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Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate
(BEC) phase reveals a unique physical configuration of interacting light and matter waves. But
the joint coherent dynamics of the optical excitation induced by an incident photon is influenced
by the presence of incoherent scattering channels. For a sample of sufficient length the excitation
transports as a polariton wave and the propagation Green’s function obeys the scattering equation
which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered
photon as we show via numerical solution of the scattering equation for one-dimensional geometry.
The results are analyzed and compared with predictions of the conventional macroscopic Maxwell
theory for light scattering from a non-degenerate atomic sample of the same density and size.

PACS numbers: 42.50.Ct, 42.50.Nn, 42.50.Gy, 34.50.Rk

I. INTRODUCTION

Light scattering from ultracold atomic systems existing
under conditions of quantum degeneracy is a challenging
and intriguing issue for both quantum optics and atomic
physics. Together, investigation of these combined fields
is practically important for developing various quantum
interface protocols between light and matter subsystems.
Although light scattering from either degenerate Bose or
Fermi gases is of strong interest, we consider in the cur-
rent context the degenerate Bose gas only, which is most
typical for alkali-metal systems. The superposed light
and matter wave propagating as a single quantum opti-
cal excitation through a Bose-Einstein condensate (BEC)
phase had been predicted in [1] even before BEC had
been created in the laboratory. Since the first successful
experimental realizations of BEC in alkali-metal systems
reported in [2, 3], evident signatures of cooperative dy-
namics in light scattering from the condensate have been
observed in a series of experiments. These include man-
ifestation of superradiant behavior of Rayleigh scatter-
ing in [4–6], formation of superfluid vortexes induced by
coherent optical processes in [7–9] and spin vortexes in
[10], and optical control of the BEC phase transition with
Faraday imaging technique in [11]. The strong coherent
coupling of light with a sample led to the condensate
fragmentation [4–6] and explanation of such a quite non-
trivial optomechanical effect has been attempted in [5] in
terms of a Kapitza-Dirac diffraction phenomenon.

The above experiments have encouraged development
of theoretical insights towards deeper understanding and
precise description of light scattering under conditions of
quantum degeneracy and from BEC in particular. The
basic concept of a master equation for the order param-
eter suggests a relevant approach based on time depen-
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dent generalization of the non-linear Schrödinger (Gross-
Pitaevskii) equation [12–14]. The coherent effects of con-
version of either linear or angular momentum from light
to the condensate are associated with a stimulated Ra-
man process mediating the dynamics of the order param-
eter [9, 14]. The superadiant properties of the Rayleigh
scattering, observed in a BEC, was explained by making
use of the effective Hamiltonian approach via the mecha-
nism of cooperative emission induced by a coherent clas-
sical pump in [15–19].

In the present report we are focusing on a microscopic
quantum theory of a single photon scattering towards ab-
initio description of elastic light scattering from a macro-
scopic atomic sample existing in the quantum degenerate
BEC phase. Following the second quantized formalism,
Bogolubov theory [20] and the Gross-Pitaevskii model
[21, 22] we introduce a set of coupled and closed dia-
gram equations for the polariton propagator contributing
to the T -matrix and scattering amplitude. Under condi-
tions of bosonic quantum degeneracy for atoms we follow
important density corrections to the quasi-energy struc-
ture caused by static interactions and radiation losses
associated with incoherent scattering. We are aiming to
test the validity of the conventional macroscopic Maxwell
description for the quantum degenerate gas as well as to
follow possible deviations with light scattering from a
non-degenerate atomic sample of the same density and
size.

This paper is organized as follows. In Section II we de-
velop our general theoretical framework of light scatter-
ing from a quantum degenerate atomic gas. This repre-
sents a detailed elaboration of the sketch presented in an
earlier report [23]. In Section III we derive the basic scat-
tering equation via the Feynman diagrammethod (briefly
explained in Appendix A) and discuss general properties
of the Green’s function (polariton propagator) responsi-
ble for transporting an optical excitation in a BEC sam-
ple. In Section IV we present the results of our numerical
simulations for light scattering in a one-dimensional ge-
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ometry; the calculational scheme is detailed in Appendix
B. In Section V we make some concluding remarks.

II. THE SCATTERING PROBLEM UNDER

CONDITIONS OF QUANTUM DEGENERACY

The amplitude of a photon scattered by a quantum sys-
tem is given by the T -matrix,

T̂ (E) = V̂ + V̂
1

E − Ĥ
V̂ (2.1)

In this definition, Ĥ is the Hamiltonian of the quantum
system. It is built from an unperturbed part Ĥ0 and an
interaction term V̂ such that Ĥ = Ĥ0 + V̂ .
The differential cross section is expressed in terms

of the scattering amplitude, given by the applicable T -
matrix element, which is a function of the initial energy
Ei:

dσi→f =
V2ω′2

h̄2c4(2π)
2 |Tg′e′k′; gek(Ei + i 0)|2 dΩ (2.2)

An initial state |i〉 = |g; e,k〉 is defined by the incoming
photon wave vector k, frequency ω ≡ ωk = ck, polariza-
tion vector e, and by the quantum numbers of the scatter-
ing system |g〉. In the case of a collection of atoms, under
strict conditions of quantum degeneracy, |g〉 = |BEC〉N
initially describes a collective state of N atoms in the
BEC phase. The final state |f〉 = |g′; e′,k′〉 is specified
by a similar set of quantum numbers, with the excep-
tion that |g′〉 can exist in a disturbed condensate state
for inelastic channels, and the solid angle Ω is directed
along the wave vector of the outgoing photon k′. The
quantization volume V appearing in the differential cross
section is required by the second quantized description
of the interaction operators for the quantum degenerate
system in the basis of plane-wave modes for the scatter-
ing photon and the atoms. The total cross section can
be obtained from the diagonal T -matrix element:

σtot = −2V
h̄c

ImTii(Ei + i 0) (2.3)

Then the cross-section can be evaluated via calculation
of one T -matrix element for the elastic forward scattering
channel.
For a weakly interacting quantum gas (see comment

below in the end of this section) the interaction term V̂
in Eq. (2.1) can be taken in the dipole long wavelength
approximation [24–26], which is given by

V̂ = −
∑

n

∫

d3r
[

dµnmÊµ(r)Ψ̂
†
n(r)Ψ̂m(r) + h.c.

]

(2.4)

where dµnm is the matrix element of the µ-th vector
component of an atomic dipole moment, where n and
m respectively specify the excited and ground states of

the atom. Êµ(r) is the µ-th vector component of the
electric field operator and for sake of generality we use
co/contravariant notation for the vector and tensor in-

dices. The operators Ψ̂m(r) and Ψ̂†
n(r) are the sec-

ond quantized annihilation and creation operators of an
atom at position r respectively in the ground and excited
states. We will further consider a BEC consisting of the
simplest two-level atoms with a 1S0 ground state and 1P1

excited state such that quantum numbers n = 0,±1 and
m = 0 respectively denote the single atom angular mo-
mentum projection of the excited and the ground states.
In accordance with the general concept of quantum

degeneracy for the system ground state existing in the
BEC phase at zero-temperature, see [25], we accept

Ψ̂0(r)|BEC〉N = Ξ(r)|BEC〉N−1
(2.5)

where Ξ(r) is the order parameter (often termed the
”wavefunction”) of the condensate. We consider the BEC
as a macroscopic object such that the order parameter is
insensitive to any small variation of the number of par-
ticles in the condensate. Then the scattering amplitude,
expressed by ”on-shell” T -matrix elements contributing
to Eqs. (2.2) and (2.3) for the scattering of an incident
photon of frequency ω to the outgoing photon of fre-
quency ω′, is given by

Tfi(E) =
2πh̄(ω′ω)1/2

V

∫∫

d3r′ d3r
∑

n′,n

× (d · e′)∗n′0(d · e)0n e−ik′r′+ikr Ξ∗(r′) Ξ(r)

×
(

− i

h̄

)
∫ ∞

0

dt e
i

h̄
(E−EN−1

0
+i0)t i Gn′n(r

′, t; r, 0)

(2.6)

where EN−1
0 is the initial energy of the condensate con-

sisting of N − 1 particles. The internal dynamics of the
scattering process is described by a single optical excita-
tion evolving in the condensate

iGn′n(r
′, t′; r, t) = 〈BEC|TΨn′(r′; t′)Ψ†

n(r; t)|BEC〉N−1

(2.7)
with projection onto the product of condensate and field
vacuum states such that entirely

|BEC〉N−1 ≡ |BEC〉N−1
Atoms × |0〉Field (2.8)

Eq. (2.7) defines the time ordered causal Green’s func-
tion (propagator) associated with the polaritonic quasi-
particle excitation superposed between field and atom.
The excitation is propagating through a condensate con-
sisting of N − 1 particles. The operators contributing
to the polariton propagator are the original atomic oper-
ators transformed in the Heisenberg representation and
dressed by the interaction process. In the element of the
T -matrix of the form (2.6) the outer operators V̂ in their
basic definition (2.1) are revealed in the rotating wave
approximation (RWA). Such an assumption is valid as
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far as we are interested in near resonant scattering when
both ω and ω′ are close to the atomic transition frequency
ω0.
The Green’s function (2.7), rewritten in the interac-

tion representation, can be expanded in the perturbation
theory series

iGn′n(r
′, t′; r, t)

= 〈BEC|Ŝ−1T
[

Ψ
(0)
n′ (r

′; t′)Ψ(0)†
n (r; t)Ŝ

]

|BEC〉N−1

= 〈BEC|T
[

Ψ
(0)
n′ (r

′; t′)Ψ(0)†
n (r; t)Ŝ

]

|BEC〉N−1 (2.9)

where in the interaction representation the Ψ-operators
are superscripted by zero-indices. We consider that the
condensate itself is a stable system, which should not be
modified by the interaction (2.4) without its advanced
perturbation by an incoming photon. This should be
justified by the requirement that the evolution operator

Ŝ = T exp

[

− i

h̄

∫ ∞

−∞

V̂ (0)(t) e−0·|t|

]

(2.10)

does not change the BEC state such that Ŝ|BEC〉N−1 =
|BEC〉N−1. Although this requirement seems as evi-
dently accepted in assumptions of the RWA let us make
an important remark concerning its applicability.
The condensate, considered as a physical object, is not

an ideal gas. The small but physically important dif-
ference EN

0 − EN−1
0 = ε0 ≡ µc + E0 gives a binding

energy for adding a particle into an atomic ensemble,
which incorporates the chemical potential µc and the in-
ternal ground state energyE0 of a single atom. The latter
could be set as zero but in our derivation it is convenient
to leave E0 as a physical parameter. For the quantum
degenerate gas, consisting of not extremely dense and
weakly interacting atoms and fairly described in a frame-
work of the Gross-Pitaevskii model [21, 22], the following
inequality is fulfilled

µc
<∼
h̄2k20
2mA

≪ h̄γ (2.11)

where k0 ≡ λ−1
0 is wave number for a resonant photon,

mA is the atomic mass and γ is the natural spontaneous
decay rate for the upper state of the atom. In accordance
with the model, see [25], the chemical potential for a
homogeneous BEC is given by

µc = n0

∫

d3r U(r) > 0 (2.12)

where U(r) is an interaction potential in the system of
two atoms and n0 is the atomic density. The subtle point
is that the interaction U(r) incorporates both the short
range repulsive part and the long range attractive dipole-
dipole polarization interactions. The latter is also known
as the Van-der-Waals interaction and the related asymp-
totic behavior of the potential U(r) is constructed in the
second order of the same Hamiltonian (2.4) but with

keeping the terms beyond and alternative to the RWA
concept.
The conflicting situation with double accounting of

the interaction Hamiltonian (2.4) can be resolved once
we pay attention that the Van-der-Waals interaction is
meaningful on a distance of an atomic scale r ∼ O(1)a0,
where a0 is the Bohr radius, but the optical coupling
experiences the distances r ∼ λ0 ≫ a0 . That means
that there is no intersection in the diagram representa-
tion of U(r) with those, which are induced by the evolu-
tion operator (2.10), and which couples a pair of distant
atoms where one is always excited. In this case the evolu-
tion operator(2.9) indeed does not affect the condensate
state and the second line in Eq. (2.9) is valid beyond
the restrictions of the RWA approach as far as the inter-
nal interaction in the atomic ensemble is weak and can
be safely separated from the optical excitation dynamics
mediated by the scattering process.
Inequality (2.11) provides us with the chemical poten-

tial as the smallest parameter of the theory and is fulfilled
up to the densities n0λ

3
0
>∼ 1. This is a typical condition

with considering a condensate consisting of alkali-metal
atoms. From the physical point of view that means that
we consider the BEC in conditions close to an ideal gas
and assume the matrix elements in (2.4), as well as the
atomic energy structure in the perturbation theory ex-
pansion, the same as for independent atoms. Neverthe-
less we do not ignore the gas non-ideality and the inter-
atomic interaction U(r) in the ground state as far as it is
crucially important for proper description of the general
behavior of the order parameter Ξ = Ξ(r, t) under the
framework of the Gross-Pitaevskii model with including
superfluidity as the main macroscopic quantum property
of the condensate. In its main approximations our con-
sideration is applicable up to the bound of µc

<∼ h̄γ

III. DYNAMICS OF THE OPTICAL

EXCITATION IN THE CONDENSATE

A. Diagrammatic representation

The polariton propagator (2.9) can be expanded in the
perturbation theory series and the appearing terms can
be regrouped with the Feynman diagram method. The
basic elements and definitions are listed in Appendix A.
As far as the considered interaction processes are primary
developing in near resonance conditions we follow the
RWA approach with keeping leading expansion terms.
Eventually the polariton propagator can be constructed
as a dressed Green’s function of an excited atom and
obeys the following Dyson-type diagram equation

(3.1)
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where it is depicted as a doubly-straight line. This cor-
responds to the fact that the original atomic propaga-
tor is assumed as ”dressed” by all interaction processes.
The ingoing and outgoing vertical arrows provide an im-
age of the order parameter and form the self-energy part
responsible for coherent conversion of the excitation be-
tween the field, in which free dynamics is expressed by an
undressed wavy line, and an atom subsequently recovered
in the condensate phase. Consistent with this diagram
equation, the above coherent process partly degrades be-
cause of interaction with the vacuum modes when the
excited atom emits a photon spontaneously and escapes
coherent dynamics, propagating through the condensate
as a simple spectator.
The latter process contributes in (3.1) by an incom-

plete polariton propagator, which is illustrated by a
straight solid line in the diagrams and obeys the following
Dyson-type equation

(3.2)
which should be considered together with the equation
for the dressed field propagator

(3.3)
These two diagram equations are mutually closed and re-
produce the self-consistent dynamics of an atomic dipole
interacting with its environment, similar to the condi-
tions in a typical disordered atomic gas. Indeed, any op-
tical excitation created from the condensate has a chance
to be incoherently re-emitted into the vacuum modes and
transfer the atom, emitting such a photon, out of the
condensate phase. These circumstances are described by
the incomplete polariton propagator (3.2) having a simi-
lar diagrammatic representation as atomic excitation in a
disordered gas. Such incoherent scattering induces losses
and leads to degradation of coherent dynamics supported
by the self-energy operator in Eq. (3.1). In a natural
optical association this process introduces the dielectric
permittivity constructed in a way similar to that of a
disordered atomic gas of the same density.

B. Incoherent losses and the dielectric permittivity

of the condensate

The self-energy part in (3.3) (polarization operator) em-
phasizes the coherent structure of the matter state con-
sidered in conditions of quantum degeneracy. Neverthe-
less for an infinite, and locally homogeneous and isotropic
medium, which physically requires that the sample size as

well as inhomogeneity scale of the order parameter Ξ(r)
would be comparable or longer than the radiation wave-
length, the solution of Eq. (3.3) is expected to be similar
to the case of a disordered atomic gas of the same den-
sity. Indeed, both the vertices in the self-energy part of
Eq. (3.3) are linked by the propagator (3.2) in which the
respective resonant excitation degrades on a time scale
of natural decay when the excited atom can drift the dis-
tance much less than its radiation wavelength. Thus both
the vertices are taken in proximal spatial points such that
order parameter actually contributes to Eq. (3.2) as the
local atomic density n0(r) = |Ξ(r)|2. With this simplifi-
cation we can construct solutions of equations (3.2) and
(3.3) as for infinite, homogeneous and isotropic medium
in closed analytical form and compare the result with
similar performance of incoherent scattering process de-
veloping in disordered atomic gas.

1. Analytical performance

For sake of convenience and for further derivation we
switch the primed and unprimed arguments and indices
in notations of the Green’s functions, see as an example
Eq. (2.9), accordingly our definitions of Appendix A for
the undressed functions. In stationary and homogeneous
conditions these functions depend only on the difference
between their spatial and time arguments. Then we can
make a Fourier transform for the ”dressed” Green’s func-
tions, constructed by the diagram method, and define

D(E)
µµ′ (k, ω)

=

∫

d3R

∫ ∞

−∞

dτ eiωτ−ik·RD(E)
µµ′ (R, τ)

∣

∣

∣ R = r − r′

τ = t − t′
(3.4)

for the photon propagator, fulfilling equation (3.3), and

G
(γ)
nn′(p, E)

=

∫

d3R

∫ ∞

−∞

dτ e
i

h̄
Eτ− i

h̄
p·RG

(γ)
nn′(R, τ)

∣

∣

∣ R = r − r′

τ = t − t′
(3.5)

for the incomplete polariton propagator, fulfilling equa-
tion (3.2). The superscript γ is added for associating
such a propagator with excitation dynamics mediated by
spontaneous scattering processes. In representation (3.4)
we assume the ”dressed” positive frequency component
of the vacuum Green’s function (A4) with ω > 0 and the
equivalence between the causal and retarded-type defini-
tions for this case.
In the Fourier representation equation (3.3) can be

straightforwardly resolved with respect to the incomplete
polariton propagator

D(E)
µµ′ (k, ω) = − 4πh̄ω2

ω2
k − ǫ(k, ω)ω2

[

δµµ′ − c2
kµ′kµ

ǫ(k, ω)ω2

]

≈ − 4πh̄ω2

ω2
k − ǫ(ω)ω2

[

δµµ′ − c2
kµ′kµ
ǫ(ω)ω2

]

(3.6)
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where

ǫ(k, ω) = 1− 4π

h̄
d20 n0G

(γ)(h̄k, h̄ω + ε0) (3.7)

Here d0 is the modulus of the transition dipole moment
(the same for all the transitions), n0 = |Ξ|2 = const is
the density of atoms, and for an isotropic medium with
degenerate excited state (En = constn) we have

G
(γ)
nn′(p, E) = δnn′ G(γ)(p,E) (3.8)

With taking into account inequality (2.11) we expect neg-
ligible deviation in (3.7) from the limit of immobile atoms
and approximate ǫ(k, ω) ≈ ǫ(0, ω) ≡ ǫ(ω), which justifies
the second line in Eq. (3.6). Equation (3.6) (as well as
similar tensor relations found later in the paper) is per-
formed for Cartesian components µ, µ′ = x, y, z, but for
the case of spherical components µ, µ′ = 0,±1 one has to
change δµµ′ → gµµ′ = (−)µδµ,−µ′ .

The obtained result looks similar to that of a conven-
tional medium beyond quantum degeneracy. As we can
see, with reference to [25], such a type of ”photon Green’s
function in a medium” can be associated with a funda-
mental solution of the macroscopic Maxwell equations
where ǫ(ω) is the dielectric permittivity of the medium.
However in the case of quantum degeneracy both the ex-
citations in the field and matter subsystems, i.e. photon
and excited atom, transport through the sample in a su-
perposed polariton mode, as suggested by the complete
graph equation (3.1). Although the association with a
conventional medium is not intrinsically consistent we
shall call ǫ(ω) as a dielectric permittivity of the con-
densate with having in mind in such analogy that it is
constructed with involving only the contribution of over-
condensate excitations created in the incoherent scatter-
ing process.

Equation (3.2), decoded in the Fourier representation,
contains the field Green’s function (3.6) contributing to
the self-energy part in the form of the convolution in-
tegral with atomic propagator, see clarifying comment
in Appendix A. As far as recovering of the incoherent
losses as well as interaction with the quantized contin-
uum are mostly important for near resonant conditions,
we can expect that in the integral evaluation, the inter-
nal arguments are varied in sufficiently broad domains
but located near ω ∼ ω0 and k ∼ k0 = ω0/c, where
ω0 = (En − E0)/h̄ is the atomic transition frequency.
Considering the field Green’s function as an analytical
function of detuning ∆ = ω−ω0 in the complex half-plane
where Im[∆] > 0 the integral over ω (approximated as an
integral over ∆ in infinite limits) can be reliably repro-
duced by the residue at the pole point ωE = (E −E0)/h̄
(where ∆ → ∆E = (E − En)/h̄). In such an estimate
we can safely ignore the small pole displacement associ-
ated with the Doppler shift as a negligible relativistic-
type correction to the remaining integral evaluated over
k-variable.

In these assumptions, equation (3.2) reads

[

E − p2

2mA
− En − Σ(γ)(p,E)

]

G(γ)(p,E) = h̄ (3.9)

and the self-energy part Σ(γ)(p,E) is expressed by the
sum

Σ(γ)(p,E) = Σ(st)(p,E) + Σ(rad)(p,E) (3.10)

where the first term is given by

Σ(st)(p,E) =
4π

3

∫

d3k

(2π)3
d20

ǫ (k, ωE)

≈ 4π

3

∫

d3k

(2π)3
d20

ǫ (ωE)
(3.11)

and can be associated with the interaction of the dipole
with its own field in the environment of the over-
condensate medium, created in the incoherent excitation
process, see our comment above. The second term is
given by

Σ(rad)(p,E) = −8π

3
d20

∫

d3k

(2π)3
ω2
E

c2k2 − ǫ (k, ωE)ω2
E

≈ −8π

3
d20

∫

d3k

(2π)3
ω2
E

c2k2 − ǫ (ωE)ω2
E

(3.12)

and reveals radiation back action of the incoherent emis-
sion on the dipole’s dynamics.
Equations (3.9)-(3.12) and (3.7) entirely construct one

closed but quite complicated self-consistent equation for
the incomplete propagator G(γ)(p,E), which has nonlin-
ear and integral form. However the equation can be es-
sentially simplified with applying faithful approximation,
expressed by the second lines in Eqs. (3.11) and (3.12),
which assumes that in Eq. (3.9) the kinetic energy term
for p ∼ h̄k0 is small in comparison with the self-energy
part. As we have pointed out above, this is justified by
inequality (2.11). In this approximation the dielectric
permittivity ǫ(ω) as well as the function G(γ)(p,E) (with
p ∼ h̄k0) can be found in analytical form once we re-
solve the problem with divergencies existing in both the
contributions to the self-energy part (3.10).

2. Renormalization of the self-energy divergences

Let us express contribution (3.11) in the following form

Σ(st)(p,E) ∼ −d · E(vac)(0)− d

[

E(med)(0)−E(vac)(0)
]

(3.13)
where we assumed that an atomic dipole d is located at
the origin of the coordinate frame and the diverging inte-
gral (3.11) was converted to the dipole’s infinite electric
field E(med)(0) in the medium with dielectric constant ǫ.
We also subtracted and added the same quantity exist-
ing in vacuum with ǫ = 1. The vacuum term means the
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dipole self-action i.e. an artificial object of the theory,
which reveals incorrectness of the dipole gauge on the
distances comparable with atomic scale. The infinite en-
ergy, associated with this term, should be incorporated
into the physical energy of the excited atom as internal
energy of the point-like dipole particle. Then the second
term in Eq. (3.13) is a physical quantity showing how the
dipole self-action is modified in the environment of other
dipoles. One expects that the incoherent scattering is a
locally cooperative process and the selected dipole is in-
distinguishable from other proximal dipoles responding
the driving field of an exciting photon. Then in accor-
dance with the arguments performed in Refs. [26–28] we
can accept the standard Lorentz-Lorenz interpretation of
the field and energy shift, associated with static interac-
tion of a collection of proximal dipoles

E(med)(0)−E(vac)(0) → 4π

3
n0d

Σ(st)(p,E) → −4π

3
n0d

2
0 (3.14)

where we substituted d2 → d20.
The second contribution (3.12) can be interpreted as

an interaction with the quantized vacuum continuum
manifestable via the radiation Lamb-shift and sponta-
neous decay rate. With taking ǫ = 1 the integral trans-
forms to

Σ(vac)(p,E) = − 8π

3
d20

∫

d3k

(2π)3
ω2
E

c2k2 − ω2
E − i0

∣

∣

∣

∣

E∼En

⇒ h̄∆L − ih̄

2
γ (3.15)

where ∆L → ∞ is the vacuum Lamb-shift further renor-
malized and incorporated into the atomic energy En,
”dressed” by interaction with the vacuum modes. The
regularized integral given by the difference of (3.12) and
(3.15) becomes converging and reproducible by residues
at its pole points. Eventually we arrive at the following
renormalization of the radiation correction to the self-
energy part

Σ(rad)(p,E) ⇒ − ih̄
2

√

ǫ (ωE)γ (3.16)

which contains both the radiation damping and energy
shift modified by the radiation coupling with the over-
condensate environment.

3. The incomplete propagator in closed form

With substituting renormalized self-energy parts (3.14)
and (3.16) into (3.10) and (3.9) and in accordance with
our definition of the dielectric permittivity given by
Eq. (3.7) with k → 0 we obtain the following equation

ǫ
(

ω − µc

h̄

)

=
ω − ω0 −

8π

3h̄
n0d

2
0 +

i

2

√

ǫ(ω)γ

ω − ω0 +
4π

3h̄
n0d

2
0 +

i

2

√

ǫ(ω)γ
(3.17)

In the left-hand side the frequency argument of the per-
mittivity is displaced by the chemical potential µc. This
emphasizes the fact that for a single optical excitation
from the condensate the extra action is needed, which is
a meaningful part of the binding energy ε0 = E0 + µc

given by the chemical potential. Although in our model
this displacement is rather small it recognizes a qualita-
tively important extension up to the case of a strongly
non-ideal gas. But with neglecting it, we obtain an equa-
tion for the dielectric permittivity identical to an atomic
ensemble consisting of cold disordered and randomly dis-
tributed atomic dipoles, see Ref. [27].

Equation (3.17) can be analytically solved and its so-
lution can be applicable to the case of a inhomogeneous
medium if the density n0 = n0(r) and order parame-
ter Ξ(r) are varied on a spatial scale comparable with
the radiation wavelength or longer. Then equation (3.9)
suggests the following approximate form in the mixed
space-frequency representation

[

E +
h̄2

2mA
△− En +

4π

3
n0(r) d

2
0

+
ih̄

2

√

ǫ (r, ωE) γ

]

G(γ)(r, r′;E) = h̄ δ(r− r′) (3.18)

where we parametrized the dielectric constant ǫ = ǫ(r, ω)
by its spatial dependence. Indeed, in this equation
G(γ)(r, r′;E), considered as a function of r − r′, trans-
ports a single photon excitation, created from the immo-
bile condensate, from point r′ to point r, which degrades
on a spatial scale sufficiently less than λ0 = k−1

0 . Thus
equation (3.18) accepts only proximal spatial arguments
r ∼ r′ ∼ (r + r′)/2 where n0 = n0(r) is approximately
constant.

We have constructed the incomplete polariton propa-
gator (3.2) in the form, which is similar to the complete

excited state propagator of a single atom in a disordered
atomic gas of the same density. Such an analogy, empha-
sizing the similarity in spontaneous scattering from both
the systems, was expectable and prefaced this part of our
derivation. Nevertheless, as was pointed out above, the
analogy is not so straightforward and in the conditions
beyond the Gross-Pitaevskii model (i.e. for a non-ideal
quantum gas with strong internal coupling) it could ap-
pear as important deviations in description of such phys-
ically different systems.

C. The complete polariton propagator

With decoding the diagram equation (3.1) for the com-
plete polariton propagator we extend spontaneous dy-
namics, described by Eq. (3.18), with involving the pro-
cess of coherent conversion of the excitation between field
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and condensate

[

E +
h̄2

2mA
△− En +

4π

3
n0(r) d

2
0

+
ih̄

2

√

ǫ (r, ωE) γ

]

Gnn′(r, r′;E)

−
∑

n′′

∫

d3r′′ Σ
(c)
nn′′(r, r

′′;E) Gn′′n′(r′′, r′;E)

= h̄ δnn′δ(r−r′) (3.19)

The kernel of the respective integral self-energy opera-
tor (with simplifying argument superscripted from dou-
ble prime to single prime) is given by

Σ
(c)
nn′(r, r

′;E) =
1

h̄

∑

µµ′

Ξ(r) Ξ∗(r′) dµn0d
µ′

0n′

× D
(E)
µµ′

(

r− r′, ωE − µc

h̄

)

(3.20)

where the vacuum field Green’s function, expressed by
the wavy line in the diagram equation (3.1) and defined
by Eqs. (A1) and (A4), contributes here in the mixed
space-frequency representation

D
(E)
µµ′ (R;ω)=−i

∫ ∞

−∞

dτ eiωτ 〈TE(0)
µ (r, t)E

(0)
µ′ (r

′, t′)〉
∣

∣

∣ τ= t−t′

R=r−r′

= −h̄ |ω|
3

c3

{

i
2

3
h
(1)
0

( |ω|
c
R

)

δµν

+

[

XµXµ′

R2
− 1

3
δµµ′

]

ih
(1)
2

( |ω|
c
R

)}

(3.21)

Here the averaging is over the vacuum state and h
(1)
L (. . .)

with L = 0, 2 are the spherical Hankel functions of the
first kind.
The derived equation (3.19) traces the dynamics of a

single particle excitation in the condensate with the as-
sumption that the order parameter, density distribution,
dielectric permittivity, etc. have a smooth profile on a
mesoscopic scale, similar to the conventional macroscopic
Maxwell theory. It visualizes as a Schrödinger-type equa-
tion for an excited atom propagating in space and mod-
ified by interacting with the environment. Here the ki-
netic energy term is actually responsible for negligible
drift of the excitation during the decay time when the
transferred momentum of the polariton is limited by the
value of h̄k0 in its order of magnitude. Nevertheless the
optical excitation itself can propagate through the sam-
ple with much faster speed with approaching to speed of
light, which can be demonstrated via solution of equation
(3.19) in the limit of infinite and homogeneous medium.
To show this we include below a part of discussion from
our conference paper [23].
Eq. (3.19) can be solved in an infinite, homogeneous

and isotropic medium. The solution is found in the recip-
rocal space as a linear combination of the transverse and

the longitudinal components with respect to the momen-
tum argument. We will also take, for further calculations
in this section, the internal binding energy of the con-
densate as weak; this means that we take the chemical
potential to be negligible in comparison with characteris-
tic spectral parameters such as the spontaneous radiative
decay rate and the (much smaller) single particle recoil
energy, see (2.11). Then the Fourier components of the
complete polariton propagator can be expanded as fol-
lows

Gnn′(p, E) = G‖(p,E)
pnpn′

p2

+ G⊥(p,E)

[

δnn′ − pnpn′

p2

]

(3.22)

where, in accordance with the selection rules for the
dipole moment operators in Eq. (3.20), we link the vector
indices, in the Cartesian frame, with the quasi-particle
momentum p with quantum numbers of the atomic ex-
cited state.
The longitudinal and transverse components of the po-

lariton propagator are given by

G‖(p,E) = h̄

[

E − En − p2

2mA
− 8π

3
n0 d

2
0

+
ih̄

2

√

ǫ(ωE) γ

]−1

G⊥(p,E) = h̄

[

E − En − p2

2mA
+

4π

3
n0 d

2
0

+
ih̄

2

√

ǫ(ωE) γ − 4π n0 d
2
0 ω

2
E

(

ω2
E − c2p2/h̄2

)

]−1

(3.23)

As the excitation frequency is shifted towards atomic res-
onance E → En the optical coupling shows behavior as-
sociated with that of a non-condensed disordered atomic
gas. The collective dipole polarization is driven by the
propagating field and the environment of nearby dipoles
induces a frequency shift to the low energy side of atomic
resonance. This shift, given by −4π n0 d

2
0/3, is the well

known static Lorentz-Lorentz shift. However, unlike a
disordered gas, there is an additional frequency shift, in-
duced by the polarization interaction with the conden-
sate background. This is given by the last term on the
right-hand side of Eq. (3.23). If we consider the quasi-
particle as essentially immobile, thus having negligible
momentum p ≪ h̄ω/c, the dependence on E vanishes
and this part of the interaction also becomes static. The
transverse component of the polariton propagator then
coincides with its longitudinal part, such that the excita-
tion process becomes isotropic with a positive static shift
8π n0 d

2
0/3.

The spectral behavior of the polariton propagator in
the form (3.22), (3.23) consists of two branches. One is an
atom-type excitation near atomic resonance E ∼ En, on
which we have commented above. Another resonance ex-
ists in the transverse part of the polariton propagator and
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is located near the energy E ∼ E0 + c p, which is a pole
feature of the last term in the denominator of the trans-
verse component G⊥(p,E). This resonance describes the
optical excitation propagating through the sample with
near speed of light and creates the photon-type polari-
ton branch. The detail discussion of spectral behavior
of the polariton modes in the infinite and homogeneous
medium is performed in [23].

In general, with an inhomogeneous configuration with
the order parameter of arbitrary profile, equation (3.19)
accepts only numerical solution. In the next section we
present such a solution in a one-dimensional geometry
and compare the results with predictions of conventional
macroscopic Maxwell theory.

IV. RESULTS

Degenerate quantum gases have unique properties and
are of particular interest in reduced spatial dimensional-
ity [29, 30]. This motivates us to consider initially our
results for several instances of a one dimensional model.
Further, equation (3.19) is quite difficult for numerical so-
lution in a general three-dimensional configuration. Be-
low we perform results of our numerical simulations for
a one-dimensional model expressed in terms of transmis-
sion and reflection of light from a slab atomic sample,
where atoms can exist in either a quantum degenerate
phase or as a disordered classical gas. The considered
geometries are shown in Fig. 1 for three tested configu-
rations - (a) a uniform slab of BEC with constant den-
sity, (b) an inhomogeneous distribution parameterized by
the order parameter with a cosine profile, (c) interfer-
ence of two matter waves for two BEC segments counter-
propagating through each other. In the last case, as we
show, such an internal motion of the overlapping conden-
sate fragments can crucially modify the light scattering
process.

A. Smooth profile of the order parameter

Any testable profile of the order parameter should be con-
sistent with the physical model of the condensate and, in
the case of weak internal coupling, performs as a possi-
ble solution of the Gross-Pitaevskii equation [21, 22]. In
the macroscopic limit any homogeneous spatial profile of
the order parameter can be suggested as an example of a
Thomas-Fermi-type approximate solution, for which the
shape can be fitted by varying the trapping potential.
This approximation works for the condensate confined
with an atomic trap where the period of free oscillation
is longer than 2π/µc with µc estimated (in a homoge-
neous limit) by Eq. (2.12) and it is based on priority of
internal interaction. But even in the case of an ideal
gas with µc → 0 the order parameter of a quite general
profile can be accepted as well, but in this case as the

FIG. 1: (Color online) Geometry of the considered one-
dimensional scattering process: (a) a uniform BEC slab of
depth L and with the order parameter Ξ =

√
n0 = constz,

where n0 is the density of atoms; (b) an inhomogeneous
distribution parametrized by the order parameter Ξ(z) =
√
n0 cos(πz/L); (c) interference of two matter waves created

by the BEC sample (b) split in two fragments, see Eq. (4.2)
and explanation in the text.

ground state eigenfunction of the stationary single parti-
cle Schrödinger equation in the trap potential.
As a first example, let us consider the case of a homo-

geneous degenerate quantum gas filling a slab of depth
L with the order parameter given by Ξ =

√
n0 = constz,

which is shown in Fig. 1(a). In a one-dimensional geom-
etry, with applying the Fourier transform, the scattering
equations (3.19) can be rewritten as an infinite set of the
algebraic equations, see Appendix B for derivation de-
tails. The obtained system of algebraic equations can be
numerically solved, which give us the spectra of transmis-
sion T(ω) and reflection R(ω). The same quantities can
be independently constructed via solution of the macro-
scopic Maxwell equations, see [31], and they are given
by

T(ω) =

∣

∣

∣

∣

∣

2
√

ǫ(ω)

2
√

ǫ(ω) cosψ(ω)− i(1 + ǫ(ω)) sinψ(ω)

∣

∣

∣

∣

∣

2

R(ω) =

∣

∣

∣

∣

∣

∣

∣

∣

sin [ψ(ω)]

sin

[

ψ(ω)− i ln
1−

√
ǫ(ω)

1+
√

ǫ(ω)

]

∣

∣

∣

∣

∣

∣

∣

∣

2

(4.1)

where ψ(ω) = L
√

ǫ(ω)ω/c. With substituting here the
dielectric permittivity (3.17) (with canceled chemical po-
tential) we arrive at the result predicted for a macro-
scopic disordered gas, see [27].
In Fig. 2 we compare the spectra of light transmission
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through and reflection from the condensate and disor-
dered atomic gas of the same density n0λ

3
0 ∼ 0.05 and in

the geometry of Fig. 1(a)The inset shows the dielectric
permittivity given by solution of Eq. (3.17). Since an op-
tical excitation from the condensate changes its energy
the excitation spectrum of non-ideal degenerate quantum
bosonic gas is red-shifted from atomic resonance by the
value of the chemical potential. The shift is small and
seems negligible as far as the condition (2.11) is normally
fulfilled for any dipole-type transition and in alkali-metal
systems in particular. Thus we could safely ignore this
shift with constructing the susceptibility for the conden-
sate as the solution of Eq. (3.17). Nevertheless, we leave
it in our reproduction of the spectral responses as far as
such a red shift is a physical effect and can be visible
in the transmission and reflection spectra. The red shift
has been observed in the transmission spectrum of a BEC
consisting of helium atoms on a spectrally narrow dipole
forbidden magnetic-type transition [32].

Surprisingly, but this global offset of the spectral
profile is only one difference between the transmission
and reflection spectra of degenerate and non-degenerate
atomic gases. To demonstrate this we plotted the graphs
as a function of detuning ∆ = ω − ω̃0, where ω̃0 =
ω0−µc/h̄, and where we additionally displaced the spec-
tra of a disordered gas on µc/h̄. We have obtained excel-
lent, i.e. point by point, coincidence of degenerate and
non-degenerate spectra despite the fact that they were
calculated via solution of exceptionally different equa-
tions. The small deviation for reflection near its resonant
point is a result of additional boundary contributions ig-
nored in the Fourier transformation of the Laplace op-
erator to the algebraic form of Eq. (B8) and this incor-
rectness, as we have verified, softens in the macroscopic
limit L/λ0 → ∞. The reflection itself is weak but not
negligible and results from the scattering from the sam-
ple edges and is enhanced by interference effect. Such an
excellent coincidence of two independent rounds of cal-
culations clearly indicates that for light scattering from
an ensemble of atoms, with uniform density distribution,
the optical response of the system is insensitive to either
classical or quantum nature of statistical averaging.

This can be confirmed by similar calculations per-
formed for the order parameter with a trigonometric pro-
file Ξ(z) =

√
n0 cos(πz/L) ( in geometry of Fig. 1(b)),

and the results are shown in Fig. 3. For this case we
make additional simplifications with expanding

√

ǫ (z, ω)
in a Taylor series near the vacuum point ǫ = 1 and
with keeping only the forwardly propagating wave in
the macroscopic Maxwell description of the problem.
Again the calculations show good (within the made ap-
proximations) agreement between both the approaches.
We used the same peak density n0λ

3
0 ∼ 0.05 and the

same sample depths as in the plots of Fig. 2. In the
case of smoothed sample bounds with density profile
n0(z) = n0 cos

2(πz/L) the backward scattering is ex-
pected as many orders of magnitude weaker process be-
cause of vanishing boundary contributions. The latter

FIG. 2: (Color online) The spectral dependences of transmis-
sion (upper panel) and reflection (lower panel) calculated as
a solution of the scattering equations (3.19) vs. comparative
solution of the Maxwell equations (4.1) in a one-dimenional
geometry for a homogeneous medium with a slab geometry
shown in Fig. 1(a). The graphs are plotted as a function
of detuming ∆ = ω − ω̃0 from the displaced resonance fre-
quency ω̃0 = ω0 − µc/h̄, see text. The results are performed
for different sample depths L, scaled by the wavelength λ0 at
the atomic resonance, and for the density n0λ

3

0 ∼ 0.05. The
reflection spectra for different L are unresolved in the graph
with the plotted precision. The inset shows the dielectric per-
mittivity of the sample ǫ(ω) = ǫ′(ω)+iǫ′′(ω) given by solution
of Eq. (3.17) as a function of ω−ω0. Both the rounds of calcu-
lations give identical results, and to show this in the example
of L = 10λ0 we additionally indicate (by dotted curve) the
prediction of the macroscopic Maxwell theory.

can be seen via negligible response of the reflected light
as follows from the calculation data shown in the lower
panel of Fig. 3.

B. Interference of two counter-propagating BEC

fragments

Finally, let us consider the experimental configuration
when, as a result of coherent interaction with light, a
BEC sample is fractured into a number of macroscopic
pieces [5, 6]. To simplify the complicated experimental
picture we model the process by the presence of only
two fragments counter-propagating with respect to each
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FIG. 3: (Color online) Same as in Fig. 2 but for the den-
sity distribution parametrized by the order parameter Ξ(z) =
√
n0 cos(πz/L) for a slab geometry shown in Fig. 1(b). In the

case of a smooth sample boundary the backward scattering
reveals a many orders of magnitude weaker process than in
the case of sharp boundaries.

other in their center-of-momentum reference frame. The
considered configuration is shown in Fig. 1(c) and reveals
a strong density oscillation associated with interference
of the order parameters (matter wave-packets) from the
BEC pieces in the area of their overlapping. The exis-
tence of such a fringe structure of the density distribu-
tion has been directly observed as an effect of interfer-
ence of two condensates in experiment [33]. The spatial
phase matching condition, determined by internal rela-
tive motion of the fragments, crucially affects the scat-
tering process. Indeed, the wave length of the oscillation
is determined by the speed of relative motion and after
accumulation of essential linear momentum from light
can exceed a scale of the light wavelength. Then such
a density grating should lead to strong Bragg diffraction
and, as we show by our numerical simulations below, to
significant enhancement of the backward scattering.

The process can be described by the order parameter

of the following spatial profile

Ξ(z) =
√
2n0 cos

(πz

L

)

cos (∆q z)

=

√

n0

2
cos

(πz

L

)

ei∆q z +

√

n0

2
cos

(πz

L

)

e−i∆q z

≡ Ξ+(z) + Ξ−(z) (4.2)

which is constructed as an ideal overlap of two matter
wave-packets associated with the condensate fragments
of identical shape and size counter-propagating with re-
spect to each other with the relative linear momentum
2h̄∆q per atom. Let us make a clarifying comment con-
cerning the validity and consistency of the suggested pro-
file as a solution of the time dependent Gross-Pitaevskii
equation.
Both of the partial contributions Ξ+(z) and Ξ−(z) are

representative solutions of the order parameter equation,
for example, in the Thomas-Fermi approximation. That
can be justified via transforming dynamical description of
any of the wave-packets to that reference frame where the
particular fragment is motionless and then we arrive to
the configuration considered in the previous subsection.
But the entire process of expansion and fragmentation of
the condensate, modeled by (4.2), can be imagined only
after the BEC is released from the trap and it results
from both the external disturbance and internal inter-
action processes. The superposed state (4.2) can physi-
cally model the complicated dynamics of the condensate
fragmentation once we ignore the weak non-ideality of
the atomic gas in comparison with the kinetic energy as-
sociated with the relative motion of the fragments, see
inequality (2.11). This can be fulfilled for quite high rel-
ative speed with ∆ q ≫ 1/L and 2h̄2∆q2/mA > µc. Then
the factor ”cos (∆q z)” is a strongly oscillating function
of z, which implies its averaging 〈cos2 ∆q z〉 → 1/2 in the
normalization of the order parameter by a total number
of particles. Then expansion (4.2) corresponds to begin-
ning of the splitting process of the released matter wave
Ξ(z) =

√
n0 cos(πz/L), as shown in Fig. 1(c), in two

separated wave-packets Ξ+(z) and Ξ−(z) propagating in
opposite directions.
In Fig. 4 we show the spectra of transmission and re-

flection for the order parameter with the spatial profile
given by Eq. (4.2). It is expected that for a classical dis-
ordered gas any internal motion of its macroscopic frag-
ments with a rather slow relative speed would not mod-
ify the scattering process at all. As an example, such
an expansion with a relative speed given by the recoil
limit ∼ h̄k0/mA would induce only a negligible Doppler
shift between the spectral outputs from both the frag-
ments. But in the case of BEC such an internal motion
dramatically modifies the scattering process. As pointed
out above, the spatial modulation of the order param-
eter initiates a mechanism of the Bragg diffraction and
scattering on the spatially oscillating density. As a con-
sequence, this leads to strong enhancement of the back-
ward scattering and it is manifestable in an abrupt struc-
ture of the transmission spectrum as well. The strongest
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FIG. 4: (Color online) Same as in Fig. 2 but for the den-
sity distribution parametrized by the order parameter Ξ(z) =
√
2n0 cos (πz/L) cos (∆q z) with 2∆q = k0 for the geometry

shown in Fig. 1(c). Both the forward and backward scattering
have a clear signature of the coherent enhancement due to the
effect of the Bragg diffraction. In the upper panel the dot-
ted curve indicates the reference transmission spectrum for
L = 10λ0 with smoothed profile of the order parameter and
corresponds to the configuration of a disordered atomic gas.

scattering is observed for the modulation wave number
∆q = k0 when the condensate expands with the relative
speed v0 = 2h̄k0/mA. As follows from the dependen-
cies of Fig. 4 this effect experiences as a broader spectral
domain as the sample spatial scale is longer.

In Fig. 5 we reproduce the dependence of the re-
flection coefficient as a function of 2π/∆q for different
sample depths L. As can be seen from these graphs,
the reflection always has a local maxima at the points
∆q = 2π/λ0, 2π/2λ0 . . .. This is optimal condition for
manifestation of the Bragg diffraction, which creates
the oppositely propagating polariton wave via scatter-
ing of the impinging wave on periodic structure. As a
consequence of the Bragg-type scattering an additional
amount of linear momentum transfers to the condensate
and enforces its fragmentation. So the Bragg diffraction
also results in a certain optomechanical action on the sys-
tem and accordingly leads to kinematic entanglement of
the spatially structured BEC, see [6].

In our calculation model we can describe such an effect
of optomechanical interface primary for the backward

1 2 3 4 5 6

2 Π

Dq
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0.1

Reflection
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L = 30 Λ0

L = 50 Λ0

FIG. 5: (Color online) Reflection coefficient for the order pa-
rameter of Fig. 4, at the point of atomic resonance, plotted
as a function of 2π/∆q (in units of λ0) for different sample
depths L.

and forward scattering channels. Nevertheless, in exper-
iment [5] the fragmentation was observed for the scat-
tering directions orthogonal to the incident light along
the major axis of an ellipsoid-shaped condensate sample.
The observed effect had been associated in [5] with the
Kapitza-Dirac phenomenon of the matter wave scatter-
ing on the spatial structure created by an electromag-
netic wave. In this sense, we can point out that in the
case of excitation of a BEC sample by an external light
pulse, consisting of many photons, the entire dynamics
apparently results from several physical processes, which
includes internal interactions, disturbance of the matter-
wave (order parameter) by external driving field and for-
mation of the polariton structure by the optical excita-
tion. Then the Bragg scattering reveals a coherent mech-
anism for rearranging of photon-type polariton waves (see
Section III C) propagating in different directions. The
coherently scattered photons emerge the sample with in-
dicating prior propagation directions of these waves.

V. CONCLUSION

In this paper we have developed a formalism of the micro-
scopic quantum scattering theory directed towards ab-
initio description of the elementary process of a single
photon scattering from a quantum degenerate atomic
gas. The gas exists in the BEC phase parametrized by
the order parameter introduced in the framework of the
Gross-Pitaevskii model. The main mathematical object
of our calculational approach is the single particle Green’s
function (propagator) tracking the propagation of a spe-
cific polariton wave through the condensate. The polari-
ton is created as a quantum superposed state between
the photon and condensate.
The polariton propagation is disturbed by the process

of incoherent scattering and its entire dynamics is de-
scribed by the closed scattering equation for the complete
polariton propagator as we derived. The crucial differ-
ence with the light propagation through a disordered and
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non-degenerate atomic gas is that in the considered case
the atomic medium represents a coherent matter wave
strongly rejecting its classical interpretation. The con-
ventional vision of the macroscopic Maxwell description
of the electromagnetic wave in a bulk medium seems in-
sufficient and can be even incorrect in some situations.

To clarify the above point we have solved the derived
scattering equations in a one-dimensional geometry and
compared the result with predictions of the conventional
macroscopic Maxwell theory for the disordered atomic
gas of the same density and size as the BEC sample.
For steady state conditions and uniform distribution of
the order parameter we obtained identical results for
the transmission and reflection spectra for both the ap-
proaches. The most surprising seems an observation that
excellent coincidence between the data has been obtained
here from solutions of two different equations. From
the point of view of the light scattering process, that
non-trivially indicates physical equivalence between the
classical type disordered system, where atoms are ran-
domly distributed as point-like dipoles, and the uniform
quantum coherent state, where atoms are distributed in
the space as a matter wave expressed by a smooth pro-
file of the order parameter. Such a quantum degenerate
atomic system exists in a steady state and can be asso-
ciated with a relevant stationary solution of the Gross-
Pitaevskii equation.

Nevertheless we observe a significant difference once
the BEC is fractured into a number of the interfering
matter wave fragments, which crucially modifies the den-
sity distribution. In the latter case the scattering process
evolves towards conditions of Bragg diffraction, which
strongly affects the process and can coherently redirect
the propagating polariton wave in the backward or other
directions associated with the condensate fragmentation.
This type of Bragg diffraction has certain specific as far
as the oscillating matter pattern is mostly sensitive to the
relative speed of the fragments and can be observed even
for low atomic densities. Evidently such an usual density
grating can be only phenomenologically performed under
the frame of the conventional macroscopic Maxwell de-
scription and, as we pointed out in the main text, for a
classical disordered gas any internal motion of its macro-
scopic fragments with a rather slow relative speed should
not modify the scattering process at all.
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Appendix A: Overview of the diagram approach

Below we introduce basic elements of the diagram equa-
tions, which are constructed and discussed in the main
text. We follow standard definitions and rules of the mi-
croscopic version of the Feynman diagram method, as
described in Ref. [25], but revise it for a non-relativistic
dipole-type coupling of light and atoms, see Ref. [26].
The expansion of the evolution operator (2.10) in the
Green’s function (2.9) generates the sequence of expec-
tation values of the various operator products, which af-
ter a set of transpositions and with the aid of the Wick
theorem can be regrouped to the results visualized by di-
agram images. The diagrams consist of the objects listed
below.
The undisturbed causal-type electric field Green’s

function is defined via transposition of the field opera-
tors in any pair product from chronologically T -ordered
to normally N -ordered form

iD
(E)
µµ′ (r, t; r

′, t′)

= T
[

E(0)
µ (r; t)E

(0)
µ′ (r

′; t′)
]

−N
[

E(0)
µ (r; t)E

(0)
µ′ (r

′; t′)
]

(A1)

It can be linked with a fundamental object of quan-
tum electrodynamics namely with the causal-type photon
propagator

D
(E)
µµ′ (r, t; r

′, t′) =
1

c2
∂2

∂t∂t′
D

(c)
µµ′(r, t; r

′, t′)

∣

∣

∣

∣

r 6= r′

or
t 6= t′

(A2)

where we follow gradient invariance of the theory and
fix the propagator by a vanishing scalar potential such
that µ, µ′ = x, y, z. With simplifying notation for each
argument µ, r, t → x and µ′, r′, t′ → x′ the electric field
Green’s function is imaged by a wavy line

iD(E)(x, x′) ⇔ (A3)

where the ending indices are often omitted in graph equa-
tions. This function depends only on the difference of its
spatial and time arguments and its Fourier image is given
by

D
(E)
µµ′ (k, ω)

=

∫

d3R

∫ ∞

−∞

dτ eiωτ−ik·RD
(E)
µµ′ (R, τ)

∣

∣

∣ R = r − r′

τ = t − t′

=
4πh̄ω2

ω2 − ω2
k + i0

[

δµµ′ − c2
kµ′kµ
ω2

]

(A4)

where ωk = ck.
The electric field Green’s function is expressed via so-

lution of the microscopic Maxwell equations with a point-
like dipole source and for ω > 0 coincides with positive-
frequency component of the retarded-type fundamental
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solution of these equations D
(R)
µ′µ(k, ω)

D
(E)
µµ′ (k, ω)

∣

∣

∣

ω>0
=
ω2

c2
D

(R)
µµ′ (k, ω)

∣

∣

∣

ω>0
(A5)

The positive frequency domain is only important in the
RWA approach and in this approximation it is convenient
to add an arrow in the diagram (A3) for indicating cre-
ation and annihilation events of a virtual photon at the
edging points of the wavy line.
The undisturbed atomic Greens’s function is defined

via transposition of the atomic operators in any pair
product from chronologically ordered to normally or-
dered form. For operators of the excited state this reads

iG
(0)
nn′(r, t; r

′, t′)

= T
[

Ψ(0)
n (r; t)Ψ

(0)†
n′ (r′; t′)

]

−Ψ
(0)†
n′ (r′; t′)Ψ(0)

n (r; t) (A6)

and similarly with replacement n, n′ → m=m′ = 0 for
operators of the ground state. With simplifying nota-
tion for each argument n, r, t → x and n′, r′, t′ → x′ the
atomic Green’s function is imaged by an arrowed straight
line

iG(0)(x, x′) ⇔ (A7)

where the ending indices are often omitted in graph equa-
tions. This function also depends only on the difference
between its spatial and time arguments and its Fourier
image is given by

G
(0)
nn′(p, E)

=

∫

d3R

∫ ∞

−∞

dτ e
i

h̄
Eτ− i

h̄
p·RG

(0)
nn′(R, τ)

∣

∣

∣ R = r − r′

τ = t − t′

= δnn′

h̄

E − p2/2mA − En + i0
(A8)

where mA is the atomic mass and the internal atomic
state is assumed to be degenerate such that En = constn.
The atomic Green’s function is expressed by the funda-

mental solution (atomic propagator) of the Schrödinger
equation for a free atom which describes propagation
of an atomic wave initially localized in a certain spa-
tial point. As follows from (A6) this function vanishes
if t < t′ such that the causal-type atomic propagator is
identical to the retarded-type propagator.
There are different diagram vertices indicating optical

interactions of different types. If a virtual photon inter-
acts with an atom, which is also presented as a virtual
object in a diagram, then in the RWA we associate the
process with the following two vertexes

i

h̄
dµnm ⇔

i

h̄
dµmn ⇔ (A9)

If a similar process is developing with condensate parti-
cles we associate it with the vertexes of another type

i

h̄
dµnm Ξ(r) e−

i

h̄
ǫ0t ⇔

i

h̄
dµmn Ξ

∗(r) e+
i

h̄
ǫ0t ⇔ (A10)

which describe either excitation of an atom from the con-
densate phase (upper diagram) or its recovering in the
condensate phase (lower diagram). The detailed specifi-
cation of vertexes is usually unnecessary and often omit-
ted if it does not confuse interpretation of the diagram.
In the original representation each vertex corresponds

to the integral over respective spatial and time vari-
ables and each contributing line is decoded in accor-
dance with (A3) and (A7). In the stationary and ho-
mogeneous conditions after Fourier transform, the exter-
nal lines are decoded in accordance with (A4) and (A8)
but internal lines, when they shape a loop, contribute
as convolution-type integrals over reciprocal variables
such as energy (frequency) and momentum (wave vec-
tor), with conserving total energy and momentum trans-
porting by the diagram. For more details we readdress
reader to Refs.[25, 26].

Appendix B: One-dimensional scattering

Consider the scattering problem for a slab geometry of an
atomic medium, homogeneous and infinite in the plane
transverse to the wave vector of the incident photon. In
this case the T -matrix element, given by Eq. (2.6) and
selected for either forward or backward elastic scattering
channels, is given by

Ti′i(E) =
2πω

L

∫∫

dz′ dz
∑

n′,n

(d · e)∗n′0(d · e)0n

×e−ik′z′+ikz Ξ∗(z′) Ξ(z)Gn′n(z
′, z;E − EN−1

0 ) (B1)

where the output frequency and polarization are un-
changed such that ω′ = ω and e′ = e, and we redefined
f = i′ with emphasizing the physical equivalence of ini-
tial and final states in one dimensional scattering process.
All the integrands are considered as functions of longi-
tudinal coordinates z, z′ and the polariton propagator
is proportional to a δ-function of transverse coordinates
x, y and x′, y′, see Eq. (3.19). The integral evaluated in
the transverse plane over variables dxdy and dx′dy′ can-
cels out the area scale LxLy in the normalization volume
V = LxLyLz and we denoted Lz = L.
Let us express the S-matrix components via T -matrix

Si′i = δi′i − i
L
h̄c
Ti′i(Ei + i0) (B2)
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In a one-dimensional geometry for non-degenerate
ground state of the degenerate quantum gas the light
scattering can be described by coefficients of transmis-
sion T(ω), reflection R(ω) and losses L(ω), which are
subsequently given by

T(ω) = |Si′i|2
∣

∣

∣

k′=k>0

R(ω) = |Si′i|2
∣

∣

∣

k′=−k<0

L(ω) = 1− T(ω)− R(ω) (B3)

and can be found via solution of the simplified equations
(3.19)-(3.21) as we show below.
Consider the example of the slab with the order pa-

rameter Ξ(z) =
√
n0 = constz inside the medium. In this

case the integral equation (3.19) can be transformed to
the set of algebraic equations via spatial Fourier trans-
form with periodic boundary conditions on the sample
bounds. The azimuthal symmetry justifies the diagonal
structure of the polariton propagator

Gnn′(z, z′;E) = δnn′ G(z, z′;E) (B4)

Then, with the assumption that the origin of the co-
ordinate frame is located in the middle point and z ∈
(−L/2, L/2), where L is the sample length, it can be ex-
panded as

Gss′ (E) =
1

L

L/2
∫∫

−L/2

dzdz′e−iksz+ik
s′
z′

G(z, z′;E)

G(z, z′;E) =
1

L

∑

s,s′

eiksz−ik
s′
z′

Gss′ (E) (B5)

where ks = 2πs/L and ks′ = 2πs′/L with s, s′ =
0,±1,±2, . . .. The Green’s function (B4) contributes to
the transmission amplitude (B2) at a specific energy ar-

gument E − EN−1
0 = Ei − EN−1

0 = h̄ω + EN
0 − EN−1

0 =
h̄ω + ε0 and we denote

Gss′(E)|E=h̄ω+ε0
≡ Gss′ (ω) (B6)

and consider the Fourier components as functions of the
frequency of the incident photon. Then the S-matrix
elements (B2) can be expressed as follows

Si′i = δi′i −
8πiω

Lh̄c
n0d

2
0

∑

s′,s

× sin (k′ − ks′ )
L
2

k′ − ks′

sin (k − ks)
L
2

k − ks
Gs′s(ω) (B7)

where k = ω/c and k′ = ±ω/c.

With substituting (B4) and applying transforms (B5)
to Eq. (3.19), considered in a one-dimensional configura-
tion, we arrive at the following system of algebraic equa-
tions

[

ω − ω̃0 +
h̄ k2s
2mA

+
4π

3h̄
n0 d

2
0 +

i

2

√

ǫ (ω) γ

]

Gss′ (ω)

−
∑

s′′

Σ
(c)
ss′′(ω)Gs′′s′(ω) = δss′ (B8)

where ω̃0 = (En−ε0)/h̄ = (En−E0−µc)/h̄ ≡ ω0−µc/h̄
with same En for all the upper state Zeeman sublevels.
We approximated ǫ(ω+µc/h̄) ≈ ǫ(ω), see Eq. (3.17) and
related comment.

The matrix of the self-energy part is given by

Σ(c)
ss (ω) =

4π

h̄
n0d

2
0

ω2

ω2 − c2 k2s

−4πi

h̄
n0d

2
0

ω

cL

ω2

c2
+ k2s

(

ω2

c2
− k2s

)2

[

1− exp
(

i
ω

c
L
)]

(B9)

for s′′ = s and

Σ
(c)
ss′′(ω) = −(−)s−s′′ 4πi

h̄
n0d

2
0

ω

cL

ω2

c2
+ ksks′′

(

ω2

c2
− k2s

)(

ω2

c2
− k2s′′

)

×
[

1− exp
(

i
ω

c
L
)]

(B10)

for s′′ 6= s. For a sample of infinite length L → ∞
Eqs. (B6), (B8)-(B10) reproduce the transverse compo-
nent of the polariton propagator in an infinite and uni-
form medium, see Eq. (3.23), and in this case the scat-
tering process manifests itself mainly via the incoherent
channels.

For the sample of finite length the system (B8) con-
sists of an infinite number of equations. Nevertheless it
can be numerically solved with cutoff by a limited num-
ber of the involved equations. With increasing of this
number the iterative process becomes internally converg-
ing and approaching the exact solution. The performed
calculation scheme can be straightforwardly generalized
if the order parameter is non-uniform and described
by trigonometric functions such as Ξ(z) ∼ cos(πz/L),
Ξ(z) ∼ eiκ1z cos(πz/L) + eiκ2z cos(πz/L) etc., which we
have considered in our numerical simulations.
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