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 The quantum field theoretical problem of the vacuum decay into electron-positron pairs 

induced by external force fields is mapped onto the framework of a quantum mechanical scattering 

process.  This mapping permits us to generalize the Hund conjecture, which relates the long-time 

pair creation rate for a static and spatially localized electric field to the transmission coefficient, to 

general space-time dependent forces that can induce multi-photon transitions.  This leads to 

conceptual as well as computational simplifications as the vacuum's decay rate can be obtained 

from the laser-assisted scattering of quantum mechanical wave packets.  Using this mapping we 

find an analytical expression for the pair creation rate for the case where the laser's polarization 

direction is perpendicular to the supercritical static force field. 
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 As the result of the recent advances in the development of new light sources with unprecedented 

high intensities [1], the possibility to probe the instability of the quantum electrodynamical vacuum 

state with external fields has found a considerable interest [2].  There are two intrinsically different 

mechanisms by which electron-positron pairs can be created from the vacuum.  The first scheme [3] 

requires the field (which can be static) to be extremely large and can be visualized in terms of a 

tunneling process between energy shifted Dirac states, while the second scheme [4,5] creates 

particles through single- or multi-photon processes by requiring a time-dependent field with a large 

frequency.   

 Numerous theoretical approaches to study the pair-creation are based on the observation that the 

quantum field theoretical expectation value of the electric current density (which is given by a 

commutator of the field operators associated with charge symmetrization) can be related to a 

Green's function and therefore to an action integral [3].  Alternatively, and more relevant to this 

work, one can study the dynamics also from a space-time resolved perspective, where solutions to 

the time-dependent Dirac equation for a set of suitable initial states are usually examined [6]. 

 In a pioneering work in 1940, F. Hund [7] examined quantum mechanically as well as quantum 

field theoretically the stationary processes associated with a single and double step potential barrier 

with a height |V0| that exceeds 2mc2/|q|, where m and q are the electron's mass and charge and c is 

the speed of light.  He conjectured that the matter creation rate for such a supercritical potential 

configuration can be obtained from the simple ratio of the transmitted and incoming current 

densities.  This conjecture opened the door to calculate the pair creation rate Γ for time-independent 

potentials with arbitrary spatial dependence from the energy integral of the corresponding quantum 

mechanical transmission coefficient T(E), i.e. Γ = (2π)–1 ∫ dE T(E).  This useful expression was 

employed in numerous works [8-12] to compute Γ for several time-independent electric field 

configurations, and recently it was also suggested that Hund's conjecture can even be applied to 

other combined static electric-magnetic configurations [13].  

 As recently the prospects of combining static and time-dependent fields to lower the critical 

field have triggered new discussions [2], it seems worthwhile to explore if Hund's conjecture to map 

an intrinsic quantum field theoretical process onto a quantum mechanical scattering problem could 

even be generalized to those external force fields that in addition to a spatial dependence have also 

a temporal dependence.  If this is possible and the vacuum's decay rate can be calculated from the 

laser-assisted scattering system, then this quantum field theoretical process should also be 
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amenable to powerful solution techniques, such as the Kroll-Watson formula [14] and its 

generalizations [15-20] and other techniques that so successfully described laser-assisted scattering 

experiments [21-23]. 

 The purpose of this work is actually three-fold.  We will show first that the mapping of the 

quantum field theoretical pair creation problem onto a quantum mechanical scattering problem 

(Hund rule) can be even generalized to external force fields that have a time dependence.  This 

provides a better visualization of the pair creation process as well as new computational techniques 

calculating the pair creation rate and energy spectra of the created particles.  Second, we suggest 

that the polarization direction of the laser field relative to the direction of the supercritical static 

external field is crucially important for the pair creation yield.  Third, triggered by recent works 

[24-26], which pointed out the importance of the magnetic field component for those pair creation 

processes that are solely triggered by a laser field, we show that if the laser simply assists the pair 

creation process in a supercritical static field, this magnetic component is not so crucial. 

 The paper is organized as follows.  In Section 2 we introduce the model system based on the 

time-dependent Dirac equation.  In Section 3 we derive rigorously from quantum field theory how 

the vacuum's decay in a static supercritical potential can be mapped onto a quantum mechanical 

scattering problem.  In Section 4 we generalize this mapping to the laser-assisted vacuum decay.  In 

Section 5 we use this mapping to provide a remarkable accurate analytical expression for the 

laser-assisted vacuum decay rate for laser fields that are polarized perpendicular to the force 

direction associated with the supercritical static field.  In Section 6 we examine the importance of 

the laser's magnetic field component.  We close with a discussion of future problems in Section 7. 

 

2. The model system 

 The four spinor components of the electron-positron quantum field operator Ψ(r,t) fulfill the 

Dirac equation, i ћ ∂Ψ/∂t = HΨ, where the interaction of the vacuum with the electromagnetic field 

[given by vector potential A(r,t) ≡ (Ax,Ay,Az) and the scalar potential V(r,t)] is described by the 

Dirac Hamiltonian [27] 

 

  H = c α [p –qA(r,t)/c] + mc2 β + qV(r,t)           (2.1) 

 

where α ≡ (α1, α2, α3) and β denote the set of the four 4×4 Dirac matrices.  We use for our 
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calculation atomic units [28,29], where m=1, q= –1, ћ=1 and c=137.036.  If the scalar potential 

V(r,t) and vector potential A(r,t) depend only on the coordinate x, the canonical momenta py and pz 

are conserved.  For simplicity, we focus on py=0, pz=0, which simplifies the computational analysis 

significantly.  Furthermore, as we will examine in this work linear polarized laser fields whose 

magnetic field component ∇×A(r,t) points in the z-direction, and we choose the spin aligned along 

the z-direction.  We can still choose if the laser's polarization (electric field) points along the x- or 

y-direction.  As the spin's direction is conserved, only two of the four spinor components are really 

required to describe the dynamics.  Choosing Az=0, the effective Hamiltonian for the two relevant 

spinor components of the field operator is given by  

 

  H = c σ1 px + σ1 Ax(x,t) + σ2 Ay(x,t) + mc2 σ3 – V(x,t) σ0  (2.2) 

 

where σi (with i=0,1,2,3) denote the set of the four 2×2 Pauli matrices that satisfy the 

anti-commutation relations {σi,σj} = 2 i δi,j.  For better clarity with regard to the concept of a 

radiative mass introduced in Sec. 5, we keep the mass m (=1.a.u.) in all expressions. 

 For the static part of the external force, we choose an electric field that points along the 

x-direction and is spatially localized along the x-direction.  It is modeled by the Sauter [30] 

potential V(x) = V0 [tanh(x/w)–1]/2, where w denotes the spatial extension of the electric field, 

given by E(x) = –∇V(x).  For our analysis, we chose below a negative amplitude V0 = –2.5 mc2, 

such that the corresponding electric field is negative and would accelerate an electron towards the 

positive-x direction. 

 The initial vacuum state is represented by the set of occupied eigenstates |k;d〉 of the (field-free) 

Dirac operator H0 [= c σ1 px + mc2σ3] with negative energy that satisfy H0|k;d〉 = -[m2c4+c2k2]1/2 

|k;d〉.  We assume that our system has a finite spatial extension L and that all states satisfy periodic 

boundary conditions.  As a result, the states can be normalized as 〈k1;d|k2;d〉 = δk1,k2 and they have 

a momentum mode spacing Δk=2π/L.  The corresponding positive-energy states with momentum p 

are denoted by |p;u〉.  In computational quantum field theory [28] the required space-time evolution 

of the electron-positron quantum field operator can be obtained equivalently from the time 

evolution of the set of all states |k;d〉 and the resulting matrix elements Upk(t) ≡ 〈p;u|U(t)|k;d〉, where 

U(t) is the time-ordered evolution operator associated with H.  The solutions of the space-time 
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dependent Dirac equation with the external potentials A(x,t) and V(x,t) can be obtained on a 

space-time lattice with Nt temporal and Nx spatial grid points using efficient fast-Fourier 

transformation based split-operator schemes [31-33].  The total number of created electron-positron 

pairs after the interaction at final time t is then obtained from all time-evolved Hilbert-space states 

as N(t) ≡ Σp,k |Upk(t)|2.  As the calculation of this particle number is based on the projection on the 

field-free states, a direct interpretation of N(t) during the interaction time is non-trivial.  For 

example, if the external field is supercritical, then it is not even possible to distinguish between 

positively and negatively charged particles inside the interaction zone.  The corresponding matrix 

elements are also gauge invariant [34]. 

 This expression, derived from quantum field theory, permits us also to calculate the number 

density of the created positrons Nk(t) with a particular (discrete) momentum k.  Following the 

traditional hole theory, the dynamically induced depletion rate of a particular negative energy state 

|k;d〉 (with negative energy Eneg and momentum k) to states with positive energy is identical to the 

creation rate of a positron with the final (positive) energy E=|Eneg| ≡ [m2c4+c2k2]1/2.  This 

interpretation suggests that the momentum distribution after the interaction at final time t is then 

given by the sum over all final states |p;u〉 that have a positive energy 

 

                          Νk(t) ≡ Σp |Upk(t)|2                                                          (2.3) 

 

Using this (discrete) momentum density Nk(t) we can also define a (continuous) energy density 

associated with the continuum limit where the box size L→∞ and the discrete summations over k 

become integrations.  For example, the total number of created positrons can be expressed as an 

energy integral, i.e., N(t) = Σk Nk(t) ≡ ∫dE N(E,t).  If we replace the discrete summation by an 

energy integral, i.e., Σk → (Δk)-1∫dk = L/(2π) ∫dk = L/(2π) ∫dE/v, where v denotes  the velocity 

v=dE/dk=c2k [m2c4+c2k2]-1/2, we obtain  

 

   N(E,t) = Nk(t) L/(2π)/v                                                                                (2.4) 

 

 We should point out that the final energy spectrum of the created electrons and positrons do not 

necessarily match as the two charges are mainly ejected in opposite spatial directions and their final 
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spectra can also be affected by possible after-accelerations due to the consecutive interaction with 

localized additional (weaker) force fields that are spatially accessible to only one type of particle 

species. 

 Formally, the energy spectrum of the electrons is obtained from the sum over all absolute value 

squared transition elements to a specific positive energy state |p;u〉 originating from all possible 

Dirac sea states |k;d〉 with the final (positive) energy E = [m2c4+c2p2]1/2, i.e. Νp(t) ≡ Σk |Upk(t)|2.  

Equivalently, for consistency, the same energy spectrum could be obtained from the corresponding 

charge-conjugated hole theory, in which the initial Dirac state |p;d〉 is evolved under the 

Hamiltonian H(-q), such that here the depletion of the state |p;d〉 to all states |k;u〉 corresponds to the 

creation of an electron with energy E = [m2c4+c2p2]1/2. 

 The fact that the spectra of the two-particle species do not agree in general does not violate the 

conservation of the total charge, as the total number of created positrons, N(t) = Σk Νk(t) = Σp Νp(t), 

matches for both expressions of Νk(t) and Νp(t), i.e., N(t) = Σk Σp |Upk(t)|2.  We also point out that 

these quantum field theoretical predictions cannot describe the correlations between the two 

energies within a single detected electron-positron pair.   

 It turns out, however, there are some specific electromagnetic field configurations, for which 

the electrons' and positrons' energy spectra can be identical.  For example, if the static potential in 

the Hamiltonian H(q) = c σ1 px + mc2 σ3 + qV(x,t) σ0 has the spatial symmetry V(x) = – V(-x), then  

there exits a space-inversion operator P such that P H(q) P = H(-q).  Here the space-inversion matrix 

operator is defined as P = σ3 p, where p reverses the position argument, i.e., p F(x) = F(-x).   

 The proof for identical energy spectra in this case is straightforward.  We can first insert the unit 

operator P2 into the transition matrix elements, using the symmetry of H(q) and the property 

P 〈x|k;d〉 = 〈x|−k;d〉 and P 〈x|p;u〉 = 〈x|−p;u〉 we obtain 

 

                 Νk(t) = Σp |Upk(t)|2 = Σp |〈p;u| P2Exp[ -i H(q) t] P2 |k;d〉|2  

                          = Σp |〈-p;u| Exp[ -i H(-q) t] |−k;d〉|2                                                             (2.1) 

 

This expression is obviously the energy density of a created electron derived from a hole theory 

with a positronic Dirac sea, governed by H(-q).  Here the depletion of the state |−k;d〉 under the 

positronic Hamiltonian H(-q) corresponds to the creation of an electron with energy E= 
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[m2c4+c2(-k)2]1/2. 

 

3. Pair creation due to a supercritical static force field given by V(r) 

 In Sec. 3.1 we derive how the quantum field theoretical problem of determining the 

time-dependence of the number of created positrons with a given energy E can be mapped onto a 

single-particle quantum mechanical scattering problem.  In Sec. 3.2 we provide a concrete 

numerical example of the space-time evolution of a (spatially infinitely extended) Dirac sea state.  

In Sec. 3.3 we examine the corresponding evolution of a spatially localized wave packet. 

 

3.1 Mapping of the vacuum decay onto a scattering problem 

 Let us discuss two properties of the time-dependent energy density N(E,t) of the created 

positrons.  We will use Eq. (2.3) and (2.4), where N(E,t) can be computed from the depletion 

dynamics of a single Dirac state.  First, we will show that for any interaction, N(E,t) can be obtained 

from the spatially integrated density of certain wave function solutions of the Dirac equation.  This 

relationship will permit us a convenient space-time resolved interpretation of the pair creation 

process and also guide us to derive the quantum mechanical means to compute the pair creation 

yields for more complicated cases where the static force field is accompanied by a time-dependent 

field.  

 First, using the normalization 〈p2;u|p1;u〉 = δp1,p2 we insert the unit-operator expressed as the 

integration over all position eigenstates 1 = ∫dx |x〉〈x|  into the expression for Nk(t).  Here the spatial 

integration extends over the length L of the system.  As a result, Nk(t) can be interpreted as a spatial 

integral [area under ρk(x,t)] 

 

 Nk(t) ≡ Σp |Upk(t)|2 =  Σp1 Σp2 〈p2;u|p1;u〉 Up1k(t) Up2k(t)* 

                                  =  ∫dx  Σp1 Σp2 〈p2;u|x〉〈x|p1;u〉 Up1k(t) Up2k(t)* 

                                       =  ∫dx  |Σp Upk(t) 〈x|p;u〉|2 

                                       ≡  ∫dx  ρk(x,t)             (3.2) 

 

The positive space-time dependent function ρk(x,t) defined as |Σp Upk(t) 〈x|p;u〉|2 with E= 

[m2c4+c2k2]1/2 deserves special attention.  It is the spatial density associated with the positive 
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energy portion of the state |k;d(t)〉 ≡ U(t) |k;d〉, evolved under the full Dirac Hamiltonian containing 

V(x,t) and A(x,t).  This can be easily seen by employing the projection operator into the positive 

energy manifold Σp |p;u〉〈p;u|, while Σp |p;u〉〈p;u| + Σk |k;d〉〈k;d| is the unit operator in this notation: 

             

        ρk(x,t) ≡ |Σp  Upk(t) 〈x|p;u〉 |2  =  |〈x| Σp |p;u〉 Upk(t)|2  =  |〈x| Σp |p;u〉〈p;u| k;d(t)〉 |2       (3.3) 

 

While the initial state |k;d〉 is spatially infinitely extended, the density ρk(x,t) evolves from zero and 

its area ∫dx  ρk(x,t) is equal to Nk(t), which permits therefore a simple quantum mechanical 

interpretation of the pair creation process.   

 For the special case where the external field is time-independent, we show in Appendix A that 

N(E,t) grows (in the long-time limit) linearly in time with a rate that can be computed from the 

quantum mechanical transmission coefficient associated with the corresponding scattering 

situation.  This second step will also provide a rigorous proof of the Hund conjecture based on 

quantum field theory.  In Appendix B we show that if the electric field is symmetric with regard to 

a space inversion, the positrons' energy spectra is not only identical to the electrons' density, but it is 

also symmetric with regard to |V0|/2.  For the special case of an electric field that is spatially 

constant in a certain region, this rate matches well with the rate from Schwinger’s calculation 

[35,36,37].  

 

3.2 Time evolution of a single Dirac sea state  

 We will now illustrate the general finding above for a concrete numerical example.  We choose 

the Sauter potential V(x) with a supercritical amplitude V0=–2.5mc2 and w=0.3/c, and examine the 

temporal evolution of a single Dirac sea state |k;d〉 under the influence of V(x).  The spatial 

representation of this initial 2-spinor state [before the interaction with V(x)] is given by 〈x|k;d〉 = N 

{–k, c+(c2+k2)1/2} exp(ikx), where N is the normalization factor chosen such that the density 

satisfies ∫dx |〈x|k;d〉|2 = 1, with the integration limits –L/2and L/2.  If we chose a negative 

momentum of k = –[(E–|V0|)2 –m2c4]1/2/c together with the parameter E=1.25 mc2, this amounts to 

k= –102.8 a.u.  As a side note, we remark that this state |k;d〉 would be an energy eigenstate of the 

force-free Hamiltonian H0 with negative energy –1.25 mc2.  For x<0 [under the barrier V(x)] it 
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would describe a particle with a positive velocity vinc = c2 k/E (= 82.24 a.u. = 0.6c).  As we chose 

here the specific value E=|V0|/2 we automatically also have vtran = vinc, associated with the velocity 

it has for V(x)≠0, corresponding to x>0.  A simple analytical expression [30,33,38] [given below in 

Eq. (5.1)] predicts that for this energy E=1.25mc2 the transmission coefficient takes the value T(E) 

= 0.272332.  

 In Figure 1 we analyze the temporal evolution of the initial Dirac sea state |k;d〉.  For three 

moments in time, we compare the density |〈x|k;d(t)〉|2 with the physically relevant density ρk(x,t), 

which is associated with the positive-energy portion of the state after the interaction with the field. 

 

 
 

Figure 1   (a,c,e) Snapshots of the spatial density |〈x|k;d(t)〉|2 of a single initial state from the Dirac sea 
with E=1.25mc2 and negative momentum k in the supercritical potential step at three moments in time 
(t1=0.005a.u., t2=0.015a.u., t3=0.025a.u.)   (b,d,f) The corresponding physical spatial probability 
density, associated with the state, but projected onto the positive energy manifold and given by ρk(x,t) 
≡  |〈x| Σp |p;u〉〈p;u| k;d(t)〉 |2.  As a reference, the dashed line is the shape of the supercritical potential 
energy –V(x) = V0 [tanh(x/w)–1]/2.   
(L= 16a.u., Nx=8192, Nt=6000, the interaction time was t=0.024 a.u.) 
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The two densities are already entirely different at the initial time t=0 before the interaction with 

V(x).  While |〈x|k;d(t=0)〉|2 = 1/L (=0.0625) is spatially constant over the entire extension L of our 

system, the initial density ρk(x,t) vanishes due to the orthogonality 〈p;u| k;d〉 = 0.  As time evolves, 

the action of the force field triggers the generation of a reflected and transmitted part.  The reflected 

portion originates close to x=0 and evolves with velocities vrefl = – c2 |k|/[m2c4+c2k2]1/2 to the left.  

The original right traveling and reflected portions lead to strong interference patterns in |〈x|k;d(t)〉|2 

as shown in Figs. 1a,c,e.  The transmitted portion evolves to the right with velocity vtrans = c2 p 

/[m2c4+c2p2]1/2 and momentum p=(E2-m2c4)1/2/c. 

 We point out that due to the unusual relationship between the momenta k and p for a given 

energy this is a very peculiar (non-classical and non-intuitive) scattering event.  For a given energy 

an incoming particle with a small speed is accelerated and escapes to the right with a higher speed, 

whereas an incoming fast particle under the barrier emerges on the right side as a decelerated slower 

particle.  

 In more detail, the snapshot was taken after an interaction time of t = 0.025 a.u., during which a 

particle with the speed of light would move a characteristic distance of 3.4a.u.  On the other hand, a 

particle evolving with a speed of vtrans=82.24 a.u. could only cover a distance of about 2 a.u.  The 

complicated structures in |〈x|k;d〉|2  between  2 a.u. < |x| < 3.4 a.u. are therefore associated with 

states with very high negative energy excited during the abrupt turn-on of the potential.  

 On the left side, the oscillatory domain between -2a.u.< x < 0 a.u. is the result of the 

superposition between the incoming right- traveling state (with amplitude 1/L1/2 and velocity vinc 

=82.24 a.u.) and the reflected portion (with amplitude r(E)/L1/2 and velocity –82.24 a.u.), where the 

reflection coefficient is given by r=[1–T(E)]1/2 amounting to r=0.853.  As a result, the density can 

oscillate theoretically between (1+r)2/L (=0.215) and (1–r)2/L (=0.001), which matches roughly the 

observed amplitudes within our spatial resolution.  The observed period of about 0.03 a.u. matches 

π/k, as expected. Finally, for the spatial range 0 a.u. < x < 2 a.u., we have only the transmitted 

portion with height T(E)/L (=0.0170), as the original density (with height 1/L) has vacated this area 

by moving to the right already to x>2. a.u. 

 In Figures 1b,d,f we display the density ρk(x,t) ≡ |〈x| Σp |p;u〉〈p;u| k;d(t)〉 |2, which is more 
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relevant for the pair creation process.  Its structure is by far not as complicated as |〈x|k;d(t)〉 |2.  Due 

to the required projection Σp |p;u〉〈p;u| in the definition of ρk(x,t), this density picks up only the truly 

transmitted portion.  This transmitted portion corresponds precisely to the spatial probability 

density of the electrons created from the single Dirac sea state |k;d〉.  We can read off the graph that 

its average height of ρk(x,t) is 0.0170, which matches exactly the theoretically expected amplitude 

(derived in the appendices) and given by |τ(E)|2/L where L (=16 a.u.) denotes the total length of our 

system.  Note that because of E=|V0|/2, we have here |τ(E)|2= T(E).  Furthermore, as time evolves, 

the area under the density grows linearly in time, ∫dx ρk(x,t) = 1.400 t, whose numerical value of the 

slope agrees again perfectly with the theoretically predicted value 1/L T(E)  vinc, as derived in the 

appendices.  

 

3.3 Time evolution of a wave packet 

 After analyzing the evolution of a single spatially delocalized Dirac state, let us now visualize 

the pair creation process in terms of a quantum mechanical wave packet scattering.  In order to have 

a spatially localized wave packet, we superimpose several Dirac sea states according to 

 

                                   φ(x,t=0) ≡ ϒ Σk exp[ ik0x–(k-k0)2 Δx0
2] 〈x|k;d〉            (3.4) 

 

were the normalization factor ϒ guarantees that ∫ dx |φ(x,t=0)|2 =1.  If the momentum width of this 

wave packet is narrow enough such that the transmission coefficient is nearly constant over the 

narrow range of all incoming momenta, then this spatially localized state is a good approximation to 

the infinitely extended Dirac sea state with a sharp momentum.  The density is centered around 

negative momentum k0 and has a spatial width proportional to Δx0.  This state is localized initially 

under the barrier (x0<0) and its center evolves to the force region, where part of it is transmitted to 

x>0.  In the absence of the barrier, this state would take a negative central energy – [m2c4+c2k0
2]1/2. 

However, as we have derived in Sec. 3.1, the energy that is relevant for the spectrum of the created 

positrons in the vacuum decay is actually positive, E ≡ [m2c4+c2k0
2]1/2, which we denote by E from 

now on.  To avoid any confusion, we note as a side issue, that (due to the presence of the barrier) the 

total energy of the wave packet amounts also to a total energy that is positive, E+ ≡ 
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|V0|–[m2c4+c2k0
2]1/2, but this particular auxiliary energy is not directly relevant for the vacuum 

decay. Due to the energy conservation, these three energies are trivially related here.  However, for 

the more general case, where the vacuum decay is assisted by a laser field, the total energy is not 

conserved.  Here a single Dirac state (with momentum k) can evolve into a superposition of several 

states |p;u〉 with multiple energies, while the energy of the created positron remains determined 

solely by [m2c4+c2k2]1/2. 

 In the limit of a large Δx0, the area under the final transmitted portion, i.e.,  

 

                                                         Afin(E) ≡ ∫0
∞ dx |φ(x,t)|2                                      (3.5) 

 

integrated from x=0 to x=∞, is identical to the transmission coefficient T(E) for each energy E.  

Therefore, according to Hund's conjecture, this transmitted probability portion is directly related to 

the pair-creation rate Γ(Ε) at that energy (multiplied with 2π), i.e.  2π Γ(Ε) = Afin(E) = Τ(Ε) 

 To test this conjecture numerically we have evolved the wave packet with Δx0=0.3, k0=–102.8 

a.u., x0=–1.2 a.u., corresponding to an energy E=1.25 mc2 the same as in Sec. 3.2.  After a time 

t=0.03 a.u. the area of the transmitted portion Afin of the wave packet amounted to 0.2722 which 

matches the monoenergetic limit of T(E=1.25mc2).  This illustrates again that we can determine the 

pair creation rate for a given energy either from the amplitude (|τ(k)|2 L–1) of an initial (infinitely 

extended) Dirac energy eigenstate (Sec. 3.2) or equivalently from the final area [Afin(E)] of the 

transmitted wave packet.  This observation will be important when we generalize this to the case 

(discussed below) where the pair creation process will be assisted by a time-dependent force. 

 

 

4. Comparison of the vacuum decay with laser-assisted particle scattering  

 In this section, we will examine whether the mapping of the vacuum decay process onto a 

quantum mechanical scattering problem can be generalized if the pair creation due to the static 

supercritical field is assisted by a second force field that is time-dependent [35,39,40]. Due to the 

inherent non-stationarity of the process associated with the time-dependent force, it is non-trivial to 

define a transmission coefficient without any approximation, but we can still compare the process 

with the predictions for a scattered wave packet in the laser field.   
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 We have examined two alternating but spatially homogenous electric fields that differ by their 

polarization direction relative to the static force (x-)direction of the supercritical field, 

corresponding to E(x,t) = E0 sin(ωt) ex and E(x,t) = E0 sin(ωt) ey.  This leads to the interaction 

potentials Ax(x,t) = – E0  c sin(ωt)/ω and similarly Ay(x,t) = – E0  c sin(ωt)/ω such that the two 

Hamiltonians read 

 

  H = c σ1 px + σ1 Ax(x,t) f(t) + mc2 σ3 – V(x,t) σ0  (4.1a) 

  H = c σ1 px + σ2 Ay(x,t) f(t) + mc2 σ3 – V(x,t) σ0  (4.1b) 

 

The envelope f(t) was chosen to contain a very early time period of duration 2×2π/ω, where the 

laser was off.  Using a sin2-pulse shape over one optical cycle, the laser was then turned on to its 

plateau value of f(t)=1.  The turn-off follows the same sequence, but in reverse order.  With regard 

to the parameters, we have chosen again V0=-2.5mc2 and w=0.3/c for the static field and E0=0.2c3 

and ω=0.5mc2 for the time-dependent field.  We note that the latter field is sufficiently small such 

that the number of created particle pairs solely associated with the alternating field (i.e. for V0=0) is 

rather negligible.  However, as we will see below, when the supercritical potential is present, the 

effect of this laser field onto the pair creation process is significant. 

 

4.1 Generalization of a laser-modified rate for a non-monotonic growth of the yield  

 In Figure 2 we graph the temporal growth of the total number of created electrons N(t) for both 

laser field configurations.  The laser was chosen spatially localized during the interaction around 

the location of the static supercritical field with a plateau-like envelope given by {Tanh[(x+d/2)/w] 

– Tanh[(x-d/2)/w]}/2 with an extension d = 0.3 a.u. and a spatial turn-on and off scale w = 5/c.  

During the early and later time of the interaction (when the field is slowly ramped up and down as 

described above) the growth of N(t) is mainly associated with the static potential, leading to a 

growth rate of about Γ≈327.  This is fully consistent with the theoretical prediction from the energy 

integral over the transmission coefficient from mc2 to 1.5 mc2, which amounts to a numerical value 

1/(2π) ∫ dE T(E) = 327.591.  We also observe that once the laser field has developed its maximum 

amplitude, the overall growth is increased for the case where Ax ≠0 and reduced for Ay ≠0.  In 

addition, both data sets reveal superimposed heavy oscillations with constant amplitude.  These 
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oscillations occur with frequency 2ω and are in phase with each other.  The fact that these 

oscillations occur with a relatively time-independent amplitude suggests that it is possible to define 

an average linear growth rate even during the interaction, as indicated by the two parallel straight 

dashed lines in each figure.  They have a slope of about 335 a.u. for Ax ≠0 and about 231 for Ay≠0.  

As these average slopes [which we denote by Γ(E0, ω)] obviously determine the final 

electron-positron yield if the laser is turned off after a long time t, i.e. N(t) = Γ(E0, ω) t, it is possible 

to interpret from now on Γ(E0,ω) as the laser-modified pair creation rate for this process.  

Obviously, in the special case of no laser field, Ax=Ay=0, it reduces to the original rate Γ(E0=0,ω) = 

Γ. 

 
Figure 2   The number of created electron-positron pairs N(t) as a function of time.  The pair-creation 
is assisted by a time-periodic field A(x,t) = –E0 c sin(ωt)/ω ex or A(x,t) = –E0 c sin(ωt)/ω ey.  For 
comparison, we provide dashed lines that have specified slopes.  
(V0 =2.5mc2, w=0.3/c, E0 = 0.2c3, ω =0.5mc2, L= 3a.u., Nx=2048, Nt=18000, laser field was turned 
on smoothly at time t=2×2π/ω (=1.3×10-3 a.u.) and off at time t=12×2π/ω (=8.0×10-3 a.u.) over one 
cycle of duration 2π/ω (=6.7×10-4 a.u.) and with a 9-cycle plateau in between). 
 

 

 The amplitude of the oscillations during the interaction is not so relevant and simply reflects the 

dressing of the Dirac sea states due to the laser field.  In fact, the amplitude increases directly with 

the spatial extension d of the laser pulse. 

 

4.2 Laser-assisted scattering 

 In order to compare the pair-creation process with the quantum mechanical scattering also in the 

presence of the laser field, we have repeated in Fig. 3 the wave packet scattering simulations 
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described in the last part of Section 3.  The wave packet has an initial location x0 = –1.5 a.u. and 

Δx0=0.06 and initial (negative) momentum k0.  In the absence of the potential barrier it would have 

a central energy that is negative with the magnitude E = [m2c4+c2k0
2]1/2. It was injected into the 

potential barrier (around x=0).  The final area of the transmitted portion Afin(E) was calculated.  The 

total simulation time was chosen sufficiently large for each incoming energy, such that the entire 

wave packet has scattered completely and Afin becomes independent of time.  

 For comparison, the top pair of graphs (labeled A=0) in Figure 3 display the corresponding data 

for the dynamics in the absence of the laser field.  Displayed are the final areas Afin(E) of the 

transmitted portion of the Gaussian wave packet as a function of the incoming energy (open 

circles), and also the scaled energy spectrum N(E,t) of the created positrons obtained from the 

quantum field theoretical simulation (continuous line).  As the number of particles for a given 

energy increases monotonically with the interaction time, it had to be normalized, i.e. we have 

graphed N(E,t) 2π/t.  At early times this spectrum is very wide in energy, but as the time increases 

only the part within the energy range mc2<E<1.5mc2 continues to grow.  The agreement between 

the two data sets for each energy is excellent, so it illustrates numerically that Afin(E) = N(E,t) 2π/t.  

Therefore, also the corresponding integral of Afin(E) over all energies reproduces correctly the 

observed vacuum decay rate Γ, i.e. Γ = 1/(2π) ∫dE Afin(E). 

 The key question that we are interested in here is whether the numerical value of the energy 

integral 1/(2π) ∫dE Afin(E) is still related to the laser-assisted pair-creation rate Γ(E0,ω). 
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Figure 3   The three lines are the rescaled energy spectra of the created particles from the 
laser-assisted pair creation process, Ν(E,t) 2π/t.  The open circles are final areas Afin(E) of a 
transmitted Gaussian wave packet as a function of the incoming energy E.  The particle that has been 
scattered off the supercritical potential V(x) in the presence of a time-periodic field A(r,t) = –E0 c 
sin(ωt)/ω, pointing along either the x- or y-direction.  (same parameters as in Fig. 2; for the scattering 
simulation we used L=20a.u., Nx=16384, Nt=18000, x0=–1.5 a.u., Δx=0.0012, t = 9.5 x10–3). 
 

 

The next pair of data (labeled Ax≠0) is for the pair creation and scattering dynamics where the laser 

field is parallel to the supercritical static electric field.  For small energies E<1.5 mc2, there are 

fewer positrons created due the presence of the laser field, but at the same time the laser induces the 

creation of higher energetic positrons that could not be created solely by the static field.  Most 

importantly, the energy spectrum of the created particles is matched again very well by the 

transmitted wave packet portion of the corresponding quantum mechanical scattering dynamics.   

 It is interesting to note that this field configuration permits the scattering event to be 

accompanied by the irreversible absorption and emission of photons.  While incoming particle 

energies for E>|V0|-mc2 (=1.5mc2) are outside the Klein tunneling region and therefore cannot be 

transmitted through the static barrier, the corresponding Dirac state can nevertheless become 

depleted as the emission of a photon lowers its energy into the permitted Klein tunneling region.  

Equivalently, one could argue that the large final energy of the created positron, E > 1.5mc2, is due 

to the (permitted) absorption of a photon during the scattering process.  We should point out again 

that the energy axis represents both the energy of the outgoing created positron as well as the 

absolute value of the (force-free and negative) energy of the scattered incoming particle.  This is 
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relevant as, in contrast to the laser-free scattering, for Ax≠0 the energy of the scattered particle can 

change. 

 The lowest pair (labeled Ay≠0) corresponds to the data for the laser field perpendicular to the 

supercritical field.  Here for each energy the number of created positrons is less than that for the 

other field alignment.  Also, the range of the energies of the created positrons is much narrower than 

for the two cases above.  Most importantly, we find also here a good match with the scattering data. 

 We note that the total energy integral over N(E,t) corresponds to the total number of created 

particles N(t).  Due to the excellent match for each energy, the creation rate can therefore also be 

obtained from the final areas of the transmitted Gaussian wave packets.  While the application of 

Hund's rule to time-independent force fields is well-known and time-dependent forces fields can be 

described by other techniques [see for example 41, 42], the fact that Hund's rule can be generalized 

to time-dependent interactions is, to the best of our knowledge, not reported in the literature. 

 

5. Effect of the laser fields and their polarization on the pair creation yield 

 In this section, we will exploit the prior finding that the vacuum decay process can be mapped 

onto a scattering problem to obtain a better physical understanding of the laser-assisted pair 

creation process.  We will first examine how the direction of the polarization of an external linearly 

polarized electric field relative to the static force direction will affect the pair creation process.  For 

the perpendicularly aligned field Ay(t) we can even provide a fully analytical theory for the 

laser-modified rate Γ(E0,ω) based on the concept of the relativistic mass shift that proofs that any 

field will always reduce the yield.  For the parallel aligned field Ax(t), due to the possibility of 

multiple photon emission and absorption, the situation seems to be more complicated.   

 

5.1 Analytical expressions for the rate Γ from the scattering theory for A=0 

 As we have illustrated in Figure 3, the final area Afin(E) of the Gaussian wave packet as a 

function of the incoming energy plays a key role in determining the vacuum decay.  As we have 

shown in the appendices, in the absence of any laser field this final area is identical to the 

transmission coefficient for a particle of effective mass M in the same field.  It is well known that an 

analytical expression for this coefficient [30,33,38] is given by   

 

        T(E;M) = – sinh[πpw] sinh[πkw] / {sinh[π(|V0|/c+p+k)w/2] sinh[π(|V0|/c-p-k)w/2]}       (5.1) 
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where the two momenta k = – [(E-|V0|)2–M2c4]1/2/c and p = [E2– M2c4]1/2/c depend on the effective 

mass M. 

 Using this analytical expression for the special case of laser-free scattering, where the particle's 

mass is that of the free electron, M=m=1.a.u., we can determine numerical value of the integral Γ = 

1/(2π) ∫dE T(E), which amounts to Γ=327.591.  As discussed in Sec. 4.1, this value is (within our 

numerical accuracy) identical to the vacuum decay rate Γ read off the graph for N(t) in Figure 2.  

 

5.2 Analytical expressions for the vacuum decay rate Γ from scattering theory for Ay ≠0 

 For the situation where the laser is polarized along the y-direction, i.e. E(r,t) = E0 cos(ωt) ey, it 

is still possible to construct a laser-modified transmission coefficient, which will then lead to an 

analytical expression for the pair creation rate. 

 While in a non-relativistic limit (c →∞) the motion along the three spatial directions is 

completely decoupled, in a relativistic system an external field pointing in the y-direction, such as 

Ay(t), affects also the motion along the x-direction.  This can be easily seen for the scalar model 

Hamiltonian H = [m2c4+c2px
2 + Ay

2(t)]1/2, where we have chosen the conserved momenta pz=py=0.  

Here the velocity vx = dH/dpx amounts to vx = c2px [m2c4+c2px
2 + Ay

2(t)]-1/2, which shows that the 

force associated with Ay
2(t) along the y-direction always reduces the velocity vx.  For example, if 

we consider the oscillatory vector potential Ay(t) = – E0 sin(ωt) c/ω  and expand vx in powers of 1/c, 

we obtain vx = px – [px
3 + px (E0

2/ω2) sin2(ωt)]/(2c2) + O(c-4).  If we average this expression over 

one laser period [ω/(2π)∫ dt sin2(ωt) = 1/2], we find that the laser field along the y-direction reduces 

the speed along the x-direction by the amount px E0
2/(4c2ω2).   

 Similarly, and even more relevant, we can also follow earlier works [43-45] and introduce an 

effective radiative mass m*, defined by the temporal average m*(E0, ω) ≡ 〈[m2+Ay
2(t)/c4]1/2〉, 

where 〈…〉 represents the average over one laser period.  More concretely, if we assume Ay(x,t) = – 

E0  c sin(ωt)/ω,  this average mass amounts to 

 

  m*(E0,ω) = (2π/ω)-1 ∫ dt   [m
2+ [E0/(ωc)] 2 sin2(ωt)]1/2   (5.2) 
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where the integration limits cover one period of the external field, 2π/ω.  We can immediately see 

that this mass m* depends only on the dimensionless ratio of the non-relativistic ponderomotive 

energy E0
2/(mω2) and the electron's rest mass energy mc2, i.e. m*(E0,ω) = m F[E0/(mcω)], where F 

is the function given by Eq. (5.2).  While there is no useful analytical solution of this complete 

elliptic integral of the second kind, we can at least find the nonrelativistic limit.  Using the large-c 

expansion [m2+ [E0/(ωc)] 2 sin2(ωt)]1/2 = m + E0
2/(2mω2c2) sin2(ωt) + O(c-4), we can perform the 

average, leading to m*(E0, ω) = m + E0
2/(4mω2c2) + O(c-4).  For our numerical parameters for the 

field, we obtain here m*(E0, ω) = 1.04 a.u., which compares well with the exact value m*(E0, ω) = 

1.03887364 a.u. obtained from Eq. (5.2). 

 

 
Figure 4   The analytical prediction for the (normalized) energy spectrum of the created electrons, 
N(E,t) 2π/t = Γ(E0,ω) without (top data) and with the time-periodic field A(x,t) = -E0 c sin(ωt)/ω ey 
(bottom data).  For comparison, the open dots are the numerically obtained final areas Afin(E) of the 
transmitted portion of the scattered Gaussian wave packet. (same numerical parameters as in Fig.2) 

  

In order to test the accuracy of this analytical prediction, we have compared in Figure 4 the 

corresponding analytical predictions for the normalized energy spectrum of the created particles 

N(E,t) 2π/t, which is given by the transmission coefficient T[E;m*(E0, ω)] and based on the laser 

intensity and frequency dependent mass M=m* from Eqs. (5.1) and (5.2), with the numerically 

obtained final areas Afin(E) of the Gaussian wave packet from Figure 3.  The agreement is excellent, 

which shows again that the laser-induced pair creation process for a laser field that is perpendicular 

to the static field can be mapped rather exactly onto a scattering problem where the particle has an 
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effective mass m* given by Eq. (5.2). 

 The relativistic increase of the effective mass also explains the observed symmetric narrowing 

of the permitted energy range of the created particles in Fig. 3.  While in the absence of any laser 

this range extends from E = mc2 to |V0| – mc2, the laser modified range is only m*(E0,ω)c2 to |V0| – 

m*(E0,ω)c2.  Using the non-relativistic expansion of m*(E0,ω) from above suggests that the 

observed energy range for N(E,t) narrows with increasing field strength E0
 and decreasing ω.   

 

 
Figure 5   The analytical prediction for the laser-assisted vacuum decay rate Γ(E0,ω) [from Eqs. (5.1) 
and (5.2)] as a function of the scaled laser amplitude E0/(mcω) for four spatial extensions of the static 
supercritical field with amplitude V0 =-2.5mc2.  The arrow marks the parameter used in Figs. 2b,3 and 
4. 
 

 As a last and final step, we can now use this analytical expressions Eq. (5.1) and (5.2) to 

estimate the laser-assisted vacuum decay rate according to  

 

                                       N(t) /t  =  Γ(E0,ω) = 1/(2π) ∫dE T[E;m*(E0, ω)]                              (5.3) 

 

For example, for the numerical parameters (E0=0.2c3, ω= 0.5mc2) used in Figs. 2b, 3 and 4, this 

integral amounts to Γ(E0,ω) = 231.272, which matches very well the observed averaged slope in 

Fig. 2b.  To obtain a more general idea as to how this rate decreases with the dimensionless 

parameter E0/(mcω) for m=1 a.u., we have graphed in Figure 5 the vacuum decay rate Γ(E0,ω) for 

several spatial extensions w of the static supercritical field. 

 We can also use this analytical expression to study the scaling of the rate Γ(E0,ω) with the laser 

parameters.  If we assume for simplicity that the static field is very narrow (w→0), Eq. (5.1) 
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simplifies to N(E,t) 2π/t = – 4pk/{(V0
2/c2– (p+k)2}.  This takes the largest value for the energy 

E*=V0/2, for which p = –k.  The resulting expression simplifies to N(E*,t) 2π/t = 1– 4 M2/(V0/c2)2.  

If we insert expansion for M= m*(E0,ω) = m + E0
2/(4mω2c2) + O(c-4) we obtain 

 

           N(E*,t) = NE0=0(E*,t) – t [E0/(ωc)]2 /π                                            (5.4) 

 

This means that the reduction of the number of created particles does not depend on V0 of the static 

field.  If we assume that the integrand in the expression for N(t) = ∫ dE N(E,t) can be approximated 

by its largest value, the integral over the range from E = m*c2 to |V0| - m*c2, can be evaluated as 

 

                      N(t) ≈ (|V0| - 2 m*c2) {NE0=0(E*,t) – t [E0/(ωc)]2 /π}                                       

                             ≈ [|V0| - 2 (mc2 + E0
2/(4mω2)] {NE0=0(E*,t) – t [E0/(ωc)]2/π}                (5.5) 

 

We see that the overall laser-induced reduction of the total number of created particles is due to a 

decrease associated with the energy density for each energy [Eq. (5.4)] as well as a decrease of the 

energy range at which the particles occur. 

 

6. Effect of laser's spatial inhomogeneity on yield 

 For conceptual simplicity, so far we have modeled the laser field above only by a spatially 

homogeneous alternating electric field and therefore neglected the effect of any spatial dependence 

and possibly its magnetic field component.  In order to outline future challenges, we will examine 

briefly in this section this effect by comparing the energy spectra of the created positronss N(E,t) 

from the above sections with those obtained from the laser fields given by the vector potentials 

A(x,t) = E0 sin(ωt-kx) ex and A(x,t) = E0 sin(ωt-kx) ey.   

 In Figure 6 we have displayed the scaled data N(E,t) 2π/t.  For the laser field polarized along the 

y-direction (right figure), the yield is indistinguishable from that obtained for spatially 

homogeneous field for all energies and the radiative mass increase governs the laser-assisted 

decrease of the pair creation yield.  Here the corresponding time-dependent magnetic field, B(x,t) = 

dAy/dx ez, points in the z-direction and apparently does not affect the pair creation process. 

 On the other hand, for the vector potential along the x-direction (left figure) the impact of its 
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spatial dependence is much more interesting.  It has a dramatic and rather non-trivial effect on the 

spectrum that depends on the energy of the created electrons, as some energies are enhanced and 

others reduced compared to the laser-free case as well as to the case where kx=0.  While this 

particular field configuration has no magnetic field component, as ∇×A = 0, the impact of the kx 

term in A(x,t) affects only the corresponding electric field, E(x,t) = – c-1 ∂A/∂t – ∇V(x) in the 

direction of the static force field.  As this direction is more relevant for the pair creation, any 

modification of the term ∂A/∂t has a measurable impact on the yield. 

 We should mention that also for both external fields with kx≠0 the data are perfectly matched 

with the Gaussian scattering data.  We have to point out that due to the projection on field-free 

states, one should not overinterpret the time-dependence of the yield N(t)= ∫ dE N(E,t) during the 

interaction time.  The observed rapid oscillations with frequency 2ω shown in Figure 2 are almost 

suppressed for both polarization directions when the laser field has a spatial as well as time 

dependence.  Here we observe a nearly monotonic increase of N(t) during the plateau region of the 

external fields.  

 

      
Figure 6   Comparison of the energy spectra of the created particles from the laser-assisted pair 
creation process with and without the effect of the magnetic field component, Ν(E,t) 2π/t for the field 
polarized parallel (left) and perpendicular (right) to the static force.  The dotted line is the spectrum 
without any laser field.  (Parameters as in Fig. 2). 
 

 

 

7. Summary and open questions 

 We have suggested that it is possible to map the quantum field theoretical problem of the decay 

of the QED vacuum state onto the quantum mechanical problem of laser-assisted scattering where 

the incoming scattering particle is comprised of negative energy states of the force-free Dirac 
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equation.  We should note here a rather peculiar feature of the relationship between the energies 

involved in the scattering and the corresponding vacuum decay.  The mapping is non-trivial as the 

absolute value of the (chosen) initial energy of the incoming wave packet is identical to the final 

energy of the created positron in the vacuum decay process even in the case of laser-induced energy 

transitions.  The total energy of the incoming wave packet's energy (comprised of Dirac states) is 

actually positive due to the "lift" by the external potential energy |V0|.  In the absence of any laser 

this energy is conserved.  However, in the presence of the laser field, the energy of the wave packet 

is not conserved due to multi-photon transitions, such that the final scattered state can contain 

several energies.  It is noteworthy that also in the laser-assisted decay the chosen initial energy (and 

not the final one) matches that of the created positron. 

 While this equivalence opens the door to new theoretical approaches, one might also wonder if 

it is even possible to model this process in classical mechanical terms of relativistic scattering [46] 

similar to those established for laser-assisted scattering [14-20].  It was suggested that some of the 

features of quantum mechanical interactions, such as self-repulsion [47], energy spectra in pair 

creation [48], and relativistic resonances [49,50] can indeed be reproduced with surprising accuracy 

by corresponding classical ensembles of quasi-particles.  We presently certainly lack any classical 

intuition for the Klein tunneling through a supercritical barrier.  We reiterate that this "scattering" 

potential is peculiar as the energy of an incoming particle determines whether the particle is 

accelerated or decelerated.  Here it would be required to develop a classical mechanical description 

that permits "classical" particles to take formally a negative energy.  For some early first ideas in 

this direction, see the works by Costella et al. [51] who suggested how anti-particle motion is not a 

pre-requisite but can be dealt with in classical mechanics itself.  This goal is, of course, very 

speculative and might also make use of two-state particles or to make physical sense out of particles 

that formally involve backward in time as suggested by the Feynman-Stueckelberg interpretation 

[52,53].   

 In this work, the vacuum state is represented by the complete set of (negative) energy 

eigenstates, whose temporal evolution had to be obtained by the dynamics of each (Dirac sea) state 

separately.  This tedious task is unfortunately rather computer memory and CPU time consuming 

and its feasibility often requires a restriction of the spatial dimension.  In order to be able to tackle 

also 3D situations with full space-time resolution, two interesting early works [24,25] proposed to 

model the quantum field theoretical vacuum state by just a single quantum mechanical state that is a 

superposition of only a few eigenstates.  In Ref. [24] the vacuum was modeled by a single electron 
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wave packet of negative energy at rest to be sufficiently narrow in momentum, to exclude 

unphysical interference effects between different momentum states.  In [25] a single quantum 

mechanical state was chosen that included, as a linear superposition, all possible momentum states 

up to a certain maximum.  While these single-state calculations provided us with plenty of new 

information about multi-photon processes in the context of pair-creation, it should be kept in mind 

that they nevertheless represent only a certain sub-portion of the Dirac sea.  It seems 

computationally a very promising task to being able to identify apriori, which of the initially 

occupied Dirac states are dynamically most relevant.  The mapping of quantum field theory onto 

quantum mechanical states discussed in this work might provide a new guidance and avenues for 

this goal.  Complementary to the present computational approach, there has been also some 

significant progress obtained using real-time lattice techniques [54-56].  These rely on the 

classical-statistical approximation that is valid in the small coupling limit. 

 While our approach permitted us to include the laser polarization directions being aligned at 

arbitrary angles relative to the static electric field vector of the static potential, we note that it was 

possible here to restrict the spatial domain to only the x-direction, as the canonical momenta in the 

y and z-direction were conserved.  In a more general situation where the spatially dependent 

external field varies also along the other two directions, more studies will be required. 

 

Acknowledgements 

QZL and SD would like to thank ILP for the nice hospitality during their visits to Illinois State.  

This work has been supported by the German Humboldt Foundation, NSF, the NSFC (#11529402), 

by Research Corporation and the Strategic Priority Research Program of the Chinese Academy of 

Sciences (Grant No. XDB16010200).



                                                  25            4/26/2018 

 

 

Appendix A 

 We will now examine the general expression (3.2) for the special case where the positrons are 

created solely by a static supercritical field V(x).  We will show below that in the long-time limit the 

energy density grows linearly in time and can be expressed in terms of the quantum mechanical 

transmission coefficient where the energy E is in the range mc2 to |V0| – mc2.  Here among all 

possible initial Dirac states |k;d〉 only a small subgroup of states happen to contribute to the vacuum 

decay in the long-time limit.  It turns out that only those Dirac sea states that have a negative 

momentum (due to our choice of sign V0<0), which is in the energy range between –|V0| +mc2 

<–[m2c4+c2k2]1/2 < –mc2 can contribute in the long-time limit.   

 As a quick excursion, we have to briefly summarize first some stationary properties of this field 

configuration.  Let us assume that the external force field is localized around x=0 and given by a 

scalar potential V(x) that fullfils V(x=- ∞) = V0 and V(x=∞) = 0 such as the Sauter potential used in 

our numerical analysis.  The height |V0| is assumed to be supercritical, i.e., |V0| >2mc2.  For a given 

positive (auxiliary) energy in the range mc2<E+<|V0|-mc2 there exists a stationary energy eigenstate 

of the Dirac Hamiltonian that fulfills [cσ1 p + c2 σ3 – V(x)] |E+〉 = E+ |E+〉.  This state contains the 

reflection and transmission amplitudes.   

 On the right side (x>0) of the potential (where V(x)≈0) the wave function of this state |E+〉 

describes an outgoing (right-traveling) electron state φtran
+(x,p) with a characteristic transmission 

amplitude τ.  If we analytically continue this state to all positions x it would have a (positive) 

momentum p and energy E+ ≡ [m2c4+c2p2]1/2, as it would satisfy [cσ1 px + c2 σ3] φtran
+(x,p;u) = E+ 

φtran
+(x,p;u).  The energy-dependence of the transmission amplitude τ depends on the details of the 

region where the electric field is non-zero and can be obtained by assuming that the asymptotic 

current densities are the same, i.e., jinc + jref = jtran.  The corresponding transmission coefficient is 

defined by the ratio of the transmitted current and the incoming current,  ≡ jtrnas/jinc = |τ|2 vtran/vinc, 

where vtrans = c2 p /[m2c4+c2p2]1/2 and vinc = c2 |k|/[m2c4+c2k2]1/2. 

 On the left side of the electric field (x<0), the energy eigenstate is a superposition of an 

incoming φin
–(x,k;d) and a reflected φref

-(x,-k;d) state, where the negative momentum k is related to 

the auxiliary energy E+ according to E+ = |V0| – [m2c4+c2k2]1/2.  It is important to remark, that (after 

analytic continuation to all positions) both states φin
– and φref

- are identical to free-force eigenstates 
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with negative energy, as they both fulfill [cσ1px + c2 σ3] φ–(x,±k;d) = (E+ – |V0|) φ–(x,±k;d).  As 

characteristic of all eigenstates with negative energy, a negative momentum k corresponds to a 

positive current density presenting a particle moving to the right. 

 After this excursion to stationary scattering theory, we can now return to the interpretation of 

the evolution of the spatial density ρk(x,t).  At the initial time, this density ρk(x,t) vanishes 

identically and it would remain so for all times in the absence of any forces, V'(x)=0.  This means 

that any spatial growth of ρk(x,t) can occur only at those specific spatial regions where the force 

V'(x) is nonzero.  This means that any non-vanishing portion of ρk(x,t) originates close to x=0 and 

then consecutively could propagate into the positive and (at least in principle) into the negative 

x-direction.  The initial Dirac state |k;d〉 with negative energy –[m2c4+c2k2]1/2 and negative 

momentum k has the largest overlap (scalar product) with the specific scattering state |E+〉 that has 

the (auxiliary) positive energy E+ = |V0| – [m2c4+c2k2]1/2.  This should be obvious as the two wave 

functions φin
–(x,k;d) and 〈x|k;d〉 are identical under the barrier V(x).  

 This means we have arrived at the following visual picture.  The population associated with the 

initial state |k;d〉 "flows" to the region x≈0, where it is continuously converted to a state φtran
+(x,p;u) 

that "flows" out to the right with momentum p.  For sufficiently long times, we can now calculate 

the integral ∫dx  ρk(x,t) by the product of the height of ρk(x,t) and its spatial extension.   

 The height of ρk(x,t) follows from the fact that |k;d〉 mainly excites |E+〉.  In other words, its 

amplitude should match that of |φtran
+(x,p;u)|2, which is |τ(E+)|2/L  Here the second factor is the 

result of the (finite) total length L of our system and a direct consequence of the box normalization 

of all states 〈k1;d|k2;d〉 = δk1,k2 as mentioned in Sec. 2.  The length of the spatial region [where 

ρk(x,t) = 1/L |τ(E+)|2 ≠ 0] is given by the product of the velocity and time, i.e., vtran t.  As a result, we 

can estimate 

 

               ∫dx  ρk(x,t) = 1/L |τ(E+)| 2  vtrans t                                                    (A.1) 

 

 If we introduce the transmission coefficient via the expression |τ(E+)|2 vtran = T(E+) vinc, we obtain 

Nk(t) = ∫dx ρk(x,t) = 1/L T(E+)  vinc t.  If we convert the (discrete) density Nk(t) to the corresponding 

energy density (as outlined in Sec. 2.4 above), we obtain  
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                             N(E,t) = (2π)-1 T(E+) t  =  (2π)-1 T(|V0|-E) t                                            (A.2) 

 

as the velocity term as well as the numerical box size L cancels out. 

 

 

Appendix B 

 In this appendix, we will show that for general static electric field configurations for which the 

corresponding electric field is even (symmetric) with respect to a given location, the transmission 

coefficient is symmetric with regard to its central energy |V0|/2, i.e. T(|V0|-E) = T(E).  This proof 

relies on the existence of the anti-unitary charge conjugation operator C, which for the Hamiltonian 

(2.1) in the (standard-Dirac) representation takes the form C=iβα2Κ, where K is the (anti-linear) 

complex conjugation operator.  For the Hamiltonian (2.2) it takes the analogous, but simpler form C 

= i σ3σ2Κ = σ1Κ.  It should not be confused with the (more important) quantum field theoretical 

operator.  It has the property that any general Hamiltonian for an electron of charge q coupled to an 

external field, i.e., H(q) ≡ H0 – q αA+ qV, can be transformed into the corresponding Hamiltonian 

for a positron coupled to the same field, i.e. CH(q) C = – H(–q). 

 If we apply this operator on both sides of the eigenvalue equation for the stationary scattering 

state (H0+qV) |E+〉  = E+ |E+〉  (discussed in Appendix A), we obtain  

 

                                            C (H0+qV) C C |E+〉  =  C E+ |E+〉                         (B.1) 

 

where we also have inserted the unit operator C C =1.  Using the charge conjugation symmetry 

CH(q) C = – H0 + qV(x), subtracting the constant positive energy qV0 = |V0| on both sides of the 

equation, and multiplying with -1, we obtain 

 

                               [H0 – qV(x) + qV0] C φ(x)   = (qV0 – E+)  Cφ(x)                                       (B.2) 

 

The original wave function φ(x) was a scattering eigenstate with energy E+ associated the potential 

V(x) with the asymptotic properties V(-∞) = V0 and V(∞) = 0 corresponding to an incoming 
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particle from the left (k<0) with the asymptotic properties state φ(x) = 〈x|k;d〉 + r〈x|−k;d〉, where 

V(x)=V0.  For positive x [where V(x)=0] the state represented the transmitted portion, given by φ(x) 

= t〈x|p;u〉.  Eq. (B.2) shows that the wave function Cφ(x) is an eigenstate of the Hamiltonian 

H0+qW(x), where the new potential W(x) = –V(x) + V0 has the identical shape as V(x), it is just 

reversed with regard to its asymptotic properties, i.e. W(-∞) = 0 and W(∞) =V0.  However, the wave 

function Cφ(x) has the different energy qV0–E+.   

 The charge conjugation operation changes the signs of the momenta and reverses basically the 

role of upper and lower energy states.  As a result, Cφ(x) is a superposition of the incoming and 

reflected state, Cφ(x) = 〈x|-k;u〉 + r* 〈x|k;u〉 [for the left region where W(x) =0] and the transmitted 

portion Cφ(x) = τ* 〈x|-p;d〉 for the right region where W(x) =V0.  Therefore φ(x) and Cφ(x) contain 

the transmission coefficients that are just complex conjugates of each other, even though they are 

associated with different energies E+ and qV0–E+ and different potentials V(x) and W(x).  

 In general, the associated potentials V(x) and W(x) are different from each other.  However, the 

situation is different if the electric field has some symmetry under spatial inversion.  For example, 

V'(x) = V'(–x) can lead to V(–x) = –V(x) + V0 and we obtain W(–x) = V(x).  This means that the 

spatially inverted solutions Cφ(–x) and φ(x) are both solutions associated with the same potential 

V(x), but energies E+ and qV0–E+.  This means that we have proven the symmetry property T(E+) = 

T(qV0 – E+) such that Eq. (A.2) simplifies to 

 

                                                         N(E,t) = (2π)-1 T(E) t                                                  (B.3) 
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