physics of FWM and analyze the the growth, stability, and phase of the side 

modes. We introduce additional envelopes in the electric field, splitting it into individual 

components: the central mode and the nearest neighbor cavity modes. 

  

  

E+ = A−1e
− iω st + A0 + A1e

iω st

E− = B−1e
− iω st + B0 + B1e

iω st

ρqw = ρ0 + ρ1e
iω st + ρ1

*e− iω st

  ( 9) 

The side mode envelope amplitude, 1 1,A B± ±  are assumed to be small in the perturbation analysis 

such that we only keep terms that are linear in these quantities. However, the central mode, 

A0 , B0  is significant so we retain nonlinearities associated with them. The filtered field simplifies 

to *
1 0 1

s si t i t
s sF c A e A c A eω ω−

+ −= + + . The constant 1/ (1 / )s sc iω= + Γ is a filtering term that adjusts 

for the gain away from the center of the Lorentzian and|c | <1s . After inserting Eqs. (9) into Eq. 

1a we solve for the carrier population  

 
  
ρ1 = −Rτ p (2ρ0 −1)

cs +1
2

A0
* A1 + A0 A−1

* + B0
*B1 + B0 B−1

*( )   ( 10) 

 
1

2 2
0 0

1 2 (| | | | )p s
sp

i R A Bτ ω
τ

−
⎡ ⎤

= + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 . ( 11) 

Here, we emphasize that in a laser operating quasi-CW, both the static and pulsating carrier 

lifetimes, given by cwτ  and pτ  respectively, are shortened by the presence of light inside the 

cavity due to stimulated emission. We want to distinguish, however, that while the absolute value 

of the pulsating carrier lifetime |τ p |  decreases, the real part, or in-phase component of the carrier 

population greatly increases relative to the imaginary part, or quadrature component of the carrier 

population. This effect is seen in the lifetime dependence upon the total intracavity power, 
2 2

0 0 0| | | |P A B= + . For even modest values of intracavity power such as P0 ≈ 8mW, the CW 

carrier lifetime decreases from a few ns to the order of a few ps, while the proportion of the real 

part of the pulsating carrier lifetime exceeds 50%, allowing for the oscillating population to 
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follow the dynamics caused by adjacent cavity modes. Thus, despite a long spontaneous emission 

lifetime, the above lifetimes are modified enough via stimulated emission to allow FWM to 

occur. Using Eq. 10 in Eq. 2 gives the individual mode equations  

 

 

( )

( )

2 2 * * 2 * 21
1 1 2 0 1 0 1 0 0 1 0 0 1

* * 2 2 * * 2 * 21
1 1 2 0 1 0 1 0 0 1 0 0 1

2 2 * * 21
1 1 2 0 1 0 1 0 0 1 0 0

| |
2 2

| |
2 2

| |
2 2

eff i k i k
s

eff i k i k
s

eff i k
s

gdA A c A g A A A A A B B e A B B e

gdA A c A g A A A A B A B e B A B e

gdB B c B g B B B B B A A e B

dz

dz

A A
dz

α

α

α

Δ Δ
− −

− Δ − Δ−
− − − −

− Δ
− −

= − + − + + +

= − + − + + +

− = − + − + + +( )

( )

* 2
1

* * 2 2 * * 2 * 21
1 1 2 0 1 0 1 0 0 1 0 0 1| |

2 2

i k

eff i k i k
s

e

gdB B c B g B B B B B A A e B A A e
dz

α

− Δ

Δ Δ−
− − − −− = − + − + + +

  ( 12) 

 
where gain saturation, g2 = gR(2ρ0 −1)τ p (cs +1) / 2, exists due to the presence of population 

pulsations 1ρ . This term is physically responsible for additional self saturation (the first term in 

the brackets in Eqs. 12) as well as FWM with the other modes. The spatial phase mismatch term 

/s gk vωΔ =  (where / 2sω π  is the free spectral range), originates from the frequency difference 

between cavity modes.  

Equations 12 can be solved analytically given the following assumptions. First, we 

neglect the phase-mismatched terms and decouple the forward and backward waves. Next, the 

homogenous linewidth 2 Γ  (on the order of 1 THz) should be much broader than the free spectral 

range / 2sω π  (10s of GHz), meaning 1sc ≈ . Lastly, because of the clamping of the effective 

gain as discussed in the previous section, we eliminate the gain and loss terms in Eq. 12 due to no 

net gain or loss in a round trip. Making these approximations, and rewriting 0
0 0| | iA A eψ= , we 

obtain coupled equations for the forward propagating modes 

 
( )

( )

0

0

22 *1
2 0 1 1

*
22 *1

2 0 1 1

| |

| |

i

i

dA g A A A e

dA
dz

dz
g A A A e

ψ

ψ

−

−−
−

= − +

= − +
 . ( 13) 
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Again, we can solve these by introducing the auxiliary variable ( )zθ , but with 2
2 0/ | |d dz g Aθ =  

and solving the equations with respect to ( )zθ . We note that 0ψ  , the phase of the CW envelope, 

is independent of z. Equations 13 reduce to a 2x2 eigenvalue problem 

 

 
0

0

2
1 1
* *2
1 1

1
1

i

i

A Aed
A Ad e

ψ

ψθ −
− −

⎡ ⎤⎡ ⎤ ⎡ ⎤
= − ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 . ( 14) 

The solutions to Equation 14 consist of the eigenvalues 1 20, 2λ λ= = −  and the general solution 

for the side modes is 

 

 ( )0 02 2
1 2

1 2 2 0* 0
1

exp 2 | |
1 1

i izA e e
C C dz g A

A

ψ ψ

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ − ′= + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫  . ( 15) 

 
These solutions show that it is not possible for either side mode 1A  or 1A−  to grow in amplitude 

through FWM. This conclusion is supported by the fact that the integral in the exponential is 

always positive and that neither eigenvalue has a positive real part. Simply increasing the 

strength of FWM by increasing 2g  will not lead to multimode operation, as it simultaneously 

increases the self saturation due to the population pulsations. 

Our major conclusion is that, in QW diode lasers, FWM can certainly exist and lock 

phases together due to the modified carrier lifetime pτ  but is not strong enough to sustain 

additional modes against gain competition. The combination of the overall gain being clamped at 

threshold by self saturation due to population pulsations greatly limits the ability of FWM to 

generate additional modes, thus masking the existence of FWM. So the second requirement for 

comb generation, a mechanism for multimode lasing, remains unfulfilled. This stituation is in 

stark contrast to FWM in Kerr combs, which use a very strong external pump laser [30] able to 

provide the power necessary to sustain the modes. The same effect is also present in FWM 

experiments in SOAs in which external lasers (CW or pulsed) are used. In addition, some FWM 

experiments can have lower power inputs that only weakly saturate the gain as opposed to strong 

saturation in a free running laser. The weak saturation allows the side band modes to achieve gain 

[23]. 
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C. Spatial Hole Burning  
 
Having shown that FWM alone is insufficient to result in multimode lasting, we add the effect of 

the carrier grating in order to include SHB. We assume the population grating has only a single 

component as only the strong central mode should contribute to any significant carrier grating in 

the perturbation approximation, 0g gρ ρ→  From Eq. 1b, we find the steady state solution,  

 ρg0 = −R(2ρ0 −1)τ g B0 A0
*  ( 16) 

 
1

2 2 2
0 0 0

1 4 2 (| | | | )g
sp

k D R A Bτ
τ

−
⎡ ⎤

= + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 . ( 17) 

Use of Eq. 16 in the single-mode electric field equations modifies Eqs. 6 to have an additional 

self saturation term due to the population grating  

 

  

dA0

dz
= − α

2
A0 +

geff

2
A0 − gR(2ρ0 −1)τ g | B0 |2 A0

−
dB0

dz
= − α

2
B0 +

geff

2
B0 − gR(2ρ0 −1)τ g | A0 |2 B0

 . ( 18) 

The presence of the additional loss from the carrier grating affects the steady state value of the 

gain and the intracavity fields. Now, effg  is no longer clamped to the threshold gain. Using the 

same methods as before, we derive the new expression for the effective gain under SHB, 

 2
3 00 0

1 2 | |
L L

eff thdzg g dzg B
L L

= +∫ ∫   ( 19) 

where g3 = gR(2ρ0 −1)τ g  is a measure of the strength of the carrier grating. Using this new 

expression for effg  in Eqs. 12 and making the same approximations as the preceding section, we 

obtain the modified FWM equations  

 
0

0

22 2 2 *1
3 0 2 0 1 2 0 1

*
22 2 * 21

3 0 2 0 1 2 0 1

( | | | | ) | |

( | | | | ) | |

i

i

dA g B g A A g A A e

dA g B g A A g A A e
dz

dz
ψ

ψ

−

−−
−

= − −

= − −
  ( 20) 

where additional gain is available by approximately the strength of the SHB term. The general 

solutions to Eqs. 20 are  

 ( ) ( )( )0 02 2
1 2 2 2

1 3 0 2 3 0 2 0* 0 0
1

exp | | exp | | 2 | |
1 1

i iz zA e e
C dz g B C dz g B g A

A

ψ ψ

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ −′ ′= + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫ ∫  , ( 21) 
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which are similar to solutions in Equations 15, albeit with the eigenvalues shifted by the 

availability of additional gain. In this form, both forward waves have the potential to grow 

exponentially now that the integrals in the exponentials can be positive. From Equation 21, there 

is no concrete cut-off for the minimum value of g3 , but the gain of the side modes is a continuum 

depending upon the intracavity power and length of the cavity. However, it is preferable for g3 , 

or τ g , to be large such that the additional gain over the cavity length L is appreciable for strong 

growth of the side bands relative to the center mode. In other words, the grating must be 

sufficiently strong, or equivalently, the grating lifetime must be sufficiently large, such that the 

gain competition is weakened due to unused gain now available inside the cavity. 

Our conclusion is that SHB is indeed present in some QW systems, with the major criteria 

being a low diffusion coeficient and a long operating wavelength. SHB reduces the effects of 

gain competition and increases the total gain seen by the side modes. It is primarily this SHB 

effect, not FWM, that induces multimode lasing. In other laser systems, the SHB requirement is 

easily fulfilled: a long operating wavelength in QCLs greatly reduces the ability of diffusion to 

wash out the spatial holes, while negligible diffusion in QD lasers allows for even gratings with 

very short spacings to survive. Once the system is in multimode operation, FWM takes over to 

lock the phases of these modes together. 

 

D. Phase-Locked Solutions 

 

Now that we have established the physical mechanism for how the modes emerge, we take a 

closer look at how the phases are locked together and why they tend to an FM solution rather 

than a pulse train. Rewriting Eqs. 20 in terms of magnitude and phase components
1 1

1 1 1 1| | , | |i iA A e A A eψ ψ −
− −= = gives 

 

 

d
dz

| A1 |= (g3 | B0 |2 −g2 | A0 |2 ) | A1 | −g2 | A0 |2 | A−1 | cos(2ψ 0 −ψ −1 −ψ 1)

d
dz

| A−1 |= (g3 | B0 |2 −g2 | A0 |2 ) | A−1 | −g2 | A0 |2| A1 | cos(2ψ 0 −ψ 1 −ψ −1)

d
dz

(ψ 1 +ψ −1) = −g2 | A0 |2 sin(2ψ 0 −ψ 1 −ψ −1)
| A1 |2 + | A−1 |2

| A1 || A−1 |
⎡

⎣
⎢

⎤

⎦
⎥

 . ( 22) 
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We assume for this analysis that g2, and therefore τ p  is approximately pure real, meaning we 

have a sizable amount of optical power inside the cavity. We see that the rate of phase evolution 

goes to zero when the argument of the sine becomes 

 0 1 12 ,0ψ ψ ψ π−Φ = − − = ±  , ( 23) 

implying that these values of the phases indicate mode locking. However, a stability analysis 

shows that the zero solution is not stable. When ψ 1 +ψ −1 increases, the derivative becomes 

  
d
dz

(ψ 1 +ψ −1) ~ −sin(0− ), which is positive and will grow away from Φ = 0 . We note that the 

zero phase difference solution corresponds to a series of short pulses. Now, looking instead at the 

solution of πΦ = ± , which corresponds to a quasi-FM solution, this solution is stable. A physical 

interpretation of this stability can be as follows. At the Φ = ±π  phase configuration, the gain is 

maximized due to the way the fields interfere. If there is a slight shift in the phase of A1, this in 

turn shifts the phase of the pulsating carrier population, which then tends to correct the phase of 

A*
−1  back toward the gain maximum.  

The phase relation can be generalized to any mode n and summed to produce an 

expression for the phase ψ n+1  as a function of n [9] 

 1 1
0 0 0 0

(2 )
n m n m

m m m m
m m m m

ψ ψ ψ
′ ′

+ −
′ ′= = = =

Φ = − −∑∑ ∑∑   ( 24) 

 ψ n+1 = π n2

2
+αn + β  , ( 25) 

where α  and β  are arbitrary constants. The phase as a function of mode number n has a clear 

quadratic dependence, which can then be compensated via a simple dispersive medium to 

produce a series of short pulses. Moreover, at this value of Φ , the gain of the side modes A±1 

also reaches a maximum. Thus the FM solution emerges as the natural phase-locked solution in 

the presence of FWM and multimode lasing. This physically makes sense in light of gain 

competition. The various phases of the modes will settle to where the available gain is greatest, 

producing a natural phase offset between the different modes. In other words, a solution in which 

all modes constructively add to form a train of pulses is not preferable (absent a saturable 
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absorber) due to the inefficient use of the available gain in between pulses. Instead, the FM 

solution utilizes all available gain by having the modes interfere at different points in time, 

producing a stable, quasi-CW phase-locked state. 

 We are mindful that the above analysis has been performed under third-order perturbation 

in a single-mode state, so we expect the actual phases of the modes to deviate from Equation 25 

once the side modes become significant and the central mode is saturated. However, the general 

quadratic shape and FM nature are not lost, as confirmed by our numerical solutions in the 

following section. 

 

IV. NUMERICAL SOLUTIONS 

To illustrate the aforementioned ideas, we numerically solve the traveling wave equations 

coupled with the carrier rate equations (Equations 1, 2) via a first-order Euler method along 

characteristics. We solve the equations for two sets of parameters for the gain medium 

corresponding to a GaAs QW or an InGaAsP QW, as given in Table 1. The major differences are 

a different central emission wavelength and a different diffusion coefficient. The results of this 

calculation for GaAs are shown in Figures 1, 2, and for InGaAsP shown in Figures 3, 4. The 

biggest contrast between the two results is that the GaAs calculation exhibits only a single mode, 

with the intracavity intensity profile shown in Figure 2, while the InGaAsP calculation exhibits a 

comb which, in contrast with the solutions for GaAs quantum well gain medium, does not settle 

to a single mode but eventually reaches a stable phase-locked state. This output can be dispersion 

compensated to form ultrashort pulses as shown in Figure 4. The relative strength of the central 

comb lines in Figure 4b has a remarkably similar shape to that of the spectrum obtained from 

experiment [31].  

The determining criterion for coherent comb generation is whether or not SHB and FWM 

are significant inside the cavity. If the diffusion length is much smaller than the half wavelength, 

or in our model, if gτ  is large enough, then SHB will induce multimode lasing. Assuming a total 

intracavity power of 2 2
0 0| | | | 5A B+ ≈ mW, the carrier lifetime and diffusion lengths are  
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τ cw,GaAs = 11 ps

τ cw,InGaAsP = 5.8 ps

LD ,GaAs = 149 nm >
λGaAs

2n0

= 118 nm

LD ,InGaAsP = 64.8 nm <
λ InGaAsP

2n0

= 221 nm

 , 

thus GaAs has a significantly longer diffusion length, which essentially washes out any half 

wavelength spatial grating that exists. However, in the case of InGaAsP, the diffusion length is 

much shorter, only about a quarter of the half wavelength. Thus in InGaAsP QW devices 

operating at 1550 nm, multimode generation should be possible, arising from SHB effects. By 

using the comparison of the diffusion length to the intracavity wavelength, we can establish a 

minimum recommended wavelength based upon the material, λ > 2n0LD , for strong multimode 

lasing based on SHB. This can also be related back to τ g  as a heuristic for a minimum SHB gain 

g3 . To summarize the important material parameters, low carrier diffusion in the laser diode 

material and long operating wavelengths both significantly benefit the strength of SHB, while 

strong intracavity power will improve FWM effects and the coherence between modes.  

To further isolate the effects of SHB, we solve Equations 1, 2 for the InGaAsP parameters 

but we then turn the grating term off for 50 ns < t < 125 ns, and then turn it on again for t > 125 

ns. In Figure 5a, we see the dynamics play out in time: the output reaches a phase-locked state 

until 50 ns, when it abruptly simplifies to a single mode due to the absence of SHB, and then 

resumes multimode lasing after 125 ns when SHB is turned back on. We can track the individual 

mode envelopes (as labeled in Figure 5b) by applying a simple spectral filter to each comb line in 

frequency domain and inverse Fourier transforming the central group of modes back into time 

domain. Figure 5c shows the results of the filtering and inverse transform. We see more clearly 

that, once SHB is turned off, all other modes decay rapidly until only the center mode remains. 

When SHB is turned back on, the central mode immediately drops in power due to increased self 

saturation, while simultaneously the side band amplitudes start increasing from reduced gain 

competition. When the central mode is strong, our perturbative analysis is most accurate, as it 

predicts the decay of the side bands in the absence of SHB and growth in the presence of SHB as 

see in the numerical results. Eventually the side bands become strong enough to saturate the 

central mode's gain and all modes mix together, reaching the same phase-locked state as before 
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(Figure 5b). The dynamics of the individual modes are consistent with our previous analytic 

results which show that the side bands grow primarily due to increased available gain due to 

increased self saturation of the central mode. We note that while the center mode emerges as the 

strongest mode when SHB is turned off, it is rather weak in the phase-locked solution. The 

spectral shape (Figure 3b) is nearly identical to that in radiofrequency FM signals for moderately 

strong modulation.  

 

V. CONCLUSION 

We have explained in detail the physics behind the generation of FM combs in QW diode lasers. 

Spatial hole burning allows multiple modes to achieve threshold gain due to reduced gain 

competition between modes, and the four-wave mixing induced by population pulsations locks 

the phases of the modes together. While SHB is easily achieved in QD lasers and QCLs, proper 

selection of materials can also allow SHB to exist in QW systems. With the presence of both 

SHB and FWM, a FM comb emerges passively as a natural state of operation of these diode 

lasers. This understanding should open up the possibilities of using QW diode lasers as a simple, 

yet effective, device for chip-scale frequency comb applications. 
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Table 1: Parameters used in numerical simulations 
 
Parameter Description GaAs (InGaAsP) Value 

L Length of device 500 µm 
W Width of waveguide 4 µm 

qwh   Height of quantum well 5 nm 

0n   Group refractive index 3.5 
α   Intrinsic waveguide loss 5 1cm−   

0ωh   Central transition energy 1.5 eV (0.8 eV) 

Γ   Homogenous half linewidth 4.0   
g   Modal gain coefficient 50 1cm−  

qwN   Effective number of QW states 2.34 ×106  

spτ   Spontaneous emission lifetime 1 ns 

ηIin   Input current 30 mA 

D   Ambipolar diffusion coefficient 20.0 2cm /s  (7.2 2cm /s ) 
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FIG. 1. The calculated output optical power for a diode laser with gain medium consisting of a 
GaAs quantum well. a) the temporal power output, which settles down quickly to a single mode 
after the initial relaxation oscillations b) the spectrum of the temporal output showing a single 
mode. 
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FIG. 2. The simulated steady state optical power distribution inside the cavity for a GaAs 
quantum well gain medium. The forward and backward waves are plotted, showing roughly 
symmetric, exponential solutions. 
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FIG. 3. The calculated output optical power for a diode laser with gain medium consisting of an 
InGaAsP quantum well. a) the temporal power output with a zoomed in inset at 100 ns is shown. 
b) the spectrum of the InGaAsP quantum well gain medium temporal output showing a frequency 
comb c) the instantaneous frequency of the output, plotted on the same timescale as the inset in 
a), has a triangular, almost saw-tooth like profile when the phases are locked.  
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FIG. 4. Simulated temporal output from a diode laser with an InGaAsP quantum well for the gain 
medium after dispersion compensation. The spectrum from Figure 3b is multiplied by quadratic 
phase to simulate dispersion compensation via an optical fiber. The group delay dispersion 
(GDD) in this case is 1.1 ps2. 
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FIG. 5. The simulated results of turning off and on the population grating equation responsible 
for SHB. The grating is turned on for t < 50 ns, but turned off for 50 ns < t < 125 ns, and turned 
back on for t > 125 ns. a) The temporal output of the calculated laser, showing multimode lasing 
before 50 ns, then single mode lasing until 125 ns, and multimode lasing once more after 125 ns. 
b) The spectrum of the output for 0 < t < 200 ns. It is labeled to identify each mode. c) the modal 
envelopes after filtering the spectrum in a), with labels corresponding to each mode, with an inset 
at 125 ns.  

 
 
 
 

 


