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We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions
of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed
state resources (obtained via weak parametric down conversion), linear optics, and photon detection. Arbitrary
d-level (qudit) states can be created this way where d = n + 1. Furthermore, we experimentally demonstrate
our scheme for n = 2. The resulting qutrit states are characterized via optical homodyne tomography. We also
discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work
in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples
such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables
one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical
suppression of

√
n − 1 losses and spanned by two logical codewords that each correspond to an n-photon

superposition for two bosonic modes.

PACS numbers: 03.67.-a,42.50.Dv,42.50.Ex

I. INTRODUCTION

Photons are an essential ingredient of most protocols for
quantum information processing and quantum communica-
tion, as they can serve as carriers of “flying quantum in-
formation”, especially in the form of flying qubits. How-
ever, experimentally, deterministic schemes to prepare opti-
cal quantum states remain so far within the regime of Gaus-
sian states or classical mixtures of Gaussian states, though, in
principle, third-order nonlinear optical effects or interactions
with a finite-dimensional system enable one to step out of
the Gaussian realm into that of non-Gaussian quantum states
[1]. Highly nonclassical, non-Gaussian states of traveling
light, pure enough to show negative values in their Wigner
functions [2], have been created with probabilistic, heralded
schemes [3–12]. These rely on the non-Gaussianity or non-
linearity induced by a photon detection. Since determinis-
tic, 100%-efficient quantum nondemolition measurements of
photon numbers [13] are currently unavailable in the optical
domain, a photon detection would destroy the measured op-
tical field. Nonetheless, the non-Gaussianity could still be
transferred to an outgoing, propagating optical quantum state
through quantum correlations.

For the optical resources before the photon detections, two-
mode squeezing correlations between signal and idler fields
from parametric down converters are typically utilized. Be-
yond heralding single photons [3], in previous experiments,
an arbitrary superposition of photon number states up to three
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photons, i.e. c0 |0〉+c1 |1〉+c2 |2〉+c3 |3〉with c0, c1, c2, c3 ∈ C,
was experimentally generated in a heralded fashion by em-
ploying three photon detectors. Before these detections, the
idler fields in the heralding lines are combined with auxil-
iary coherent fields [6, 7]. On the other hand, by utiliz-
ing the interference of the idler fields in the heralding lines,
arbitrary single-photon qubits encoded into two modes, i.e.
c10 |10〉+ c01 |01〉 with c10, c01 ∈ C (so-called dual-rail qubits),
were experimentally produced [8, 9].

It is then an interesting question whether we can create
an arbitrary superposition of photon number states with, for
instance, a total photon number of two distributed in two
modes, i.e. c20 |20〉 + c11 |11〉 + c02 |02〉 with c20, c11, c02 ∈

C. This set of quantum states forms a qutrit whose three-
dimensional Hilbert space is spanned by the three basis states
{|20〉 , |11〉 , |02〉}. One can think of this qutrit also as a spin-1
particle with a spin value 1 corresponding to half of the total
photon number (n1 + n2)/2 = n/2 = 1 and the three possi-
ble spin projections corresponding to half of the photon num-
ber differences of the two modes, (n1 − n2)/2 = {1, 0,−1}.
More generally, an arbitrary d-level spin particle can be rep-
resented by two modes with a spin value corresponding to
(n1 + n2)/2 = n/2 and d = n + 1 possible spin projections
corresponding to (n1 − n2)/2 (this is also referred to as the
Schwinger representation). In the most general case, a set of
number states with a total of n photons distributed in m modes,
{|n1, ..., nm〉} with

∑m
k=1 nk = n, spans a d-dimensional Hilbert

space where

d =

((
m
n

))
=

(
m + n − 1

n

)
=

(m + n − 1)!
n! (m − 1)!

. (1)

The qutrit above corresponds to the case of n = 2 and m = 2,
that is one special case of the Schwinger representation with
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generally m = 2 and arbitrary n. Such quantum states living in
a higher-dimensional Hilbert space are important, because, for
instance, a quantum error-correction code can be constructed
by utilizing a certain subspace as the code space. For this
purpose, the Hilbert space of the physical system must be
big enough such that a logical quantum state can be robustly
mapped between code space and error spaces. More specifi-
cally, multiphoton states can be possibly tolerant against am-
plitude damping, and indeed, when qubit information is en-
coded, for example, as α[(|40〉 + |04〉)/

√
2] + β |22〉, the infor-

mation does not get lost by a random single-photon annihila-
tion [14].

Here we discuss how to create such superposition states in
a heralded scheme, utilizing two-mode squeezed states and
linear optics in the heralding idler lines. As a consequence,
it is shown that an arbitrary superposition with total photon
number n can be, in principle, created for the case of mode
number m = 2, leading to an arbitrary qudit with d = n + 1.
However, we also find that our scheme cannot be generally
extended to the cases of m ≥ 3. Here we also experimentally
demonstrate our scheme for the two-mode qutrit case (n = 2
and m = 2). Our scheme is directly applicable to the con-
struction of bosonic codes against amplitude damping [14].
The scheme described here can be possibly combined with re-
cent memory schemes [15, 16], by which the success event
rate may be considerably improved. This paper is organized
as follows. In Sec. II, we review how the creation of a her-
alded single photon is mathematically described, and then we
discuss how this can be extended to a single-photon qubit with
n = 1 and m = 2. In Sec. III, we describe the heralded creation
of a qutrit for the case of n = 2 and m = 2, based on the factor-
ization of a corresponding polynomial. In Sec. IV, we present
a general extension of the polynomial factorization to the qu-
dit cases of n ≥ 3 and m = 2. In Sec. V, we discuss that further
extensions of our scheme to m ≥ 3 are, in general, impossi-
ble. In Sec. VI, we present a few examples and applications
of our qudit generation scheme. In Sec. VII, we present an ex-
perimental demonstration of our scheme by using time bins.
The density matrices of the heralded states are fully character-
ized by quantum tomography, employing homodyne detectors
for the simultaneous measurements of quadrature values [9].
Further examples are presented in the Appendix.

II. HERALDED CREATION OF AN ARBITRARY QUBIT

In a heralded scheme, typically two-mode squeezing by
parametric down conversion is employed with sufficiently
weak pumping, where signal and idler photons are probabilis-
tically created in pairs. Mathematically, the initial two-mode
squeezed state is expressed as

√
1 − q2 ∑∞

n=0 qn |n〉s |n〉i, where
weak pumping corresponds to q � 1. In the following, we
omit the normalization factor

√
1 − q2, however, when the

success probability of projecting a two-mode squeezed state
onto a desired state is considered, this normalization factor
must be taken into account. Then the detection of idler pho-
tons means projection onto

∑∞
n=1 |n〉i 〈n|. However, in the case

of very weak pumping, higher photon-number detections are
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FIG. 1. Scheme for creating a qubit c10 |10〉 + c01 |01〉.

unlikely, so we approximate the projection operator by |1〉i 〈1|.
Alternatively, the detector can be a photon-number-resolving
(PNR) detector with high efficiency, in which case the pro-
jection |1〉i 〈1| is obtained even with strong pumping by dis-
carding the cases of two or more detected idler photons. In
addition, since we are not interested in the idler state after
the measurement, in the following we express the projection
measurement simply by a bra vector i 〈1| = i 〈0| âi, where âi
is the annihilation operator for the idler mode. The process of
creating a heralded single photon can then be described by

i 〈1|
∞∑

n=0

qn |n〉s |n〉i

= i 〈0| âi

∞∑
n=0

qn

n!
â†ns â†ni |0〉s |0〉i

= qâ†s |0〉s = q |1〉s . (2)

Here, we intentionally introduced the annihilation and cre-
ation operators â and â†, in prospect of later use. Their com-
mutation relation is [â j, â

†

k] = δ jk. The error rate due to the
approximation of

∑∞
n=1 |n〉i 〈n| by |1〉i 〈1| based on weak pump-

ing is of the order of q2. These higher-photon-number com-
ponents turn the signal state into a mixed state.

An arbitrary single-photon (dual-rail) qubit c10 |10〉 +

c01 |01〉 can be created by combining two idler fields from two
parametric down converters at a beam splitter before the pho-
ton detection [8, 9]. This basically means adjusting the erasure
of which-path information [17]. The scheme is illustrated in
Fig. 1. Note that the actual experimental demonstration was
for a time-bin qubit [8, 9], in which case “two idler fields from
two parametric down converters” actually mean idler fields
generated at (sufficiently) different times by a single paramet-
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ric down converter. The scheme starts with
∞∑

n1=0

qn1 |n1〉s1 |n1〉i1 ⊗

∞∑
n2=0

qn2 |n2〉s2 |n2〉i2 , (3)

and the projection by a photon detection at one output port
of the beam splitter is expressed by i1 〈1| i2 〈0| Ûi1,i2(t, r), un-
der the approximation of neglecting the possibility of higher
excitations irrelevant to the photon detection (i.e., neglecting
orders ∼ q2). Alternatively, in the case of strong pumping
with a PNR detector, the projection by i2 〈0| has to be con-
firmed by another photon detector. Here, Ûk,`(t, r) is a unitary
operator representing a beam splitter transformation on modes
k and ` with a transmission coefficient t ∈ C and a reflection
coefficient r ∈ C, satisfying |t|2 + |r|2 = 1. It transforms the
annihilation operators as

Û†k,`(t, r)âkÛk,`(t, r) = tâk + râ`, (4a)

Û†k,`(t, r)â`Ûk,`(t, r) = −r∗âk + t∗â`, (4b)

where the superscript ∗ denotes complex conjugate. Then, the
projection bra vector is rewritten as

i1 〈1| i2 〈0| Ûi1,i2(t, r) = i1 〈0| i2 〈0| âi1Ûi1,i2(t, r)

= i1 〈0| i2 〈0| Û
†

i1,i2(t, r)âi1Ûi1,i2(t, r)

= i1 〈0| i2 〈0| (tâi1 + râi2). (5)

Note that here we utilized that a two-mode vacuum state is not
changed by a beam splitter, Ûi1,i2(t, r) |0〉i1 |0〉i2 = |0〉i1 |0〉i2.
The resulting state after the projection is

i1 〈1| i2 〈0| Ûi1,i2(t, r)
∞∑

n1,n2=0

qn1 qn2 |n1〉s1 |n1〉i1 |n2〉s2 |n2〉i2

= i1 〈0| i2 〈0| (tâi1 + râi2)
∞∑

n1,n2=0

qn1 qn2
â†n1

s1 â†n1
i1

n1!
â†n2

s2 â†n2
i2

n2!
|0〉s1 |0〉i1 |0〉s2 |0〉i2

= q(tâ†s1 + râ†s2) |0〉s1 |0〉s2

= q(t |1〉s1 |0〉s2 + r |0〉s1 |1〉s2), (6)

up to the normalization factor. Since the coefficients t and r
can be arbitrarily determined under the constraint |t|2 + |r|2 = 1
via the beam splitting ratio and a phase shift before the inter-
ference, an arbitrary qubit c10 |1〉s1 |0〉s2+c01 |0〉s1 |1〉s2 is prob-
abilistically created with this scheme. Because a photon de-
tection is phase-insensitive, a phase shift after the interference
is meaningless and thus only a phase shift before the interfer-
ence at the beam splitter can change the argument of the com-
plex numbers t or r. For a projection onto i1 〈0| i2 〈1| Ûi1,i2(t, r)
(corresponding to the detection of one photon in the other
beam splitter output port), it is easy to see that a similar calcu-
lation leads to the orthogonal dual-rail qubit state in the signal
output modes, q(−r∗ |1〉s1 |0〉s2 + t∗ |0〉s1 |1〉s2). Note that for
the special case of t = r = 1/

√
2, the scheme resembles the

entanglement distribution in the quantum repeater protocol of
Ref. [18] with the two signal modes distributed among two
repeater stations.
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FIG. 2. Scheme for creating a qutrit c20 |20〉 + c11 |11〉 + c02 |02〉.

III. HERALDED CREATION OF AN ARBITRARY QUTRIT

Let us now consider the case of a qutrit with a total photon
number of n = 2 in m = 2 modes, i.e.,

c20 |20〉1,2 + c11 |11〉1,2 + c02 |02〉1,2

=

( c20
√

2
â†21 + c11â†1â†2 +

c02
√

2
â†22

)
|00〉1,2 . (7)

The crucial observation is the following decomposition,

c20â†21 +
√

2c11â†1â†2 + c02â†22

= (d11â†1 + d12â†2)(d21â†1 + d22â†2), (8)

where c20, c11, c02 ∈ C, d11, d12, d21, d22 ∈ C. Since all the cre-
ation operators commute with each other, this decomposition
corresponds to the problem of factorizing polynomials with
complex coefficients,

c20z2 +
√

2c11z + c02 = (d11z + d12)(d21z + d22). (9)

However, this factorization is always possible from the funda-
mental theorem of algebra. The answer of az2 + bz + c = 0 is
z = (−b ±

√
b2 − 4ac)/2a when a , 0, where

√
|u|eiθ is either√

|u|eiθ/2 or
√
|u|eiπ+iθ/2.

For implementing the product of two 1st-order terms
d11â†1 + d12â†2 and d21â†1 + d22â†2, the simplest way is to split
each of the two idler modes into two by a beam splitter. The
scheme is depicted in Fig. 2. We introduce two ancilla modes
in a vacuum state |0〉a1 |0〉a2 which enter the unused ports of
the beam splitters. Then we combine the two split idler modes
at two beam splitters with different transmission and reflection
coefficients (t1, r1) and (t2, r2). More specifically, here we take
the beam splitter operation as

Ûi1,i2(t1, r1)Ûa1,a2(t2, r2)
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× Ûi1,a1

( 1
√

2
,−

1
√

2

)
Ûi2,a2

( 1
√

2
,−

1
√

2

)
, (10)

followed by the projection i1,i2,a1,a2 〈1, 0, 1, 0|.

Eventually, the two-mode signal state after the projection
becomes

i1,i2,a1,a2 〈1, 0, 1, 0| Ûi1,i2(t1, r1)Ûa1,a2(t2, r2)Ûi1,a1

( 1
√

2
,−

1
√

2

)
Ûi2,a2

( 1
√

2
,−

1
√

2

) ∞∑
n1,n2=0

qn1 qn2 |n1, n1, n2, n2〉s1,i1,s2,i2 |0, 0〉a1,a2

= i1,i2,a1,a2 〈0, 0, 0, 0| (t1âi1 + r1âi2)(t2âa1 + r2âa2)Ûi1,a1

( 1
√

2
,−

1
√

2

)
Ûi2,a2

( 1
√

2
,−

1
√

2

)
∞∑

n1,n2=0

qn1 qn2 |n1, n1, n2, n2〉s1,i1,s2,i2 |0, 0〉a1,a2

= i1,i2,a1,a2 〈0, 0, 0, 0|
[
t1
( âi1 − âa1
√

2

)
+ r1

( âi2 − âa2
√

2

)][
t2
( âi1 + âa1
√

2

)
+ r2

( âi2 + âa2
√

2

)]
∞∑

n1,n2=0

qn1 qn2
â†n1

s1 â†n1
i1

n1!
â†n2

s2 â†n2
i2

n2!
|0, 0, 0, 0, 0, 0〉s1,i1,s2,i2,a1,a2

=
q2

2
(t1t2â†2s1 + t1r2â†s1â†s2 + r1t2â†s2â†s1 + r1r2â†2s2) |0, 0〉s1,s2

=
q2

2
(t1â†s1 + r1â†s2)(t2â†s1 + r2â†s2) |0, 0〉s1,s2 . (11)

Note that 〈0| â2â†2 |0〉 = 2 is used in the above calculation.
Taking account of the omitted normalization factor

√
1 − q2

for each of the two-mode squeezed states, and of a bias fac-
tor discussed below, the success probability of projecting the
two-mode squeezed states into a desired qutrit state is in the
range from q4(1 − q2)2/4 to q4(1 − q2)2/2, depending on the
target qutrit state. Note that in the case of qubit in Eq. (6), the
success probability q2(1 − q2)2 is equal for all states.

A. Interpretation of the bias factor

The first excitation b̂†2 B t2â†1 + r2â†2 can be decomposed
into a part parallel to the second excitation b̂†1 B t1â†1 + r1â†2
and an orthogonal part b̂†1⊥ B −r1â†1 + t1â†2 as

b̂†2 = c‖b̂
†

1 + c⊥b̂†1⊥. (12)

However, the parallel part has a twice as large contribution as
the orthogonal part,

b̂†1b̂†2 |0, 0〉b̂1,b̂1⊥

= b̂†1(c‖b̂
†

1 + c⊥b̂†1⊥) |0, 0〉b̂1,b̂1⊥

=
√

2c‖ |2, 0〉b̂1,b̂1⊥
+ c⊥ |1, 1〉b̂1,b̂1⊥

, (13)

where the two-mode representation is appropriately chosen so
that b̂†1 |0, 0〉b̂1,b̂1⊥

= |1, 0〉b̂1,b̂1⊥
and b̂†1⊥ |0, 0〉b̂1,b̂1⊥

= |0, 1〉b̂1,b̂1⊥
.

This “bias” is explained as follows. When b̂†2 is orthogonal
to b̂†1, the photon that heralds b̂†1 must, after the beam splitter

network, go to the detector i1 〈1|, while the photon that heralds
b̂†2 must go to the detector a1 〈1|. On the other hand, when b̂†2
is parallel to b̂†1, the photon that heralds b̂†1 may go to either of

i1 〈1| and a1 〈1|, while the photon that heralds b̂†2 must go to the
other detector. This freedom of swapping photons increases
the contribution of parallel components. Although the initial
two-mode squeezed state

∑∞
n1,n2=0 qn1 qn2 |n1, n1, n2, n2〉s1,i1,s2,i2

equally contains all the two-photon signal state c2,0 |2, 0〉s1,s2 +

c1,1 |1, 1〉s1,s2+c0,2 |0, 2〉s1,s2 with the probability density O(q4),
b̂†21 is twice more likely to be heralded than b̂†1b̂†1⊥.

This observation is naturally extended to the case of gen-
eral total photon numbers n, which is described in Sec. IV,
in which case b̂†n−k

1 b̂†k1⊥ has a contribution proportional to
(n − k)!k!.

IV. HERALDED CREATION OF AN ARBITRARY QUDIT

The fundamental theorem of algebra says that an arbitrary
non-constant single-variable polynomial with complex coef-
ficients has at least one complex root. From this, it can be
derived that the decomposition into 1st-order terms,

cnzn + cn−1zn−1 + ... + c1z + c0

= cn(z + d1)(z + d2)...(z + dn), (14)

is always possible when cn , 0.
Therefore, an arbitrary superposition state can be, in prin-

ciple, decomposed as a product of 1st-order creation terms on
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a vacuum state,

n∑
k=0

c(n−k)k |n − k〉1 |k〉2

=

n∑
k=0

c(n−k)k
√

(n − k)!k!
â†n−k

1 â†k2 |0〉1 |0〉2

=

[ n∏
k=0

(dk,1â†1 + dk,2â†2)
]
|0〉1 |0〉2 . (15)

This is created via a heralded scheme that is a natural exten-
sion of the two-photon qutrit case in Sec. III. We first equally
split each of the two idler modes into n modes by a series of
beam splitters. Mathematically, for each idler mode k = 1, 2,
we introduce n − 1 ancilla vacuum modes, and we combine
them at a series of beam splitters, which is, for instance, de-

scribed by

Ûk =Ûik,ak1

( 1
√

2
,−

1
√

2

)
Ûik,ak2

(√2
3
,−

1
√

3

)
...Ûik,ak(n−1)

(√n − 1
n

,−
1
√

n

)
. (16)

This network divides the idler modes with an equal weight,

[Û†k âikÛk, â
†

ik] = [Û†k âak`Ûk, â
†

ik] =
1
√

n
, (17)

for ` = 1, ..., n − 1. Then we combine the two sets of the split
idler modes at n beam splitters Ûi1,i2(t1, r1), Ûa11,a21(t2, r2),
..., Ûa1(n−1),a2(n−1)(tn, rn), each followed by a photon detection.
The whole procedure can be expressed as

i1,i2,a11,a21,...,a1(n−1),a2(n−1) 〈1, 0, 1, 0, ..., 1, 0| Ûi1,i2(t1, r1)Ûa11,a21(t2, r2)...Ûa1(n−1),a2(n−1)(tn, rn)Û1Û2
∞∑

n1,n2=0

qn1 qn2 |n1, n1, n2, n2〉s1,i1,s2,i2 |0, 0, ..., 0, 0〉a11,a21,...,a1(n−1),a2(n−1)

= i1,i2,a11,a21,...,a1(n−1),a2(n−1) 〈0, 0, 0, 0, . . . , 0, 0| (t1Û
†

1 âi1Û1 + r1Û
†

2 âi2Û2)(t2Û
†

1 âa11Û1 + r2Û
†

2 âa21Û2)...

(tnÛ
†

1 âa1(n−1)Û1 + rnÛ
†

2 âa2(n−1)Û2)
∞∑

n1,n2=0

qn1 qn2
â†n1

s1 â†n1
i1

n1!
â†n2

s2 â†n2
i2

n2!
|0, 0, 0, 0, 0, 0, ..., 0, 0〉s1,i1,s2,i2,a11,a21,...,a1(n−1),a2(n−1)

=
qn

nn/2 (t1â†s1 + r1â†s2)...(tnâ†s1 + rnâ†s2) |0, 0〉s1,s2 . (18)

Note that 〈0| ânâ†n |0〉 = n! is used in the above calculation.
Like above, the heralded creation of a qudit with n pho-

tons is, in principle, possible based on the decomposition into
1st-order terms. However, finding the set of decomposition
coefficients {dk`} for a specific case {ck`} is not an easy prob-
lem in general, as well as the factorization of the n-th order
polynomial.

V. POSSIBILITY OF FURTHER MULTI-MODE
EXTENSIONS

So far, we have discussed that an arbitrary superposition
state with an arbitrary total photon number n can be, in princi-
ple, created with heralded schemes when the number of modes
is m = 2. Similarly, we may consider an extension to a general
number of modes m as∑

n1+...+nm=n

cn1,...,nm |n1, ..., nm〉1...m . (19)

In this general case, we have to consider the factorization of a
polynomial with m − 1 variables,∑

n1+...+nm=n

cn1,...,nm
√

n1!...nm!
zn1

1 ...z
nm−1
m−1 . (20)

In the case where a factorization into 1st-order terms
(
∑m−1

k=1 dkzk) + dm is possible, the corresponding state can be
again created in a similar manner by utilizing beam splitter
networks before heralding photon detections.

However, it may not be possible to factorize polynomials
when they contain more than two variables. Therefore, the
cases with more than three modes m ≥ 3 is an open question
except for the trivial case of a total photon number n ≤ 1. In
fact, the insufficient degrees of freedom imply the requirement
of a totally different scheme instead of the factorization into
1st-order terms. For instance, for the simplest case of n = 2
and m = 3, the polynomial to be factorized (absorbing the
factors of 1/

√
n1!n2!n3! into the coefficients cn1,n2,n3 ) is

c2,0,0z2
1 + c1,1,0z1z2 + c0,2,0z2

2 + c1,0,1z1 + c0,1,1z2 + c0,0,2, (21)

while that after the factorization is

c0,0,2(1 + d1,1z1 + d1,2z2)(1 + d2,1z1 + d2,2z2). (22)

Obviously, the degree of freedom after the factorization is not
sufficient to cover all the 2nd-order polynomials.

Similarly, we can consider the extension to an arbitrary su-
perposition state containing no more than n photons in total,
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(t1,r1)
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âs2

âs1
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FIG. 3. Scheme for creating a qudit
∑n

k=0 c(n−k)k |n − k〉 |k〉, where the
dimension is d = n + 1. The number of the conditioning detectors
corresponds to the total photon number n. The figure, as an example,
is for n = 3.

distributed in m modes,∑
n1+...+nm≤n

cn1,...,nm |n1, ..., nm〉1,...,m . (23)

In this case, the desired decomposition is∑
n1+...+nm≤n

cn1,...,nm
√

n1...nmk!
â†n1

1 ...â†nm
m

=

n∏
k=0

(dk,1â†1 + ... + dk,mâ†m + dk,m+1). (24)

If the above decomposition is possible, each of the single ex-
citations dk,1â†1 + ...+ dk,mâ†m + dk,m+1 is, in principle, possible,
since addition of a zeroth-order term dk,m+1 to first-order terms
dk,1â†1+...+dk,mâ†m is possible by a small coherent displacement
of the corresponding idler mode in phase space âi → âi + εi
before the photon detection [4–6]. The corresponding poly-

nomial to be factorized becomes∑
n1+...+nm≤n

cn1,...,nm
√

n1!...nm!
zn1

1 ...z
n1
m . (25)

The polynomial of Eq. (20) is equivalent to that of Eq. (25)
when m is replaced by m + 1, and thus the problem of “up to n
photons in m modes” is equivalent to that of “total n photons
in m + 1 modes”.

VI. EXAMPLES AND APPLICATIONS

A. Error-correction code for loss

An important possible application of our general super-
position states is the creation of quantum error-correction
codewords and their logical states. Taking advantage of our
scheme to prepare multiphoton states, here we consider an
error-correction code against amplitude damping. A famous
example is a logical qubit defined as

|0〉L =
1
√

2
(|40〉 + |04〉) , (26a)

|1〉L = |22〉 . (26b)

Then, |Ψ〉 = α |0〉L + β |1〉L is a good encoding of a qubit
against a random one-photon loss [14]. Assuming α, β , 0,
the logical qubit state can be expressed in terms of creation
operators,

α
√

2
(|40〉 + |04〉) + β |22〉

=

 α
√

2

 a†41
√

4!
+

a†42
√

4!

 +
β

2
a†21 a†22

 |00〉

=

(
α

4
√

3
a†41 +

α

4
√

3
a†42 +

β

2
a†21 a†22

)
|00〉

C p(a†1, a
†

2) |00〉 . (27)

To find the transmittance and the reflection coefficients in
Eq. (11), one has to determine the decomposition of p(a†1, a

†

2)
into linear factors. A short calculation shows

p(a†1, a
†

2) |00〉 =
α

4
√

3

a†1 − a†2

√
−

√
3β
α

+

√
3β2

α2 − 1


a†1 − a†2

√
−

√
3β
α
−

√
3β2

α2 − 1


×

a†1 + a†2

√
−

√
3β
α

+

√
3β2

α2 − 1


a†1 + a†2

√
−

√
3β
α
−

√
3β2

α2 − 1

 |00〉 . (28)

The expression is not yet in the form of the last line of Eq. (11). This is done by rescaling each linear factor to obtain the
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FIG. 4. Success probability for creating 1
√

2
(|N0〉 + |0N〉) for various N in dependance of q (PNRD). Note that the N = 2 NOON state can be

also directly obtained from two single-photon states using a beam splitter.

transmission and reflection coefficients:

t1 = t3 =
1√

1 +

∣∣∣∣∣− √3β
α

+

√
3β2

α2 − 1
∣∣∣∣∣2
, r1 = r3 =

−

√
3β
α

+

√
3β2

α2 − 1√
1 +

∣∣∣∣∣− √3β
α

+

√
3β2

α2 − 1
∣∣∣∣∣2
, (29a)

t2 = t4 =
1√

1 +

∣∣∣∣∣ √3β
α

+

√
3β2

α2 − 1
∣∣∣∣∣2
, r2 = r4 =

−

√
3β
α
−

√
3β2

α2 − 1√
1 +

∣∣∣∣∣ √3β
α

+

√
3β2

α2 − 1
∣∣∣∣∣2
. (29b)

The success probability for obtaining the desired heralded state is found to be

Psucc(α, β) =
48
α2

q8

256
(1 − q2)2

1 +

∣∣∣∣∣∣∣−
√

3β
α

+

√
3β2

α2 − 1

∣∣∣∣∣∣∣
2
−1 1 +

∣∣∣∣∣∣∣
√

3β
α

+

√
3β2

α2 − 1

∣∣∣∣∣∣∣
2
−1

. (30)

Note that the code spanned by the two codewords as given
in Eq. (26b) can correct losses of up to one photon. In fact,
it can be easily seen that the two codewords remain orthogo-
nal after the loss of one photon in either the first or the sec-
ond mode. Moreover, these two distinct cases lead to logical
qubits that live in orthogonal error spaces, {|30〉 , |12〉} versus
{|03〉 , |21〉}, respectively. Slightly less simple but also straight-
forwardly confirmable is that the logical qubit information
does not get deformed by the loss of one photon, and so it
remains intact in any one of the permitted subspaces. How-
ever, once two or more photons get lost the supposedly differ-
ent error spaces start overlapping. Thus, the code only works
well in the regime of sufficiently small losses. More gener-
ally, such a two-mode n-photon loss code can correct up to
√

n − 1 losses, and using our scheme, in principle, any such
two-mode code can be experimentally prepared. There are
also other loss codes that are based upon a higher number of
modes where we have seen that our generation scheme may no
longer be applicable. Nonetheless some class of such multi-

mode loss codes makes use of an initial supply of so-called
NOON states [19]. For this application, but also for other ap-
plications in the context of quantum metrology or lithography,
the ability to experimentally prepare NOON states is of great
interest. We consider this example next.

B. NOON states

A general NOON state is given by

1
√

2
(|N0〉 + |0N〉) =

1
√

2

 a†N1
√

N!
+

a†N2
√

N!

 |00〉 . (31)

To be able to apply our scheme for their creation, the polyno-
mial

p(x, y) =
1
√

2N!

(
xN + yN

)
(32)
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FIG. 5. Experimental setup. Ti:Sa denotes titanium sapphire laser,
CW continuous-wave, SHG second harmonic generator, FC filter
cavity, MCC spatial-mode cleaning cavity, and HD homodyne de-
tector.

has to be decomposed into linear factors. The decomposition
is given by

p(x, y) B
1
√

2N!

N−1∏
k=0

(
x − ζ2Nζ

k
Ny

)
, (33)

where ζN = exp( 2πi
N ) is the N-th root of unity.

Therefore, one can write

p(a†1, a
†

2) |00〉 =
1
√

2N!

N−1∏
k=0

(
a†1 − ζ2Nζ

k
Na†2

)
|00〉

=
1
√

2N!

√
2N

N−1∏
k=0

(
tka†1 + rka†2

)
|00〉 , (34)

where the corresponding transmission and reflection coeffi-
cients are

tk =
1
√

2
and rk = −

ζ2Nζ
k
N

√
2
. (35)

The corresponding success probability is

psucc = q2N(1 − q2)2 2N!
2N

1
NN . (36)

In Fig. 4, the success probability is shown for various values
of N. Further examples are presented in the Appendix.

VII. EXPERIMENT

Based on the above theory, now we also present an exper-
iment on the generation of two-mode qutrit states (n = 2,

m = 2). The experimental setup is shown in Fig. 5. This
is a natural extension of a previous time-bin qubit experiment
(n = 1, m = 2) [9]. Instead of preparing two independent non-
degenerate optical parametric oscillators (NOPOs), we use a
single NOPO, combined with two Mach-Zehnder interferom-
eters on the idler side, with asymmetric arm lengths.

The NOPO, containing a periodically poled KTiOPO4 crys-
tal with a type-0 phase matching, is pumped continuously
in a weak-pump regime, generating two-mode squeezed vac-
uum beams (signal and idler beams) continuously, which have
finite correlation times determined by the bandwidth of the
NOPO cavity (about 12 MHz of full width at half maximum).
The signal and idler fields are two frequency modes of the
NOPO cavity, separated by a free spectrum range (FSR) of
about 600 MHz. An acousto-optic modulator (AOM) shifts
the frequency of the pump beam by this FSR frequency, by
which the signal field is at the frequency of local oscillators
(LOs) for homodyne detections while the idler field is at a
different frequency separated by the FSR. As optical phase
references, weak coherent beams are injected into the NOPO
for both the signal and idler frequencies, which are switched
on and off by AOMs. Feedback control of the optical system
is performed by using the coherent beams, while qutrit states
are generated when the coherent beams are absent.

The signal and idler fields are spatially separated by a fil-
ter cavity (FC-1 in Fig. 5) whose round-trip length is half of
that of the NOPO. Additional two filter cavities (FC-2 and
FC-3 in Fig. 5) further eliminate irrelevant fields before pho-
ton detections. After the filtering of the idler field, there are
two Mach-Zehnder interferometers. The optical delay lines
in the two Mach-Zehnder interferometers are common, im-
plemented with a polarization-maintaining optical fiber with
a length of about 50 m. Thanks to the delay line, sufficiently
time-shifted idler fields interfere before the photon detection,
which enables the heralded generation of time-bin superposi-
tion states. In order to control the transmission and reflec-
tion coefficients that determine the heralded state (see Ap-
pendix A), variable beamsplitters are constructed with half-
wave plates (HWPs) and polarization beamsplitters (PBSs).
The absolute values of the transmission and reflection coeffi-
cients are controlled by the angles of the wave plates, while
the phases are feedback controlled using piezo-actuated mir-
rors. The angles of the wave plates are adjusted by referring
to the photon counting rate from each arm.

When two silicone avalanche photodiodes (APDs) detect a
photon simultaneously on the idler side, a qutrit state is her-
alded on the signal side. The idler field before each APD is
coupled to a single-mode optical fiber for mode selection, and
therefore, there is no degradation of heralded states caused by
imperfect interference visibilities of the Mach-Zehnder inter-
ferometers. AOMs before the APDs are switched on and off

for protection of the APDs so that coherent phase-reference
beams do not enter the APDs. We set a time window of about
30 ns to judge two photon detection events to be simultaneous.
Simultaneous detection events were about 50 times per sec-
ond. Note that the event rate is theoretically state-dependent
for the reasons discussed in Sec. III A, and we surely observed
such dependence in the experiment (e.g., the event rate of gen-
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FIG. 6. Experimental density matrix for (|2, 0〉 + |1, 1〉 + |0, 2〉)/
√

3. For the qutrit matrix elements, positive elements are colored in orange
(light gray) and negative elements are colored in blue (gray).

erating |2, 0〉 is twice as large as that of generating |1, 1〉 with
the same pumping power).

The signal field, reflected by the first filter cavity, is sent
to the characterization setup. The heralded state is, instead of
photon-detection-based characterization [20], fully character-
ized with quantum tomography employing two homodyne de-
tectors for simultaneous measurements of conjugate quadra-
ture variables [9]. For each quantum state, quadrature values
of 20000 events were utilized for estimation.

Here we show the results of two qutrit states as examples.
One state is (|2, 0〉 + |1, 1〉 + |0, 2〉)/

√
3, and the other one is

[
√

2 |2, 0〉 + (1 +
√

2i) |1, 1〉 + 2i |0, 2〉]/3. The resulting den-
sity matrices are shown in Fig. 6 and Fig. 7, respectively.
Real and imaginary parts of the density matrices are shown
for both the full space up to three photons and the qutrit sub-
space. The distributions of the total photon number are cal-
culated from the diagonal elements of Fig. 6(a) and Fig. 7(a),
and shown in Figs. 6(e) and 7(e). The two-photon compo-
nents, i.e., the probability of the state existing in the qutrit
subspace, were 49% and 47%, respectively (constantly 45–
50%), which are consistent with the heralded single-photon
purity of about 70% (i.e., about 30% of losses). One-photon
components as well as vacuum components are also consis-
tent with the losses. These unwanted components will be sup-
pressed by reducing optical losses in the signal line (known
optical losses are 3% inside the NOPO and 3% in the transmis-

sion line after the NOPO), homodyne detection inefficiencies
(mainly caused by mode-mismatch with the LOs correspond-
ing to interference visibilities of about 97%), and fake clicks
from the APDs (estimated as about 1% from each APD). On
the other hand, three-photon components which are less than
10% can be further suppressed by attenuating the pump power.
The matrices for the qutrit subspace [Fig. 6(c), 6(d), 7(c), and
7(d)] are renormalized by the two-photon probablity. The fi-
delities regarding the qutrit subspace were 93% and 95%, re-
spectively (constantly over 90%). The fidelities will be im-
proved if the precision and stability of our experimental setup
are enhanced, such as the polarization in the fiber delay line.

VIII. CONCLUSION

We proposed a scheme to generate arbitrary qudit states in
a heralded fashion, distributing n photons (d = n + 1) in two
modes as a superposition state, based on two-mode squeezed
states and photon detections. We further discussed an exten-
sion of our scheme to m ≥ 3 modes, which may sometimes
be possible, but not in general. Furthermore, we experimen-
tally demonstrated our scheme by generating some exemplary
qutrit states. States that can be created with our scheme in-
clude important states for quantum information applications,
such as NOON states with N ≥ 3 and encoded quantum error
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FIG. 7. Experimental density matrix for [
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√

2i) |1, 1〉+ 2i |0, 2〉]/3. For the qutrit matrix elements, positive elements are colored
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correction states to suppress photon loss.
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Appendix A: Two-photon states

Let us consider the balanced superposition 1
√

3
(|20〉+ |02〉+

|11〉), which cannot be obtained by linear optics alone. We can
write

1
√

3
(|20〉 + |02〉 + |11〉)

=
1
√

3

 a†21
√

2
+

a†21
√

2
+ a†1a†2

 |00〉

=

√
1
6

(
a†1 +

1
√

2
(1 − i) a†2

) (
a†1 +

1
√

2
(1 + i) a†2

)
|00〉

=

√
2
3

 a†1
√

2
+

1
2

(1 − i) a†2

  a†1
√

2
+

1
2

(1 + i) a†2

 |00〉 . (A1)

The probability for successful generation is thus Psucc =
3
8 q4(1 − q2)2, which is plotted in Fig. 8.

A general superposition of two-photon states can be decom-
posed as follows:

α |20〉 + β |02〉 + γ |11〉

=(
α
√

2
a†21 +

β
√

2
a†22 + γa†1a†2) |00〉

=
α
√

2

a†1 − a†2

− γ
√

2α
+

√
γ2

2α2 −
β

α


×

a†1 − a†2

− γ
√

2α
−

√
γ2

2α2 −
β

α

 |00〉 . (A2)

The corresponding transmission and reflection coefficients are

t1 =
1√

1 +

∣∣∣∣∣− γ
√

2α
+

√
γ2

2α2 −
β
α

∣∣∣∣∣2
, (A3a)

r1 =
−

γ
√

2α
+

√
γ2

2α2 −
β
α√

1 +

∣∣∣∣∣− γ
√

2α
+

√
γ2

2α2 −
β
α

∣∣∣∣∣2
(A3b)
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FIG. 8. Success probability for creating 1
√

3
(|20〉 + |02〉 + |11〉) in

dependence of q (using photon number resolving detectors).

t2 =
1√

1 +

∣∣∣∣∣ γ
√

2α
+

√
γ2

2α2 −
β
α

∣∣∣∣∣2
, (A3c)

r2 = −

γ
√

2α
+

√
γ2

2α2 −
β
α√

1 +

∣∣∣∣∣ γ
√

2α
+

√
γ2

2α2 −
β
α

∣∣∣∣∣2
. (A3d)

Appendix B: Three-mode states

Using the methods described above, as an example of a
three-mode state that can be indeed created, we present the
following state,

1

2
√

3
(a†1 + a†2)(a†1 + a†3)(a†2 − a†3) |000〉

=
1

2
√

3
(a†21 a†2 − a†21 a†3 − a†21 a†3 + a†22 a†1 + a†22 a†3 − a†23 a†2) |000〉

=
1
√

3

(
|2〉
|10〉 − |01〉
√

2
+ |1〉

|20〉 − |02〉
√

2
+ |0〉

|21〉 − |12〉
√

2

)
.

(B1)
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