
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Off-equilibrium infrared structure of self-interacting scalar
fields: Universal scaling, vortex-antivortex superfluid

dynamics, and Bose-Einstein condensation
Jian Deng, Soeren Schlichting, Raju Venugopalan, and Qun Wang

Phys. Rev. A 97, 053606 — Published 11 May 2018
DOI: 10.1103/PhysRevA.97.053606

http://dx.doi.org/10.1103/PhysRevA.97.053606


ICTS-USTC-18-01

Off-equilibrium infrared structure of self-interacting scalar fields: Universal scaling,
Vortex-antivortex superfluid dynamics & Bose-Einstein condensation

Jian Deng,1 Soeren Schlichting,2 Raju Venugopalan,3 and Qun Wang4

1School of Physics, Shandong University, Jinan, Shandong 250100, China
2Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

3Brookhaven National Laboratory, Physics Department, Building 510A, Upton, NY 11973, USA
4Interdisciplinary Center for Theoretical Study and Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China
(Dated: April 23, 2018)

We map the infrared dynamics of a relativistic single component (N = 1) interacting scalar field
theory to that of nonrelativistic complex scalar fields. The Gross-Pitaevskii (GP) equation, describ-
ing the real time dynamics of single component ultracold Bose gases, is obtained at first nontrivial
order in an expansion proportional to the powers of λφ2/m2 where λ, φ and m are the coupling
constant, the scalar field and the particle mass respectively. Our analytical studies are corroborated
by numerical simulations of the spatial and momentum structure of overoccupied scalar fields in
(2+1)-dimensions. Universal scaling of infrared modes, vortex-antivortex superfluid dynamics and
the off-equilibrium formation of a Bose-Einstein condensate are observed. Our results for the uni-
versal scaling exponents are in agreement with those extracted in the numerical simulations of the
GP equation. As in these simulations, we observe coarsening phase kinetics in the Bose superfluid
with strongly anomalous scaling exponents relative to that of vertex resummed kinetic theory. Our
relativistic field theory framework further allows one to study more closely the coupling between
superfluid and normal fluid modes, specifically the turbulent momentum and spatial structure of the
coupling between a quasi-particle cascade to the infrared and an energy cascade to the ultraviolet.
We outline possible applications of the formalism to the dynamics of vortex-antivortex formation
and to the off-equilibrium dynamics of the strongly interacting matter formed in heavy-ion collisions.

I. INTRODUTION

There has been significant progress in recent years in
understanding nonequilibrium dynamics in extreme con-
ditions across length scales spanning phenomena as di-
verse as the early universe shortly after inflation, ultra-
cold quantum gases far from equilibrium and the early
time dynamics of ultrarelativistic heavy ion collisions.
For a review, see, Ref. [1]. Despite the different energy
and length scales defining these systems, their temporal
evolution can display universal features characteristic of
the self-similar dynamics of turbulence.

Classical-statistical simulations of the self-interacting
scalar theories employed to describe both inflation-
ary dynamics as well as ultracold atomic gases far
off-equilibrium demonstrate that these systems evolve
towards a quasi-stationary nonthermal fixed point
(NTFP) [2, 3], where the dynamics is governed by uni-
versal scaling behavior [4, 5]. Besides several investiga-
tions in relativistic and nonrelativistic scalar field theo-
ries, it has been established that the real time evolution
of overoccupied gauge fields (often called the Glasma)
also similarly approaches a NTFP [6–11]. Most strik-
ingly, the nonthermal fixed point realized in non-Abelian
gauge theories in an expanding geometry is identical
to that seen in overoccupied self-interacting scalars pre-
pared with the same geometry [12, 13].

Early investigations of single component (N = 1) self-
interacting scalar field theory performed in the context
of inflaton decay [4, 14, 15], pointed out that the emer-
gence of NTFPs can be associated with the transport of

conserved quantities (for example the energy) across a
large separation of momentum/wave-length scales. More
recently, it was demonstrate that systems with multiple
conserved quantities (such as energy and particle num-
ber) can realize multiple NTFPs simultaneously in dif-
ferent inertial ranges of momenta [10, 16, 17]. One par-
ticular example includes N -component relativistic scalar
theories, where, for strongly overpopulated initial condi-
tions, one finds that in addition to a direct energy cas-
cade towards the ultraviolet (UV) [4, 15] there occurs
an inverse cascade in quasiparticle number towards the
infrared (IR) [5, 10, 17]. This leads eventually to the
formation of an off-equilibrium Bose-Einstein condensate
(BEC) [5, 10, 17].

Concomitantly, in addition to these numerical inves-
tigations, considerable effort has been spent developing
an analytic understanding of the universal scaling proper-
ties in the vicinity of a NTFP. While it was realized early
on that the properties of the UV cascade can be under-
stood in terms of an effective kinetic description [4, 9],
this perturbative kinetic theory fails to describe the IR
cascade. However, it was argued in [5, 18] that a vertex-
resummed kinetic description based on a two particle ir-
reducible (2PI) 1/N expansion can simultaneously de-
scribe the scaling behavior observed in classical statistical
simulations in both the IR and UV regimes of relativis-
tic scalar theories [5]. Further, in this context, it was
shown [5] that the statistical properties of the infrared
structure of (N = 2) relativistic scalar fields are identical
to that of nonrelativistic scalar fields described by the
Gross-Pitaevskii (GP) equation [19, 20].
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The GP equation, which is a nonlinear Schrödinger
equation for the single particle wavefunctions of bosonic
atoms, has been studied extensively and exhibits rich
structure in both equilibrium [21–23] and off-equilibrium
contexts [24–27]. Examples include the equilib-
rium Berezinskii-Kosterlitz-Thouless (BKT) fixed point
characterizing the transition between bound vortex-
antivortex pairs and unbound vortices in a two dimen-
sional superfluid [28, 29], as well as NTFPs associated
with different regimes of weak, strong and superfluid tur-
bulence in the nonequilibrium formation of BECs [24–27].
Despite the remarkable fact that the vertex-resummed ki-
netic description of [5, 18] is able to successfully describe
some aspects of the NTPFs in the strong turbulence
regime, there is an alternative description of the infrared
dynamics of the GP equation in terms of the coarsening
dynamics of vortex defects (see [25, 30]) which is clearly
observed in numerical simulations [24, 26, 27, 31, 32] and
in cold atom experiments [33]. Interestingly, there are
also examples such as that seen in the evolution of a
quenched two-dimensional Bose gas, where the system
exhibits “anomalous” scaling properties distinct from the
2 PI 1/N prediction. The former can be understood how-
ever from the dynamics of the creation, scattering and
decay of vortex-antivortex pairs [32].

The role of topological defects such as strings, domain
walls and monopoles, have also been investigated in the
context of NTFPs of relativistic scalar theories [34, 35].
One important insight in this regard concerns the fact
that the structure in the deep infrared of N = 1 rel-
ativistic scalars is qualitatively different from those of
N > 1 scalar theories [34] as shown by numerical simu-
lations [10, 36]. Despite the fact that defect structure is
different for different number of components N , the uni-
versal scaling properties of the NTFP appear to be the
same for all N [5, 34]. Since there appears to be no nat-
ural explanation for this universality in terms of a theory
of phase ordering kinetics, it has been unclear thus far
to what extent topological defects do or do not play an
important role in the description of NTPFs of relativistic
scalar field theories.

We will focus our attention on the infrared dynamics of
a single component (N = 1) self-interacting scalar field
theory, with the objective of clarifying the relation be-
tween relativistic and nonrelativistic scalar field theories
and to uncover the role of topological defects in the rela-
tivistic case. Although there has been some preliminary
discussion of the connection between the infrared dynam-
ics of N = 1 relativistic scalars and the GP equation [37],
a formal identification of the two has been lacking thus
far. We note that recent attempts to construct an effec-
tive field theory (EFT) for the non relativistic dynamics
of axion dark matter candidates from the underlying rel-
ativistic scalar field theory [38–40] bears some similari-
ties to our work. In Ref. [39], an effective field theory
for nonrelativistic complex scalar fields was constructed
by including all terms that satisfy Gallilean invariance,
with the coefficients of the EFT determined by match-

ing to the underlying relativistic scalar field theory. In
Ref. [40], the nonrelativisitic complex scalar field is, up
to a factor eimt, identical to the field we consider here.
However Ref. [40] employs a different method from our
work to to remove non-resonant terms in the effective La-
grangian by exploiting its U(1) symmetry corresponding
to the conservation of particle number. The non-resonant
terms carry powers of the phase factor and are there-
fore dropped from the effective action. Ref. [38] used a
simplified definition of the nonrelativistic complex scalar
field (without non-local operators) as compared with Ref.
[40].

In this work, we will utilize a Poisson bracket formal-
ism, previously employed in the study of wave turbu-
lence [41, 42], to construct a formal map of the interacting
Hamiltonian describing soft modes to a simpler structure
in terms of novel canonical variables. This procedure, in
the massive relativistic λφ4 theory that we will study, can
be performed order by order in an expansion parameter
λφ2/m2. In the limit λφ2/m2 � 1, the GP equation is
obtained at the first nontrivial order. The advantage of
this procedure is that it allows us in principle to compute
higher order corrections to the GP equation in a system-
atic framework as well as examine within this framework
the coupling of superfluid modes to normal fluid modes
at higher momenta.

Our analytical studies are corroborated by off-
equilibrium classical-statistical simulations of the N = 1
weakly coupled relativistic λφ4 theory. By employing
a standard lattice cooling procedure to eliminate hard
modes systematically, we will show explicitly that the in-
frared structure of the relativistic theory exhibits all the
characteristic features of the GP equation, including the
emergence of vortex-antivortex spatial structures and the
universal momentum scaling seen in simulations of the
GP equation. Our analysis significantly extends earlier
numerical [5] and analytical observations [34] which dis-
cussed similarities and differences between the two the-
ories. We find in particular that our numerical results
for the N = 1 relativistic scalar theory in (2+1) dimen-
sions are in good agreement with the GP numerical sim-
ulations of Karl and Gasenzer [32] in the context of a
quenched two-dimensional Bose gas. As in Ref. [32],
we observe different regimes of self-similar infrared be-
havior that are separated by a characteristic momentum
scale corresponding to the typical separation between
vortices. We likewise observe the importance of three
body collisions of vortex-antivortex pairs with unbound
vortices as well as collisions of vortex-antivortex pairs
in the coarsening dynamics of the superfluid, leading to
“strongly anomalous” [32] scaling properties of the non-
thermal fixed point. These are different from the 2PI
1/N predictions of [5] if extrapolated to the N = 1 case.

The outline of this paper is as follows. In Section II, we
will introduce a Hamiltonian framework for the N = 1
λφ4 theory. We then introduce a method of canonical
transformations that take advantage of the fact that Pois-
son brackets are invariant under change of a canonical ba-
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sis. We show explicitly, at the nontrivial leading order in
our expansion parameter, that the Hamiltonian under ap-
propriate canonical transformations will contain only res-
onant scattering terms. This procedure can be repeated
systematically to higher orders, albeit it gets increasingly
cumbersome with each increasing order. In Section III,
we will show that the canonically transformed quartic
Hamiltonian of the N = 1 λφ4 theory can be mapped
explicitly onto the GP Hamiltonian thereby establishing
a direct link between the underlying relativistic scalar
field and the GP field theory. In Section IV, we outline
the numerical procedure and discuss results from classical
statistical simulations of the λφ4 theory in (2+1) dimen-
sions. In our numerical work, we will first demonstrate
that the map derived analytically in Section III is robust
in the infrared, and shall explore its dependence on the
mass and the coupling constant. We next examine the
different regimes of self-similar scaling solutions, discuss
how one identifies vortex-antivortex structures, compute
the vortex density and extract the power law behavior
governing its decay. We then study the onset of Bose
condensation and relate the temporal power law govern-
ing its non-equilibrium onset with the decay of vortex
defects. We will conclude with a brief summary and an
outline of future related avenues of research. We will in
particular speculate on the possible application of these
ideas to the study of vorticity in the early time dynamics
of heavy-ion collisions.

The details of computations are given in three appen-
dices. In Appendix A, we recapitulate general proper-
ties of the canonical transformation method discussed in
Section II. In Appendix B, we derive explicitly the co-
efficients of the auxiliary Hamiltonian that enables the
conversion of the λφ4 Hamiltonian to the resonant Hamil-
tonian of Section II. In Appendix C, for completeness, we
discuss some of the properties of the GP equation includ-
ing the derivation of the superfluid dispersion equation
and the superfluid equations of motion.

II. HAMILTONIAN FORMULATION OF
MASSIVE λφ4 THEORY

In this section, we will write down the Hamiltonian for-
mulation of the theory in terms of creation-annihilation
operators in momentum space. We will then introduce
a general method of canonical transformations that will
allow us to eliminate nonresonant contributions order by
order in powers of the momentum scale of interest over
the mass. We will then show in the next section, that
the resulting resonant Hamiltonian to quartic order is
equivalent to the GP Hamiltonian.

We begin with the Lagrangian for N = 1 massive self-
interacting scalar fields:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − 1

4!
λφ4 − Jφ. (1)

We can also understand this Lagrangian as an effective

Lagrangian capturing the infrared dynamics of a mass-
less λφ̃4, where the field φ̃ is split into φ̃ = φ + φ̃hard
components. By integrating out the hard modes, one
generates for the soft modes φ an effective mass m2 ≡
(1/2)λ

〈
φ̃2hard

〉
, where 〈· · ·〉 denotes an ensemble average

over the distribution of initial conditions for the hard
modes. One may likewise define J ≡ (1/6)λ

〈
φ̃3h

〉
.

Based on the Lagrangian in Eq. 1 the Hamiltonian den-
sity is given by

H = πφ̇− L = H0 +Hint, (2)

with π ≡ φ̇ being the conjugate momentum, and

H0 =
1

2
[π2 + (∇φ)2 +m2φ2],

Hint =
1

24
λφ4 + Jφ. (3)

Hamiltonian equations of motion are

dφ(x)

dt
=

∂H

∂π(x)
,

dπ(x)

dt
= − ∂H

∂φ(x)
. (4)

We can express φ(x) and π(x) in terms of their Fourier
transforms in momentum space,

φ(x) =

ˆ
[d3k]φke

ik·x ,

π(x) =

ˆ
[d3k]πke

ik·x , (5)

where we introduced the shorthand notation [d3k] ≡
d3k/(2π)3. Here and henceforth, all three-vectors are
denoted in boldface. An on-mass-shell four-momentum
is denoted as (Ek,k), where the energy is given by
Ek =

√
k2 +m2 with the norm of the three-momentum

being written as k ≡ |k|. The Fourier transformed φ, π
fields can be decomposed as

φk =
1√
2Ek

(ak + a∗−k) ,

πk = −i
√
Ek
2

(ak − a∗−k) , (6)

in terms of the complex valued creation-annihilation vari-
ables. Expressed in terms of the creation-annihilation
variables ak and a∗k, the scalar field Hamiltonian H =
H0 +Hint takes the form

H0(a, a∗) =

ˆ
[d3k]Ekaka

∗
k ,

Hint(a, a
∗) =

λ

24

ˆ
[d3k][d3k1][d3k2][d3k3]√

16EkEk1Ek2Ek3
(2π)3[

akak1ak2ak3 δ(k + k1 + k2 + k3)
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+4 akak1ak2a
∗
k3 δ(k + k1 + k2 − k3)

+6 akak1a
∗
k2a
∗
k3 δ(k + k1 − k2 − k3)

+4 aka
∗
k1a
∗
k2a
∗
k3 δ(k− k1 − k2 − k3)

+ a∗ka
∗
k1a
∗
k2a
∗
k3 δ(−k− k1 − k2 − k3)

]
,

(7)

where, for convenience, we denote δ(k) ≡ δ(3)(k). In the
above and in what follows, we have further set the exter-
nal current J in Eq. (3) to zero for simplicity. Similarly,
the equations of motion in Eq. (4) can be rewritten in
terms of ap and a∗p as

dap
dt

= −i ∂H
∂a∗p

= −iEpap − i
∂Hint

∂a∗p
,

da∗p
dt

= i
∂H

∂ap
= iEpa

∗
p + i

∂Hint

∂ap
. (8)

This form of the Hamiltonian and the equations of motion
will be our starting point for further developments.

We will now adapt the method of canonical variables
and canonical transformations, widely used in the study
of wave turbulence [41, 42], to our problem. The r.h.s of
Eq. (8) can be written in the form of Poisson brackets as

i
dap
dt

= {ap, H}a , (9)

where H is given by Eq. (7). The subscript a denotes the
Poisson bracket in the basis of the canonical variables ap
and a∗p defined by the expression

{F (p), G(p1)}a =ˆ
[d3k]

[
∂F (p)

∂ak

∂G(p1)

∂a∗k
− ∂F (p)

∂a∗k

∂G(p1)

∂ak

]
,

(10)

where the derivative is taken in the functional sense,
namely, ∂ak/∂ap = (2π)3δ(k − p). One can thereby
confirm that the variables a and a∗ satisfy the canonical
Poisson bracket relations

{ap, a∗p1}a = (2π)3δ(p− p1),

{ap, ap1}a = {a∗p, a∗p1}a = 0 . (11)

Instead of the canonical variables (ak, a
∗
k) we can

equivalently use any other set of canonical variables
(bp, b

∗
p) to describe the dynamics of the system. Even

though the variables (bp, b
∗
p) can be complicated func-

tions of ak and a∗k, the fact that they have to be related
by a canonical transformation ensures by definition that
(bp, b

∗
p) satisfy the same Poisson brackets as those in the

a-basis,

{bp, b∗p1}a = (2π)3δ(p− p1),

{bp, bp1}a = {b∗p, b∗p1}a = 0 . (12)

One can further prove that the Poisson brackets in Eq. 10
are invariant under the change of canonical basis from

(ak, a
∗
k) → (bp, b

∗
p). This proof is worked out in Ap-

pendix A. One immediate consequence is that the equa-
tion of motion for bp does not change when it is written
in the new canonical basis1:

i
∂bp
∂t

= {bp, H ′}a = {bp, H ′}b . (13)

One particularly elegant way to construct a set of
canonical transformations is to generate them via time
evolution with an auxiliary Hamiltonian Haux. We em-
phasize that this auxiliary time evolution in the evolution
variable z merely corresponds to a change of canonical
variables which should not be confused with the physical
time evolution of the system. In particular, the Hamil-
tonian Haux is a priori unrelated to the physical Hamil-
tonian H in Eq. (7). Based on this strategy, we assume
that bp ≡ b̃p(0) and b∗p ≡ b̃∗p(0) are canonical variables
at auxiliary time z = 0, and that Haux is a real function
of b̃p and b̃∗p. We can then obtain a new set of canonical
variables b̃p(z) at any z > 0 by solving for the auxiliary
time evolution:

i
∂b̃p(z)

∂z
=
{
b̃p(z), Haux

}
b
. (14)

In practice, the auxiliary time evolution is most conve-
niently expressed in terms of a Taylor expansion around
z = 0,

b̃p(z) =

∞∑
n=0

zn

n!

dnb̃p(z)

dnz

∣∣∣∣∣
z=0

, (15)

where the derivatives dnb̃p(z)/dnz are given by nested
Poisson brackets of b̃p, b̃∗p and Haux(b̃p, b̃

∗
p) such that

b̃p(z) = bp − iz{bp, Haux}b +
(−iz)2

2

{
{bp, Haux}b, Haux

}
b

+
(−iz)3

6

{{
{bp, Haux}b, Haux

}
b
, Haux

}
b

+ · · · ,

(16)

and b̃∗p(z) can be obtained by taking the complex con-
jugate of b̃p(z). We note that in Eq. (16), we have
set z = 0 after expressing derivatives in terms of Pois-
son brackets, such that all b̃p (b̃∗p) including those in
Haux(b̃p, b̃

∗
p) become bp (b∗p) , namely, b̃p → bp, b̃∗p → b∗p,

and Haux(b̃p, b̃
∗
p) → Haux(bp, b

∗
p). In Appendix A, we

demonstrate explicitly that b̃p(z) and b̃∗p(z) satisfy the
canonical relations in Eq. (12).

1 In order to avoid confusion we denote the Hamiltonian in
terms of the canonical variables (bp, b∗p) as H′. We note that
for time independent canonical transformations H′(b, b∗) =

H
(
a(b, b∗), a∗(b, b∗)

)
.
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We will now employ the canonical transformation gen-
erated by the auxiliary Hamiltonian Haux to map our
physical Hamiltonian H(a, a∗) in Eq. (7) expressed in
terms of the orginal variables ap and a∗p to the physical
Hamiltonian H ′ expressed in terms of the new canonical
variables bp and b∗p. By appropriate choice of Haux the
new Hamiltonian H ′(b, b∗) will have a simpler structure
that eliminates so called nonresonant terms with an un-
equal number of the variables bp and b∗p corresponding
to particle number changing processes.

We begin by redefining our original variables ap as
b̃p(z) (i.e. ap ≡ b̃p(z)) at auxiliary time z and the desired
new variable bp as b̃p(0) (i.e. bp ≡ b̃p(0)) at auxiliary
time z = 0. By use of Eq. (16), we can then express ap
in terms of a Taylor series as

ap = bp − iz{bp, Haux}b

+
(−iz)2

2

{
{bp, Haux}b, Haux

}
b

+ · · · .

(17)

We can obtain a∗p by taking the complex conjugate of Eq.
(17). We choose the auxiliary Hamiltonian Haux(b, b∗) to
be of the form

Haux =
1

24

ˆ
[d3k1][d3k2][d3k3][d3k4]

×
{
B1(k1,k2,k3,k4)bk1bk2bk3bk4δ(k1 + k2 + k3 + k4)

+4B2(k1,k2,k3;k4)bk1bk2bk3b
∗
k4δ(k1 + k2 + k3 − k4)

+4B∗2(k1,k2,k3;k4)b∗k1b
∗
k2b
∗
k3bk4δ(k1 + k2 + k3 − k4)

+ B∗1(k1,k2,k3,k4)b∗k1b
∗
k2b
∗
k3b
∗
k4δ(k1 + k2 + k3 + k4)

}
,

(18)

where the coefficient functions B1,2 have the following
properties: (a) B1(k1,k2,k3,k4) is symmetric under any
permutation of four momenta; (b) B2(k1,k2,k3;k4) is
symmetric for any permutation of first three momenta.

Now substituting ap = b̃p(z) and a∗p = b̃∗p(z) from Eq.
(17) into Eq. (7) we obtain the Hamiltonian in the new
variables bp and b∗p as

H ′ = H(b, b∗) + (−iz){H(b, b∗), Haux}b

+
(−iz)2

2

{
{H(b, b∗), Haux}b, Haux

}
b

+
(−iz)3

6

{{
{H(b, b∗), Haux}b, Haux

}
b
, Haux

}
b

+ · · · , (19)

where H(b, b∗) = H0(b, b∗) + Hint(b, b
∗) can be obtained

from H in Eq. (7) by making the replacement ap → bp
and a∗p → b∗p. We observe that in the new variables
(bp, b

∗
p), the Hamiltonian H ′ behaves as a (auxiliary)

time-shift of the Hamiltonian H(b, b∗) whose time evolu-
tion is governed by Haux. The proof of Eq. (19) is given
in Appendix A. Expanding H ′ by using the explicit form

of H(b, b∗) = H0(b, b∗) +Hint(b, b
∗), we obtain

H ′ = H0 +Hint + (−iz){H0 +Hint, Haux}b

+
(−iz)2

2

{
{H0 +Hint, Haux}b, Haux

}
b

+ · · ·

(20)

such that upon grouping the terms of H ′ according to
powers of bp or b∗p involved we obtain

H ′ = H0 + [Hint + (−iz){H0, Haux}b]

+

[
(−iz){Hint, Haux}b +

(−iz)2

2

{
{H0, Haux}b, Haux

}
b

]
+ · · · , (21)

where we have implied H0 ≡ H0(b, b∗) and Hint ≡
Hint(b, b

∗).
By requiring that all nonresonant quartic terms of the

new Hamiltonian H ′ vanish, we can then determine the
the coefficient functions B1,2 of the auxiliary Hamiltonian
Haux. This gives

B1(k1,k2,k3,k4) =

i
1

z
λ

(2π)3√
16Ek1Ek2Ek3Ek4(Ek1 + Ek2 + Ek3 + Ek4)

,

B2(k1,k2,k3;k4) =

i
1

z
λ

(2π)3√
16Ek1Ek2Ek3Ek4(Ek1 + Ek2 + Ek3 − Ek4)

.

(22)

The derivation of the expression for the coefficients in
Eq. (22) is given in Appendix B. With the coefficient
functions of the auxiliary Hamiltonian determined ac-
cording to Eq. (22), the physical Hamiltonian in our
new canonical variables bp and b∗p reads

H ′ ≈
ˆ

[d3p]Epbpb
∗
p +

λ

16

ˆ 4∏
i=1

[d3ki]
1√

Ek1Ek2Ek3Ek4

×bk1bk2b∗k3b∗k4(2π)3δ(k1 + k2 − k3 − k4) , (23)

where the first term has the form of a free Hamiltonian
and the second term is an interaction term with only
resonant contributions in these novel variables. We note
that when transforming to these new variables, according
to Eq. (17), terms of order b6p, and of higher order, will
emerge. In the next section, we will argue that all these
terms are suppressed in the limit of large masses.

With Haux in Eq. (18), we then obtain from Eq. (17)
the explicit map from our original canonical variables ap
to our novel canonical variables bp. Each term on the
r.h.s of Eq. (17) belongs to a specific order ∼ (λφ2/m2)n

in coordinate space. In order to obtain an inverse trans-
formation of (17), or in other words to express bp as a
functional of ap, we can equivalently rewrite Eq. (17) as

bp = ap + iz{bp, Haux(b, b∗)}a

− (iz)2

2
{{bp, Haux(b, b∗)}a, Haux(b, b∗)}a + · · · ,

(24)
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where we have used the fact that the Poisson brackets
are invariant under a change of canonical basis. (See Ap-
pendix A for a detailed discussion.) We note that Haux

in Eq. (18) is a functional of bp, while the dependence
of bp on ap (the creation-annihilation variables of the
fundamental fields of the theory) is what we are search-
ing for. However, Eq. (24) can always be solved per-
turbatively, where to leading order, bp is just ap. At
the next-to-leading order, we have to make the replace-
ment bp → ap in the iz{bp, Haux(b, b∗)}a term. Fur-
thermore, at next-to-next-to-leading order, we have to
include the (1/2)(iz)2

{
{bp, Haux(b, b∗)}a, Haux(b, b∗)

}
a

term by replacing bp → ap. Another contribution is
the z2 term from iz{bp, Haux(b, b∗)}a where bp is re-
placed by the next-to-leading order results, bp → ap +
iz{ap, Haux(a, a∗)}a. Thus in this fashion, one can ob-
tain bp and the Hamiltonian in Eq. (19) as functionals of
ap order by order in a systematic expansion.

III. CANONICAL MAPPING OF N = 1
SCALARS TO GROSS-PITAEVSKII FIELD

THEORY

We will now employ the above formalism of canonical
transformations to derive an effective nonrelativistic de-
scription of the infrared dynamics of massive scalar fields.
We will derive explicitly that to leading order in the large
mass limit (p2 � m2, λφ2 � m2), the infrared dynam-
ics of the single component (N = 1) λφ4 theory can be
described by the Gross-Pitaevskii (GP) equation. Before
we begin, we briefly note that the GP equation

i∂tψ(t,x) = −∇
2

2m
ψ(t,x) + g|ψ(t,x)|2ψ(t,x) (25)

was originally derived for the single particle wave-
functions ψ(t,x) of a many-body system of identical
bosons with contact interactions with the scattering
length gm/(4π) employing a Hartree-Fock approxima-
tion [19, 20]. Some of the recent interest in the GP
equation derives from the fact that it provides a good
model for the dynamics of cold atomic gases, including
a variety of phenomena such as superfluidity and Bose-
Einstein condensation [21]. The derivation of the general
properties of the GP equation has been widely discussed
in the literature [22, 23, 25]. For completeness, a brief
discussion is provided in Appendix C.

We begin by defining the field ψ(x) as the Fourier
transform of the new canonical variables bk,

ψ(x) =

ˆ
[d3k] bk e

ik·x . (26)

We can express ψ(x) as a functional of φ(x) and π(x)
by solving bp as a functional of ap by Eq. (24) and then
expressing ap in terms of φp and πp by using Eq. (6).
In the large mass limit, the leading contribution in the
expansion ψ = ψ(0) + ψ(1) + · · · coming from ap in Eq.

(24) is

ψ(0)(x) =

ˆ
[d3k]ak e

ik·x , (27)

which upon expanding to the order O(k2/m2) can be
evaluated as

ψ(0)(x) =

√
m

2

(
1− 1

4m2
∇2

x

)
φ(x)

+
i√
2m

(
1 +

1

4m2
∇2

x

)
π(x) . (28)

The above formula is consistent with Ref. [40] up to
the time oscillation terms e±imt. Introducing the short
hand notation Φ ≡

√
m/2φ(x), Π ≡ i

√
1/(2m)π(x)

and henceforth denoting derivates as O′ ≡ (∇x/m)O and
similarly O′′ ≡ (∇2

x/m
2)O, the leading contribution can

be compactly expressed as

ψ(0)(x) = Φ + Π− 1

4
Φ′′ +

1

4
Π′′ . (29)

The contribution from the second term in the expansion
takes the form

ψ(1)(x) = iz

ˆ
[d3p]eip·x{ap, Haux(a, a∗)}a ,

(30)

and can be evaluated in the same way as

ψ(1)(x) = − λ

16m3

[
−5

6
Φ3 − 7

4
Φ2Φ′′ − 27

8
ΦΦ′Φ′ +

5

2
Φ2Π

+
11

8
ΠΦ′Φ′ +

3

2
ΦΠΦ′′ +

11

4
ΦΦ′Π′ + 3Φ2Π′′

+
3

2
ΦΠ2 +

5

4
Π2Φ′′ +

5

4
ΠΦ′Π′ +

5

8
ΦΠ′Π′

+ 2ΦΠΠ′′ − 1

2
Π3 − 21

8
ΠΠ′Π′ − 2Π2Π′′

]
. (31)

A comparison of Eqs. (31) and (29) shows that the ra-
tio ψ(1)/ψ(0) of the subleading to the leading term is of
order ∼ λφ2/m2, corresponding to the ratio of the inter-
action energy λφ4 to the mass densitym2φ2. Likewise, all
higher order contributions ψ(2), ψ(3), · · ·, are suppressed
by successive powers of λφ2/m2 and can therefore be ne-
glected in the high mass limit where λφ2/m2 � 1 and
k2 � m2.

Similarly, one finds that in this nonrelativistic limit,
quadratic and quartic terms in the Hamiltonian H ′(b, b∗)
dominate over higher order terms. To see this, we
express Eq. (21) in coordinate space and expand
Ek ≈ m to leading order in k2 � m2. One can
then verify that the ratio H ′(b6p)/H ′(b4p) is of order
O
(
λψ2(x)/m3

)
∼ O

(
λφ2/m2

)
, consistent with the ra-

tio of the quartic to quadratic term, H(b4p)/H(b2p) ∼
O
(
λφ2/m2

)
. This power counting rule can be gener-

alized to H ′(b2n+2
p )/H ′(b2np ) ∼ O

(
λφ2/m2

)
, suggesting
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that λφ2/m2 � 1 is a consistent expansion parameter in
the large mass limit.

We note that the limit λφ2/m2 � 1 does not nec-
essarily mean nonrelativistic or small coupling constant
separately; instead, this limit implies that the interaction
energy is much smaller than the kinetic energy in the λφ4
theory. Another important point is that the dynamics of
the system we are interested in is classical which suggests
that the occupation number for a particular momentum
mode must be much larger than the quantum one-half
occupancy per mode. This is equivalent to the condition
|bk|2/V ∼ V |ψ|2 ∼ mV φ2 � 1. In other words, ap-
plication of the classical theory is justified by the large
particle number in the superfluid and it is independent
of the limit λφ2/m2 � 1.

Following our discussion of the power counting, the
Hamiltonian in our new canonical variables in the limit
λφ2/m2 � 1 and k2 � m2 reads

H ′ ≈ m
ˆ

[d3p]bpb
∗
p +

ˆ
[d3p]

p2

2m
bpb
∗
p

+
λ

16m2

ˆ 4∏
i=1

[d3ki]bk1bk2b
∗
k3b
∗
k4

(2π)3δ(k1 + k2 − k3 − k4) .

(32)

Expressed in terms of the coordinate space fields, this
effective infrared Hamiltonian takes then takes the form

H ′ = m

ˆ
d3x |ψ(t,x)|2 +

ˆ
d3xψ∗(t,x)

(
−∇

2

2m

)
ψ(t,x)

+
λ

16m2

ˆ
d3x |ψ(t,x)|4 , (33)

which following a straightforward set of manipulations
gives rise to the following equation of motion

i
∂

∂t
ψ(t,x) =

(
m− ∇

2

2m

)
ψ(t,x) +

λ

8m2
|ψ(t,x)|2ψ(t,x).

(34)

where we have now explicitly distinguished between the
spatial and time dependence of ψ(x). Except for the
mψ(t,x) term on the RHS, which can be absorbed into
a redefinition of the complex scalar field ψ(t,x) →
eimtψ(t,x), this is identical with the GP equation in (25)
with the coupling constant g identified as g = λ/(8m2).
While there has been a prior qualitative discussion of
the Gross-Pitaevski equation as an effective description
of the infrared dynamics of massive relativistic scalar
fields [37], our derivation provides an explicit map be-
tween the relativistic and nonrelativistic descriptions
(given in Eqs. (31) and (29)) and enables systematic ex-
tensions of the correspondence to higher orders.

IV. NUMERICAL SIMULATIONS OF THE
DYNAMICS OF OVEROCCUPIED MASSIVE

RELATIVISTIC SCALAR FIELDS

We will now illustrate the power of this approach to un-
derstand nonequilibrium phenomena of relativistic scalar
fields in terms of the effective nonrelativistic infrared de-
grees of freedom. Our simulations are performed for mas-
sive relativistic scalar fields in D = 2 spatial dimensions
by solving the classical field equations of motion

∂tφ(t,x) = π(t,x) ,

∂tπ(t,x) = ∂i∂
iφ(t,x)−m2φ(t,x)− λ

6
φ(t,x)3 ,

(35)

where ∂i∂i is the usual Laplacian. We discretize the the-
ory on a Ns × Ns spatial lattice with spacing as and
using a leap-frog scheme with time step at/as = 0.05.
We choose in the simulations lattice sizes from 5122 up
to 20482 with lattice spacings as = (0.0625−0.125) Q−1,
where Q is a characteristic momentum scale of the ini-
tial condition. Since the classical equations of motion
admit a rescaling of the form φ → λ1/2φ , π → λ1/2π,
the coupling constant λ effectively drops out of the clas-
sical equations of motion and only enters via the initial
condition.

We can simulate the far from equilibrium dynamics
starting from the initial conditions for the fields given by
a random superposition of free field modes,

φ0(x) =
1

(Nsas)2

∑
p

1√
2Ep

[
αpe

+ip·x + α∗pe
−ip·x

]
,

π0(x) =
(−i)

(Nsas)2

∑
p

√
Ep
2

[
αpe

+ip·x − α∗pe−ip·x
]
,

(36)

where αp and α∗p are sampled with Gaussian magnitude
and uniform random phase distribution, such that

〈αpα
∗
q〉 = (Nsas)

2δp,qf(t = 0, p) , (37)

with the initial phase space distribution or the occupancy
per unit of phase space volume

f(t = 0, p) =
6n0Q

λ
θ
(
Q− p

)
. (38)

Here λ/Q is the dimensionless coupling, Q is the dimen-
sionful scale characterizing the initial momentum and the
dimensionless parameter n0 characterizes the degree of
initial overoccupancy.

A. Nonthermal fixed point in massive relativistic
scalar theory

We first analyze the dynamics of the relativistic fields
by calculating the single-particle spectra of the relativis-
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Figure 1: (left) Evolution of the single particle spectrum of the relativistic scalar theory for characteristic values of the
parameters. (right) Self-similar scaling of the (inverse) infrared cascade leads to a collapse of the data onto a universal scaling
curve. Data shown in the top panel is for m/Q = 4 and n0 = 20 while data in the bottom panels is for m/Q = 4 and n0 = 80
to maximize the scaling window.

tic field according to the standard definition [1]

f(t, p) =
1

(Nsas)2

√〈
|φ̃(t,p)|2

〉〈
|π̃(t,p)|2

〉
, (39)

where φ̃(t,p) = a2s
∑

x φ(t,x) e−ip·x and π̃(t,p) =
a2s
∑

x π(t,x) e−ip·x denote the Fourier transform of the
relativistic field and that of its conjugate momentum field
respectively.

Our results are depicted in Fig. 1, where in the left
panel we show the time evolution of the single particle
spectrum as a function of momentum for m/Q = 4 and
n0 = 20 in the top panel and m/Q = 4 and n0 = 80 in
the bottom panel. One observes that after a short tran-
sient dynamics, whose duration depends sensitively on
the initial overoccupancy n0, the spectrum approaches
a nonthermal fixed point with a quasi-stationary spec-
trum characterized by a bimodal power law. These power
law dependencies are indicated by the black/red lines in
Fig. 1. As noted previously [5, 10, 17], this behavior can
be interpreted in terms of a dual cascade, corresponding
to a simultaneous flux of energy towards the ultraviolet
and a flux of particle number towards the infrared.

While the dynamics of the ultraviolet (energy) cascade
can be understood in the framework of (perturbative) ki-

netic theory [4, 9, 43], the infrared cascade features large
occupation numbers (λ/Q)f � 1 and is therefore intrin-
sically nonperturbative in nature. However, recent analy-
ses [5, 18] suggest that important features of such nonper-
turbative infrared behavior can be understood in terms
of a vertex resummed kinetic description based on a 2PI
1/N expansion to next-to-leading order for N component
scalar fields. These analyses suggest that one should ex-
pect a self-similar evolution of the infrared occupancy
described by a statistical single particle distribution sat-
isfying the relation,

f(t, p) = (t/tr)
αfS((t/tr)

βp) , (40)

with scaling exponents α = 1 and β = 1/2 in D = 2 di-
mensions, and the reference time scale tr. We note that
the scaling relation α = Dβ follows directly from the con-
straint of particle number conservation,

´
dDp f(t, p) =

const., in the infrared. Conversely, the scaling exponent
β reflects the underlying microscopic dynamics of the sys-
tem and needs to be determined from a scaling analysis
of the relevant dynamical processes [5].

Since Eq. (40) predicts that all spectra at different
times (under appropriate rescaling of momenta and phase
space occupancy) collapse onto a universal scaling curve
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Figure 2: (left) Likelihood distribution of scaling exponents. (right) Constraint likelihood distribution under the particle number
conservation constraint (α = 2β). Comparisons to predicted values of the exponents α, β from vertex resummed kinetic theory
[5] (red) and the strongly anomalous fixed point of a nonrelativistic Bose Gas [32] (black) are also shown.

fS(x) [5, 7, 9, 43], it is straightforward to check whether
such behavior is observed in our simulations. Our results
for the rescaled spectra are depicted in the right panel
of Fig. 1, where we show the rescaled phase space occu-
pancy (t/tr)

−αf as a function of the rescaled momentum
variable (t/tr)

βp. We see strikingly that the data lie on a
universal curve which is well approximated by the func-
tional form

fS(x) ' c0
1 + (x/x0)4

, (41)

thereby providing strong evidence of self-similarity. We
further observe that the associated scaling exponents α
and β are significantly different from the values expected
from the aforementioned 2PI 1/N analysis. In order
to quantify this discrepancy, we performed a statistical
analysis of the self-similarity of moments f (m)(t, p) =
pmf(t, p) of the distribution. From the scaling hypothesis
in Eq. (40), one can derive the following scaling relation
of the moments(

t

tr

)−α+mβ
f (m)

(
t,

(
t

tr

)−β
p

)
= pmf(t, p) .

(42)

Defining the LHS of Eq. (42) as M (m)
α,β,tr

(t, p) and follow-
ing Ref. [43], this scaling relation can be used to quantify
the deviation from perfect scaling behavior by computing
the chi-squared function:

χ2(α, β) =

ˆ pmax

pmin

dp

∑
i,j

[
M

(2)
α,β,tr

(ti, p)−M (2)
α,β,tr

(tj , p)
]2

∑
i

[
M

(2)
α,β,tr

(ti, p)
]2 ,

(43)

for momenta pmin < p < pmax in the scaling regime. Our
results of the analysis for pmin/Q = 0.08 and pmax =

0.8 between times Qti ∈ {1000, 2000, 3000, 4000, 8000}
(with Qtr = 3000) from the m/Q = 4, n0 = 80 data
set, are presented in Fig. 2, where we show the likelihood
distribution

P (α, β) ∼ exp

[
−χ

2(α, β)

2χ2
min

]
. (44)

Here χ2
min = minα,βχ

2(α, β) corresponds to the best con-
vergence of the rescaled data to a universal curve. De-
spite the fact that the extraction of the exponents β and
α−2β is strongly correlated2, one observes that the anal-
ysis strongly favors values of β between 0.1 <∼ β <∼ 0.35.
By implementing the particle number conservation con-
straint explicitly, we obtain the constrained likelihood
distribution shown in the right panel of Fig. 2, from which
we infer the following estimate of the scaling exponent

β = 0.24± 0.08 . (45)

While the observed values of β are significantly different
from the 2PI 1/N prediction (β = 1/2 shown in red) [5],
we find that our results are in good agreement with the
values reported in [32] for a “strongly anomalous” non-
thermal fixed point in a nonrelativistic single component
Bose gas (β = 1/5, shown in black) described by the GP
equation. The arguments of [32] attribute this value of
β to the underlying dynamics of vortex defects. Specif-
ically, this dynamics corresponds to an increase of the
mean distance between defects arising from the dilution
in the number of vortices as a consequence of three-body
vortex-vortex-antivortex collisions. Even though it is by
no means obvious that similar processes could emerge
in the deep infrared sector of the massive λφ4 theory,

2 Note that this correlation can be attributed in part to the fact
that the self-similar scaling of the ∼ (p/Q)−4 power law tail is
only sensitive to the linear combination of exponents α− 4β.
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this analysis clearly suggests that a more careful anal-
ysis of the infrared dynamics in terms of the effectively
nonrelativistic infrared degrees of freedom is required to
understand the observed scaling behavior.

B. Dynamics of nonrelativistic infrared modes

We will now investigate to what extent the phenom-
ena described above can be understood in terms of non-
relativistic degrees of freedom that emerge in the in-
frared. We expect these degrees of freedom to be dis-
tinct for long wavelength modes with p � m. However
since at late times the relativistic scalar field theory con-
tains excitations with momenta p � m, we have to first
isolate the long wavelength excitations of interest. In
practice, this is achieved by employing a gradient flow
cooling technique, where the scalar field configurations
φ(t, τc = 0,x) = φ(t,x) are evolved according to

∂τcφ(t, τc,x) =

∂i∂
iφ(t, τc,x)−m2φ(t, τc,x)− λ

6
φ(t, τc,x)3 .

(46)

and cooled momentum fields π(t, τc,x) are constructed
from scalar fields at adjacent time steps as π(t, τc,x) =
[φ(t+∆t/2, τc,x)−φ(t−∆t/2, τc,x)]/∆t. Since the cool-
ing time τc is a measure of the extent to which ultraviolet
modes have been removed from the simulation results,
a choice of m2τc ∼ 1 ensures that excitations with mo-
menta larger than the mass have been efficiently removed
as shown explicitly in Fig. 3. We note that for sufficiently
large mass, the cooling also suppresses low energy exci-
tations by a factor of ∼ exp(−m2τc). We will account
for this suppression, by rescaling the cooled fields by the
inverse of this factor when comparing results obtained
from cooled configurations with ones obtained directly
from the relativistic scalar fields.

With the cooled configurations in hand, we can utilize
the mapping spelled out in Eqs. (29) and (31) to con-
struct the effective nonrelativistic field ψ(t,x) at each
point of the space-time evolution. As we discussed previ-
ously, we anticipate the dynamical evolution of this field
to be described approximately by the GP equation albeit
one should also anticipate a coupling of this field to the
hard modes in the system. We find that on average the
number density of nonrelativistic modes

nψ(t) =
1

N2
s

∑
x

|ψ(t,x)|2 , (47)

is approximately conserved. This is seen in Fig. 4, where
we present results for different values of the mass ratio
m/Q and different degrees of initial occupancy n0. Scal-
ing of the curves by a factor of n−10 , leads to similar
results for different values of n0, where in all cases, the
number density is approximately conserved up to the few
percent level. Even though the nonrelativistic infrared
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GP density obtained directly from the relativistic scalar field
without cooling.

excitations are in principle coupled to the hard ultravi-
olet modes, our result shows that after a short transient
period the coupling between soft and hard modes appears
to be weak. Therefore the dynamics of the infrared sector
can be studied separately from the ultraviolet cascade.

C. Defect structure of nonrelativistic field modes

Previous studies of the dynamics of the GP equation
in two dimensions have demonstrated the importance of
vortex defects associated with the global U(1) symmetry
of the GP equation (see [26, 27, 32]). We may therefore
expect to observe similar features for the nonrelativistic
infrared excitations of the single component scalar the-
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Figure 5: Evolution of the profiles of density |ψ(x)|2 (left) and the phase angle arg(ψ(x)) (right) of the nonrelativistic infrared
field ψ obtained by mapping the cooled relativistic field configurations. One clearly observes the formation of long lived vortex
and antivortex defects highlighted by oppositely colored circles.

ory, which in accordance with the discussion in Sec. III

m/Q n0 (λ/Q)nψ[Q
2] Qξh m/Q n0 (λ/Q)nψ[Q

2] Qξh

2 5 2.2 1.91 4 10 4.5 1.88
2 10 4.4 1.34 4 20 9.0 1.33
2 20 8.4 0.97 4 40 17.2 0.96
4 5 2.3 2.63 4 80 33.6 0.69

Table I: Values of the number density nψ and the effective
vortex healing length ξh extracted for different simulation
parameters. Note that we have included the cooling factor
e2m

2τc into the listed values of (λ/Q)nψ[Q
2].

also feature an approximate U(1) symmetry [34]. In or-
der to establish a meaningful comparison with the liter-
ature, we can express our results in terms of the vortex
healing length, defined as

ξh = (2mgnψ)
−1/2

, (48)

where g = λ/(8m2) is the Gross-Pitaevski coupling.
When expressed in terms of the simulation parameters
for the relativistic field theory, the healing length is given
by

Qξh = 2

√
m

Q

[
(λ/Q)nψ

Q2

]−1/2
, (49)
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Figure 6: Evolution of the distribution of vortices (blue) and anti-vortices (red) at intermediate simulation times. Highlighted
in the inset (lower left corner) is a zoom of the dynamics of a vortex-antivortex annihilation process taking place in the dashed
rectangular region.

and the typical values encountered in our simulations are
compactly summarized in Table I.

Some examples of the profiles of the field ψ – obtained
from the relativistic scalar fields according to Eqs. (29)
and (31) – are displayed in Fig. 5, where we present pro-
files of the magnitude |ψ| and phase-distribution arg(ψ)
at different stages of the nonequilibrium evolution. We
find that at all times of the simulation, the field ψ
clearly exhibits vortex defects characterized by a sharp
minimum of the density with an approximately uniform
phase wrap. In order to efficiently detect such vortex
defects for a given field configuration, we have devel-
oped the following vortex finding algorithm: we first
check for the positions xC where the modulus of the
field |ψ(xC)| is smaller than a certain threshold value,
|ψ(xC)| < 0.1〈|ψ(xC)|〉V, with the average taken over
the system volume. These positions then serve as can-
didates for vortex cores. Subsequently, we calculate the
phase-winding C around the candidate vortex core, by
calculating the line integral of the gradient of the phase
arg(ψ(x)) of the vortex core. In order to avoid problems
with the branch-cut of the arg function, the line integral
C is calculated as C =

∑
i sin

[
arg(ψ(xi+1))−arg(ψ(xi))

]
along a sequence of points xi = xC + d(cos(φi), sin(φi))
ordered by coordinate space angles φi+1 > φi with a dis-
tance d = |xC − xi| = 1/Q around the vortex core. We
find that in most cases the vortex charge C obtained in
this way is very close to ±2π, typically to percent level
accuracy. However to avoid possible misidentification,
which arise for example due to regions in space where
the density is small but there is no vortex, we apply a
quality cut |C ± 2π| < π/4 for the identification of the
vortex/antivortex. Ultimately, to avoid double count-
ing, we also remove duplicate entries based on the re-
quirement that individual vortices with the same charge

at positions x1
C and x2

C should be separated by at least
|x1
C − x2

C | > 1/Q.
Vortex defects identified by our algorithm are high-

lighted by circles in Fig. 5, demonstrating our ability to
efficiently track the defects. By analyzing the vortex dy-
namics in more detail, we find that many characteristic
features previously reported in simulations of the two-
dimensional Gross Pitaevskii equation [26, 27, 32], also
emerge in our simulations. We find for example that
after a rapid initial stage, where vortex-antivortex anni-
hilation occurs frequently, the dynamics slows down sig-
nificantly towards later times, as the defects tend to or-
ganize in vortex-anti vortex pairs. In this regime, vortex-
antivortex annihilation occurs predominantly via the in-
teraction of multiple vortices, such as the interaction of a
vortex-antivortex pair with an “unbound” vortex, or via
the interaction of two vortex-antivortex pairs. One ex-
ample of such a process is depicted in Fig. 6, where we
show the distribution of vortices and anti-vortices at dif-
ferent times Qt = 2850−3250. In the inset, we present a
zoom of the dynamics around the point (x, y) ∼ (80, 110),
where an annihilation process takes place following the
interaction of two vortex-antivortex pairs.

D. Statistical properties of vortex dynamics

Beyond the investigation of the defect structure of in-
dividual configurations, it is also useful to analyze the
statistical properties of the defect dynamics. Our result
for the average vortex density ξ2hnV /L

2 (expressed in the
unit of the inverse healing length squared) is presented in
Fig. 7, where we show results for different values of m/Q
and the initial overoccupancy parameter n0 as a func-
tion of the evolution time t/ξh. We find that following a
transient regime which lasts between 103ξh to 104ξh (de-
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Figure 7: (Top) Evolution of the vortex density ξ2hnV /L
2 as

functions of time t in the unit of the healing length. (Bottom)
Extraction of the scaling exponent ζ characterizing the power
law decay nV ∼ t−ζ observed at late times.

pending on n0 and m/Q), the vortex density approaches
a power law decay form nV ∼ t−ζ with ζ ≈ 0.4 indicated
by the gray band. In order to extract a more precise esti-
mate of the power law index ζ, which governs the decay of
the vortex density, we extract the logarithmic derivative

ζ(t) = −d log(nV )

d log(t)
, (50)

shown in the right panel of Fig. 7. Performing a simul-
taneous fit to all data points with t/ξh > 5000 shown in
the right panel, we estimate

ζ = 0.41± 0.015 . (51)

Our result in Eq. (51) is in excellent agreement with the
values of ζ reported in [32] for the vortex dynamics in a
two-dimensional superfluid near the strongly anomalous
nonthermal fixed point, as is indicated by the dashed blue
line in Fig. 7.

E. Defect structure of original relativistic field

It is also interesting to investigate how features of the
defect structure manifest themselves at the level of the
original fields φ and π. From the spatial profile plots of
the relativistic fields presented in Fig. 8, one observes the
expected emergence of a Z2 domain structure for both φ
and π, with the domain size `domain growing as a func-
tion of time. We find that the position of vortex de-
fects discussed previously in terms of the modulus and
phase of the nonrelativistic ψ field corresponds to inter-
section points of the domain walls of the original φ and
π fields. Hence the growth of the characteristic domain
size `domain is limited by the presence of vortex defects
and can be expected to follow the growth of the average
distance between vortices given by

`domain ∼ `V ∼ n−1/2V ∼ tζ/2 . (52)

This defect picture explains some of the features observed
in the infrared sector of the relativistic scalar theory in
terms of the underlying dynamics of the nonrelativistic
degrees of freedom. Since the single particle spectrum
discussed in Sec. IVA, is essentially a two-point correla-
tion function of the φ and π fields, we can relate the char-
acteristic momentum scale pIR of the spectrum, marking
the transition from the p−4 power law to the constant
behavior in the deep infrared, with the inverse of the typ-
ical domain size pIR ∼ `−1domain. The p

−4 power law in the
spectrum should then be attributed to the strongly cor-
related dynamics within a domain whereas the constant
behavior in the deep infrared can be attributed to a sta-
tistical average over uncorrelated domains. See also Ref.
[34] for a related discussion.

Since the scaling exponents for the regime with p > pIR
and p < pIR should match if the dynamics is self-similar
throughout, we obtain ζ = 2β. This expectation is
clearly corroborated by our numerical results in Eqs. (45)
and (51). Hence the infrared dynamics of the relativistic
scalar field theory can be understood efficiently in terms
of the dynamics of the vortex defects of the nonrelativis-
tic infrared fields.

One may also deduce from the structure of the field
configurations in Fig. 9 that the presence of such vortex
defects prohibits the formation of a Bose condensate cor-
responding to a single coherent domain across the entire
volume of the two-dimensional system. We can confirm
this expectation by investigating the dynamics of the zero
mode φ̃2(p = 0) + π̃2(p = 0)/m2, for different physical
volumes and for various choices of simulation parame-
ters in Fig. 9. Even though we are statistics limited,
we observe that a strong volume dependence of the cor-
relation function persists over the course of the entire
simulation – this indicates the absence of a Bose con-
densate [17]. From the arguments of [5], one may then
expect that – for sufficiently large volumes – the growth
of the condensate is described by a power law tα such
that the condensation time diverges as t1/α. One can also
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Figure 8: Evolution of the profiles of relativistic field configurations for the scalar field φ (left) and its conjugate momentum
field π (right). Domain structures of both fields are clearly visible. Intersections of domain walls of φ and π correspond to
location of vortex defects.

arrive at the same conclusion by considering the phase-
ordering kinetics described above. Albeit, as noted, the
current statistics have significant uncertainties, we see
from Fig. 9 that the grey bands with a power law de-
pendence of t0.4 are consistent with the numerical data.
Since α = 2β ≡ 2 · (0.24 ± 0.08), our numerical results
are in line with the expectation of [17] for the power law
growth of the Bose condensate.

V. SUMMARY AND OUTLOOK

In this paper, we demonstrated a formal map between
the infrared structure of an N = 1 relativistic self-
interacting scalar field theory and the Gross-Pitaevskii
(GP) theory for nonrelativistic fields, which is widely
employed as a model theory describing the behavior of
superfluids. This map follows from observing that any
real scalar field can be Fourier transformed to momentum
space, where it can be decomposed into a complex valued
creation/annihilation variables ap and a∗p. By using al-
ternative canonical variables bp and b∗p, which dress the
original ap and a∗p functions, one can transform out non-
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Figure 9: Evolution of the condensate observables φ̃2(p =
0)+ π̃2(p = 0)/m2 for m/Q = 4 for different physical volumes
from 2562 to 20482 and varying amount of initial overoccu-
pancy n0 = 10− 80.

resonant quartic terms to obtain a Hamiltonian with only
quartic resonant interactions. The resonant term has an
equal number of bp and b∗p terms and therefore conserves
particle number that is manifest in the global U(1) sym-
metry of the Hamiltonian in the dressed bp and b∗p canon-
ical variables. This Hamiltonian is the GP Hamiltonian
for the nonrelativistic complex field ψ(x), which is the
the Fourier transform of bp. Higher order interaction
terms with more than four bp or b∗p are generated by this
mapping. However these terms are suppressed by powers
of λψ2(x)/m3 or λφ2/m2 in the nonrelativistic limit or
large mass limit. In addition to computing higher order
corrections to the GP Hamiltonian, this map allows us to
include within the GP framework the role of fluctuations
that can be treated systematically in the underlying rel-
ativistic field theory. Perhaps most importantly, it also
allows us to dynamically study the coupling of superfluid
modes to normal ultraviolet modes out of equilibrium.

We reported on numerical simulations of the far out
of equilibrium temporal evolution of overoccupied fields
in the N = 1 scalar field theory. We observed that self-
similar behavior characteristic of nonthermal fixed points

develops as a function of time. This is characterized by
different spectral indices for the quasi-stationary distri-
butions in different inertial ranges, both in the UV and IR
sectors of the theory. We focused on the dynamics in the
IR sector and were able to do this by systematically re-
moving UV modes using a well developed lattice cooling
technique. Exploiting the classical map we established
between the single component relativistic scalar field φ
and the Gross-Pitaevski field ψ, we further analyzed the
large scale structure of the effective nonrelativistic field
configurations.

The complex scalar fields ψ we extracted have a spatial
structure that includes the presence of vortex-antivortex
pairs. At early times and high occupancies, they densely
occupy the system. However subsequently the scattering
and annihilation of these vortices leads to a dilution of the
vortex density with a characteristic power law decay in
time. This coarsening dynamics is observed in the spatial
structure of the relativistic scalar field and its conjugate
momentum field where the vortex defects correspond to
intersections of the domain walls separating distinct do-
mains of phase coherent fields. The characteristic scale
associated with the inverse domain size pIR ∼ `−1domain
separates spectral properties of distributions in the deep
infrared from those at momenta larger than this scale. In
the former case, the incoherent averaging over multiple
domains gives rise to a spectral index that is approxi-
mately vanishing. Conversely, for momenta p > pIR the
spectrum is determined by the dynamics within a single
domain that generates a 1/p4 behavior.

Within the accuracy of our simulations, our observa-
tions are consistent with numerical simulations of the
Gross-Pitaveski equation by Karl and Gasenzer. By
studying the dynamics of a quenched two-dimensional
Bose gas, they observed a NTFP with “strongly anoma-
lous” scaling properties that are distinct from the pre-
dictions of a vertex resummed kinetic theory. While the
phase kinetic evolution associated with this nonthermal
fixed point is distinct from the near-equilibrium phase
ordering kinetics [44], it was pointed out by Karl and
Gasenzer that the anomalous scaling properties can be
understood in terms of a modified phase kinetic picture
of correlated vortex defects. From our analysis of the
effective nonrelativistic infrared degrees of freedom, we
conclude that the same dynamics also takes place in our
simulations of the two-dimensional massive relativistic
scalar theory. This suggests that (hidden) topological
defects can play an important role for understanding the
properties of NTFPs.

While we have only presented numerical results for the
single component (N = 1) theory in (2+1)-dimensions,
our relativistic field theory framework is more general
and can be exploited to explore in greater detail the effec-
tive degrees of freedom governing the out-of-equilibrium
dynamics of Bose superfluids. Though more numeri-
cally cumbersome, our techniques can be extended in a
straightforward way to (3+1)-dimensions, where the de-
fect structure is likely to be distinct from that in (2+1)-
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dimensions [34]. One of the more important questions is
to clarify the relative importance of quasiparticle excita-
tions and topological defects in determining the nonequi-
librium scaling properties for different number of field
components (N = 1, 2, · · ·) and the dimensionality of the
system.

Interestingly, the methods we have applied here can
potentially be applied to understand the very high vor-
ticity of the strongly interacting matter produced in
heavy-ion collisions at the Relativistic Heavy-Ion Col-
lider (RHIC) [45, 46]. At the energies where the high
vorticity is observed through the decays of polarized hy-
perons [47–51], the matter is a baryon rich fluid whose
late time evolution is described by hydrodynamics. How
the global vorticity induced at infrared scales is dynami-
cally transferred to the ultraviolet scale of the viscosity in
the hydrodynamical fluid on the rapid time scales of the
collision is not well understood. The ideas developed here
provide a possible explanation. Firstly, because of the
relativistic nature of the collision, there is a natural sep-
aration between the longitudinal and transverse dynam-
ics in the fluid so key aspects of the dynamics take place
in the two transverse dimensions. Secondly, the relativis-
tic scalar theory we have considered here is a good model
for a baryon rich fluid [52–54] and out-of-equilibrium phe-
nomena in the vicinity of a critical end point in the QCD
phase diagram have been explored in such scalar field the-
ories [55–57]; indeed, self-similar behavior analogous to
that discussed here is observed in such studies [58]. The
turbulent processes we have discussed here are efficient
mechanisms to transfer the global angular momentum
induced in a noncentral heavy-ion collision to the ultra-
violet scale described by nearly ideal hydrodynamics. It
would be particularly interesting in this context to under-
stand the possible role of vortex structures in generating
the polarization of particles on the microscopic scales of
the fluid. These exciting possibilities will be pursued in
forthcoming work.
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Appendix A: Some properties of canonical
transformation

In this appendix, we shall derive some properties of
canonical transformation that are used in Section II.

We will first show that the Poisson brackets are invari-
ant under a change of canonical basis. Towards this end,
we will show that one can rewrite the Poisson brackets
in Eq. (10) in a new canonical basis bp,

{F,G}a =

ˆ
[d3k]

[
∂F

∂ak

∂G

∂a∗k
− ∂F

∂a∗k

∂G

∂ak

]
=

ˆ
[d3k][d3k1][d3k2]{[
∂bk1
∂ak

∂F

∂bk1
+
∂b∗k1
∂ak

∂F

∂b∗k1

] [
∂bk2
∂a∗k

∂G

∂bk2
+
∂b∗k2
∂a∗k

∂G

∂b∗k2

]
−
[
∂bk1
∂a∗k

∂F

∂bk1
+
∂b∗k1
∂a∗k

∂F

∂b∗k1

] [
∂bk2
∂ak

∂G

∂bk2
+
∂b∗k2
∂ak

∂G

∂b∗k2

]}
=

ˆ
[d3k1][d3k2][
{bk1, bk2}a

∂F

∂bk1

∂G

∂bk2
+ {bk1, b∗k2}a

∂F

∂bk1

∂G

∂b∗k2

+ {b∗k1, bk2}a
∂F

∂b∗k1

∂G

∂bk2
+ {b∗k1, b∗k2}a

∂F

∂b∗k1

∂G

∂b∗k2

]
= {F,G}b (A1)

where we have required that bk and b∗k be canonical vari-
ables satisfying Eq. (12). We list following rules for the
Poisson brackets,

{AB,C} = A{B,C}+B{A,C},
{C,AB} = −{AB,C} = A{C,B}+B{C,A},
{AB,CD} = BD{A,C}+BC{A,D}

+AC{B,D}+AD{B,C}, (A2)

where A, B and C are all momentum functions, and
we have suppressed the basis for above Poisson brack-
ets which can be any basis.

To see that b̃p(z) and b̃∗p(z) in Eq. (16) sat-
isfy the canonical relations in Eq. (12) for any form
of Haux(b̃, b̃∗) ≡ Haux(b̃p(z), b̃∗p(z)), we will directly
evaluate the Poisson brackets {b̃p(z), b̃∗p1(z)}b and
{b̃p(z), b̃p1(z)}b by Taylor expansion in z:

f1(z) ≡ {b̃p(z), b̃∗p1(z)}b

= {bp, b∗p1}b +

∞∑
n=1

1

n!

dnf1(z)

dnz

∣∣∣∣
z=0

zn

= (2π)3δ(p− p1),
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f2(z) ≡ {b̃p(z), b̃p1(z)}b

= {bp, bp1}b +

∞∑
n=1

1

n!

dnf2(z)

dnz

∣∣∣∣
z=0

zn

= 0 . (A3)

As is transparent from the r.h.s of these relations, for the
canonical relations to hold, all the coefficients of zn must
vanish. To see this, we note the following identities [the
proof follows Eq. (A6)],

i
dn+1f1,2(z)

dn+1z

∣∣∣∣
z=0

=

{
dnf1,2(z)

dnz

∣∣∣∣
z=0

, Haux

}
b

. (A4)

We can evaluate the first derivative of f1,2 as

df1(z)

dz

∣∣∣∣
z=0

= i

{
bp,

∂Haux

∂bp1

}
b

+i

{
b∗p1,

∂Haux

∂b∗p

}
b

= 0,

df2(z)

dz

∣∣∣∣
z=0

= −i

{
bp,

∂Haux

∂b∗p1

}
b

+i

{
bp1,

∂Haux

∂b∗p

}
b

= 0 ,

(A5)

where we have implied Haux ≡ Haux(b, b∗) =

Haux(b̃, b̃∗)
∣∣∣
z=0

. In the r.h.s of two equalities in Eq. (A5),
we have used Eq. (14). By induction, if we assume the
coefficient of zn is vanishing, we see that the coefficient
of zn+1 is also vanishing from Eq. (A4). We can there-
fore conclude that all coefficients of zn for any n > 0 are
vanishing, completing the proof of Eq. (A3).

We shall now provide a proof of Eq. (19). Define a
quantity O(b̃p(z), b̃∗p(z)), a functional of b̃p(z) and b̃∗p(z)
in Eq. (16), whose virtual time evolution is governed by
Haux. We then have

dO(b̃, b̃∗)

dz

∣∣∣∣∣
z=0

=

ˆ
[d3k]

[
∂O(b̃, b̃∗)

∂b̃k

db̃k
dz

+
∂O

∂b∗k

db∗k
dz

]
z=0

= −i
ˆ

[d3k]

[
∂O(b, b∗)

∂bk
{bk, Haux}b

+
∂O(b, b∗)

∂b∗k
{b∗k, Haux}b

]
= −i{O(b, b∗), Haux}b .

(A6)

Similarly one obtains for the second derivative

d2O(b̃, b̃∗)

d2z

∣∣∣∣∣
z=0

=
d

dz

[
dO(b̃, b̃∗)

dz

]∣∣∣∣∣
z=0

= −i

{
dO(b̃, b̃∗)

dz

∣∣∣∣∣
z=0

, Haux

}
b

= (−i)2{{O(b, b∗), Haux}b, Haux}b ,
(A7)

such that by induction

dnO(b̃, b̃∗)

dnz

∣∣∣∣∣
z=0

=
d

dz

[
dn−1O(b̃, b̃∗)

dn−1z

]∣∣∣∣∣
z=0

= −i

{
dn−1O(b̃, b̃∗)

dn−1z

∣∣∣∣∣
z=0

, Haux

}
b

= (−i)n{{O(b, b∗), Haux}b, · · · , Haux︸ ︷︷ ︸
n×Haux

}b ,

(A8)

where we have used the shorthand notations O(b̃, b̃∗) ≡
O(b̃p(z), b̃∗p(z)) and O(b, b∗) ≡ O(b̃ → b, b̃∗ → b∗) when
setting z = 0 in O(b̃p(z), b̃∗p(z)). We have also implied in

Eq. (A8) that Haux ≡ Haux(b, b∗) = Haux(b̃, b̃∗)
∣∣∣
z=0

. We

can then perform a Taylor expansion of O(b̃p(z), b̃∗p(z))
with respect to z at z = 0 whose coefficients are given by
Eq. (A8). Setting O = H we obtain Eq. (19).

Appendix B: Derivation of coefficients in Haux

We will provide here the detailed derivation of the co-
efficients in Eq. (22). For convenience, we can write the
interaction part of the Hamiltonian (7) in the compact
form (replacing all ak with bk),

Hint(b, b
∗) =

λ

24

ˆ
[d3k1][d3k2][d3k3][d3k4]√

16Ek1Ek2Ek3Ek4
(2π)3 (B1)

×
∑

ε1,ε2,ε3,ε4=±1
bε1k1b

ε2
k2b

ε3
k3b

ε4
k4δ(ε1k1 + ε2k2 + ε3k3 + ε4k4),

where we have used shorthand notations b−ki ≡ bki and
b+ki ≡ b∗ki with i = 1, 2, 3, 4. We can also write Haux in
Eq. (18), using the same notation, in the compact form

Haux =
1

24

ˆ
[d3k1][d3k2][d3k3][d3k4]

×
ε1+ε2+ε3+ε4 6=0∑
ε1,ε2,ε3,ε4=±1

Bε1ε2ε3ε4(k1,k2,k3,k4)bε1k1b
ε2
k2b

ε3
k3b

ε4
k4

×δ(ε1k1 + ε2k2 + ε3k3 + ε4k4) , (B2)

where we have assumed B−−−−(k1,k2,k3,k4) =
B1(k1,k2,k3,k4), B−−−+(k1,k2,k3,k4) =
B2(k1,k2,k3;k4), B−−++ = 0, (Bε1ε2ε3ε4)∗ =
B−ε1,−ε2,−ε3,−ε4 and Bε1ε2ε3ε4(k1,k2,k3,k4) is sym-
metric with respect to the exchange of any two labels,
εi ↔ εj and ki ↔ kj with i 6= j. As we will leave the res-
onant term in Eq. (B2) intact, there will be no resonant
term in Haux, which requires ε1 + ε2 + ε3 + ε4 6= 0.
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With the compact and symmetric form of Hint and
Haux, it is easy to check

{H0(b, b∗), Haux}b =
1

24

ˆ
[d3k1][d3k2][d3k3][d3k4]

×
∑

ε1,ε2,ε3,ε4=±
Bε1,ε2,ε3,ε4(k1,k2,k3,k4)bε1k1b

ε2
k2b

ε3
k3b

ε4
k4

× δ(ε1k1 + ε2k2 + ε3k3 + ε4k4)

× (ε1Ek1 + ε2Ek2 + ε3Ek3 + ε4Ek4) , (B3)

where we have used

{bkb∗k, b
ε1
k1b

ε2
k2b

ε3
k3b

ε4
k4}b = (2π)3bε1k1b

ε2
k2b

ε3
k3b

ε4
k4 [ε1δ(k1 − k)

+ε2δ(k2 − k) + ε3δ(k3 − k) + ε4δ(k4 − k)] . (B4)

One can use the Poisson bracket rules in Eq. (A2) to
establish the above formula.

To remove the non-resonant term in Hint, it is natural
to require

Hnon−res
int (b, b∗) + (−iz){H0(b, b∗), Haux}b = 0 . (B5)

The solution to the above equation is

Bε1,ε2,ε3,ε4(k1,k2,k3,k4) =

λ

iz

(2π)3√
16Ek1Ek2Ek3Ek4

× 1

ε1Ek1 + ε2Ek2 + ε3Ek3 + ε4Ek4
,

(B6)

which explicitly give

B1(k1,k2,k3,k4) =

i
1

z
λ

(2π)3√
16Ek1Ek2Ek3Ek4(Ek1 + Ek2 + Ek3 + Ek4)

,

B2(k1,k2,k3;k4) =

i
1

z
λ

(2π)3√
16Ek1Ek2Ek3Ek4(Ek1 + Ek2 + Ek3 − Ek4)

,

(B7)

with B1 = B−−−−, B∗1 = B++++, B2 = B−−−+, B∗2 =
B+++−.

Appendix C: Properties of Bose superfluids from
Gross-Pitaevskii Hamiltonian

For completeness, we will review in this appendix the
quasi-particle dispersion relation as well as other proper-
ties of Bose superfluids extracted from the GP Hamilto-
nian in Eq. (33).

Since there is no number changing channel in the in-
teraction, the total particle number N =

´
[d3p]bpb

∗
p is

conserved. It can be decomposed into contributions of
zero and non-zero modes. The zero mode corresponds to

Bose condensation. Accordingly we can write bp in the
following form,

bp = b̃0(2π)3δ(p) + b′p, (C1)

where b̃0 and b′p correspond to the zero and non-zero
mode respectively. Note that b̃0 can be set to a real
number, as b and b∗ always appear in pairs and the phase
of b̃0 will be canceled if it has any. So we have

N = N0 +

ˆ
[d3p]b′pb

′∗
p (C2)

where N0 = b̃20V is the particle number of the zero mode
and V is the volume. Inserting Eq.(C1) into Eq.(33)
and keeping quadratic terms only, the Hamiltonian up to
quadratic terms in b′p and b′∗p takes the form,

H → mN +
λN2

0

16m2V
+

ˆ
[d3p]

|p|2

2m
b′pb
′∗
p

+
λN0

16m2V

ˆ
[d3p]

{
b′pb
′
−p + b′∗p b

′∗
−p + 4b′pb

′∗
p

}
→ mN +

λN2

16m2V
+

ˆ
[d3p]

|p|2

2m
b′pb
′∗
p

+
λN0

16m2V

ˆ
[d3p]

{
b′pb
′
−p + b′∗p b

′∗
−p + 2b′pb

′∗
p

}
,

(C3)

where the first term mN is static mass energy and will
not be considered in a nonrelativistic theory.

The non-relativistic Hamiltonian of quadratic terms
can be diagonalized by Bogoliubov transformation, b′p =

upcp +vpc
∗
−p, with canonical conditions |up|2−|vp|2 = 1

and upv−p = u−pvp. Due to the symmetry in our set-
ting, we may assume that up = u−p, vp = v−p. Then
the diagonalization can be completed by solving up and
vp from the complex equations,(
Enr
p +

1

2
∆

)(
|up|2 + |vp|2

)
+

1

2
∆upvp +

1

2
∆u∗pv

∗
p = ωp,

(C4)(
Enr
p +

1

2
∆

)
upv

∗
p +

1

4
∆upup +

1

4
∆v∗pv

∗
p = 0,

(C5)

where we have defined Enr
p = |p|2/(2m), ∆ =

λN0/(4m
2V ). The solution can be parametrized as

up = 1 − iz and vp = y − ix with z2 = x2 + y2 to
guarantee the canonical conditions. Solving Eq. (C5) we
obtain the the dispersion relation,

ωp =
√
Enr
p (Enr

p + ∆) . (C6)

We can choose the positive energy solutionand thereby
reproduce the Landau quasi-particle spectrum in Bose
superfluids.
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There is another easier derivation of the quasi-particle
energy (C6) by using the canonical coordinate and mo-
mentum similar to Eq. (6),

φk =
1√

2Enr
k

(b′k + b′∗−k), πk = −i
√
Enr
k

2
(b′k − b′∗−k),

φ−k = φ∗k π−k = π∗k. (C7)

Then the non-relativistic part of the Hamiltonian in (C3)
becomes

Hnr =

ˆ
[d3k]

1

2

(
Enr
p +

1

2
∆

)[
Enr
p |φp|2 +

1

Enr
p

|πp|2
]

+
1

4
∆

ˆ
[d3p]

[
Enr
p |φp|2 −

1

Enr
p

|πp|2
]

=

ˆ
[d3p]

1

2

[
|πp|2 + Enr

p (Enr
p + ∆)|φp|2

]
, (C8)

which is similar to a system of Harmonic oscillators with
the frequency or energy given in (C6) for each momentum
mode.

In the relativistic theory, the relativistic energy should
be taken into account. From the Hamiltonian (23), a sim-
ilar dispersion relation to Eq. (C6) can also be obtained

ωp =

√
Ep

(
Ep +

λN0

4mEpV

)
, (C9)

where Ep =
√
|p|2 +m2.

From Eq. (33), we obtain the Hamiltonian density of
the GP field

H = m|ψ|2 − 1

2m
ψ∗∇2ψ +

λ

16m2
|ψ|4. (C10)

The Lagrangian density can be obtained as

L =
1

2
i
(
ψ∗ψ̇ − ψψ̇∗

)
−H. (C11)

In deriving equations of motion, we treat ψ and ψ∗ as
independent variables. It is interesting to see that the
Hamiltonian and Lagrangian densities are invariant un-
der the global U(1) transformation ψ(t,x) → eiηψ(t,x).
There is no such symmetry in the original scalar field
theory. For the infinitesimal transformation η → 0, the
global U(1) invariance of the Lagrangian density leads to
particle number conservation,

∂

∂t
ρ+∇ · j = 0, (C12)

where the particle number density and the current are
given by

ρ = |ψ|2,

j =
i

2m
(ψ∇ψ∗ − ψ∗∇ψ) . (C13)

We can parameterize ψ as ψ =
√
ρeiφ with ρ being the

particle number density which is assumed to be indepen-
dent of position. Hence the current is associated with the
superfluid velocity v = 1

m∇φ,

j = ρv. (C14)

We see that the phase φ acts as a potential for the fluid
velocity. We take a loop integral for v which gives the
Feynman-Onsager quantization condition
˛
C

dl · v =

ˆ
A

dS · (∇× v) =
1

m
2lπ, (l = integer)

(C15)

If v is well-defined everywhere in the area A bounded by
the loop C, we have l = 0 and ∇× v = 0 everywhere. If
v is singular at one point, we conclude that l 6= 0, and
the solutions satisfying Eq. (C15) are vortex solutions
for v.

The conservation of energy and momentum is a result
of invariance of the Lagrangian density under transla-
tion of time and position, t′ = t + ε, x′ = x + c. For
an infinitesimal transformation ε → 0 and |c| → 0 the
variations of the fields are

δψ = ε
∂ψ

∂t
+ c · ∇ψ,

δψ∗ = ε
∂ψ∗

∂t
+ c · ∇ψ∗. (C16)

The variation of the Lagrangian density is

δL = ε

[
∂

∂t
H− 1

2m
∇ · (ψ̇∇ψ∗ + ψ̇∗∇ψ)

]
+ ε

λ

16m2

∂

∂t
|ψ|4

−cj
[

1

2
i
∂

∂t
(ψ∇jψ∗ − ψ∗∇jψ)

+
1

2m
∇i(∇iψ∗∇jψ +∇iψ∇jψ∗)

]
. (C17)

where we have inserted δψ and δψ∗ from Eq. (C16) and
applied the GP equation (34). Under the invariance of
the Lagrangian density, the first square bracket gives en-
ergy conservation, while the last one gives momentum
conservation. We can rewrite the second term in the first
square bracket as

P ′ = mρv

(
1 +

λ

8m3
ρ

)
+

1

2
mρv2v , (C18)

where we have used the GP equation (34) and assumed
that ρ is a constant independent of position. Note
that the term λ/(16m2)∂t|ψ|4 in Eq. (C17) cancels the
λ/(8m2)ρ2v term in P ′ with the continuity equation
(C12). We can therefore define the momentum density
as

P = m

(
ρ+

1

2
ρv2

)
v. (C19)
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Similarly, the energy density can be cast into the follow-
ing form,

H = mρ+
1

2
mρv2 +

λ

16m2
ρ2. (C20)

Then energy conservation equation now reads as

∂

∂t
H+∇ · P = 0. (C21)

The last square bracket in Eq. (C17) can be rewritten as

∂(ρvj)

∂t
+ ρ∇i(vivj) = 0, (C22)

which is nothing but the Euler equation.
It is interesting to note that the momentum density is

just the energy density (excluding the ρ2 term) times the
superfluid velocity. The last term λ/(16m2)ρ2 of H in
Eq. (C20) is negligible compared to mρ when |ψ|2/m3 =
ρ/m3 � 1. Then we have H ≈ m[ρ + (1/2)ρv2] and
P = Hv. Applying the particle number conservation
equation (C12), the energy conservation equation (C21)
becomes

∂

∂t
Hnr +∇ · Pnr = 0 (C23)

where Hnr = (1/2)mρv2 and Pnr = Hnrv are the non-
relativistic energy and momentum respectively. In the
non-relativistic limit v � 1, P is approximately mρv.

Another interesting observation is that we can read out
the energy per particle from H in Eq. (C20),

ε =
∂H
∂ρ

= m+
1

2
m|v|2 +

λ

8m2
ρ. (C24)

The above can be verified to be the same as the relativitic
ωp in Eq. (C9) in the non-relativistic limit,

ωp ≈ Ep +
λρ

8m2
≈ ε, (C25)

where we have taken the limit Ep � λ/(8m2)ρ and made
replacements N0/V → ρ, p → mv and then approxi-
mated Ep ≈ m+ (1/2)m|v|2.

We now consider nonrelativistic case in which the su-
perfluid momentum density is P = mρv. Suppose a
quasi-particle with momentum p and energy ωp is pro-
duced in the system, the momentum density changes to

P ′ = P − p

V
= mρv′, (C26)

where v′ = v − p/(mN) is the new fluid velocity with
N = ρV being the particle number in the superfluid.
Note that N is very large, so we have |p|/(mN) � |v|.
The energy is changed due to the new velocity v′. Hence
according to Eq. (C23), the modified energy is

H′ = H+
|p|2

2mNV
− P · p

mN
≈ H− v · p

V
, (C27)

where we have neglected the term |p|2/(2mNV ) since it
is much smaller than the rest terms. For a very small ve-
locity, the presence of quasiparticles violates energy con-
servation since H′ > H− ωp/V . If the magnitude of ve-
locity is larger than a critical value vc = ωp/|p|, the pro-
duction of quasi-particles is possible sinceH′ = H−ωp/V
can be satisfied by making ωp = v · p. The condition for
superfluids is that there exists a non-vanishing critical ve-
locity, vc > 0, which is called the Landau critical velocity
for superfluids. One can check that this is satified by the
quasi-particle energy (C6) with vc =

√
λN0/(8m3V ).
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