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We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser
field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG
cutoff energies. Specifically, we consider driving laser field waveforms comprised of two ultrashort
pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs
of carrier frequencies of the component pulses are considered: (ω, 2ω) and (ω, 3ω). Our results
show how changing the signs of the chirps in each of the two component pulses leads to drastic
changes in the HHG spectra. Our theoretical analysis is based on numerical solutions of the time-
dependent Schrödinger equation and on a semiclassical analytical approach that affords a clear
physical interpretation of how our optimized waveforms lead to enhanced HHG spectra.

I. INTRODUCTION

The electric field waveform of a laser pulse plays a cru-
cial role in high-order harmonic generation (HHG) by a
few-cycle driving laser field [1]. Specifically, HHG spec-
tra can be very sensitive to the carrier-envelope phase
(CEP) [2] and the chirp [3, 4] of a single few-cycle pulse,
or to the time delay between two-color synthesized few-
cycle laser pulses [5]. An optimized few-cycle or many-
cycle waveform of the laser field can, e.g., selectively
enhance a single harmonic while suppressing neighbor-
ing harmonics [6–8], or, alternatively, greatly enhance
HHG yields across a large range of harmonic photon en-
ergies [5, 9–16].

Waveform control in HHG is typically realized by
coherently combining two or more color laser pulses
while carefully adjusting the phases, intensities, and, in
some cases, the polarizations of the component frequen-
cies [7, 11, 12, 15–17]. The values of the parameters are
often obtained by optimization techniques using itera-
tive algorithms with feedback loops [6, 8, 9, 11–16], but
can also be determined on the basis of physical argu-
ments, e.g., for the purpose of increasing ionization rates
and/or recollision energies of the active electron in HHG
processes [5, 9, 10]. Chirp is an additional parameter for
controlling the driving laser waveform and, hence, HHG
spectra. The value of the chirp parameter in a linearly-
chirped many-cycle driving laser pulse has been shown to
greatly affect the shape of the HHG spectrum because it
can compensate the chirp of the emitted harmonics [18–
21]. More recently, the use of waveforms comprised of
two or more color, linearly-chirped many-cycle driving
laser pulses has been shown to enable one to selectively
enhance particular harmonics [7, 8].

In this paper, we study HHG spectra produced by two-
color, few-cycle linearly-chirped laser pulse fields. We
show how the chirps of the two-color pulses can be used
to synthesize few-cycle waveforms that result in enhanced
HHG yields and/or extended HHG cutoff energies. Re-
sults are presented for two common cases of two-color

waveforms, i.e., those formed from ω–2ω and ω–3ω few-
cycle pulses. Our results are obtained by solving the
time-dependent Schrödinger equation (TDSE) as well as
by means of a closed-form analytic quantum description
of HHG spectra produced by few-cycle pulses [22]. The
latter analytic theory enables us to interpret our results
in terms of the key trajectories of the active electron, thus
making a straightforward connection to the semi-classical
three-step model of HHG [1, 23–26].
This paper is organized as follows. In Sec. II we present

our theoretical formulation, including a description of
our parametrization of two-color chirped few-cycle pulses
and a brief overview of our numerical and analytic meth-
ods for calculating HHG spectra. In Sec. III we present
our numerical and analytic results for HHG spectra pro-
duced by the important cases of ω–2ω and ω–3ω few-
cycle, chirped laser pulse waveforms. For each case we
discuss our strategy for using the chirp of each of the
two few-cycle pulses to enhance the HHG yield and/or
to extend the HHG cutoff energy. Finally, in Sec. IV we
summarize our results on using two-color, chirped few-
cycle pulse waveforms to enhance HHG yields and cut-
off energies and present some conclusions. Atomic units
(a.u.) are used throughout this paper unless otherwise
specified.

II. THEORETICAL FORMULATION

In this section we present general descriptions of our
theoretical formulation. Specifically, we first discuss how
we parametrize chirped pulses and then provide brief de-
scriptions of the two methods we employ to calculate
HHG spectra. Details of our pulse parameters are given
in Sec. III, where we present our HHG results.

A. Description of a Short Laser-Field Pulse

In the electric dipole approximation, the spatial depen-
dence of a laser field is neglected and in order to avoid
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any zero-frequency component, the electric field F(t) of a
laser pulse is calculated from the vector potential, A(t):

F(t) = −1

c

∂A(t)

∂t
, (1)

where c is the speed of light. A general parametrization
of the vector potential for a linearly-polarized field is:

A(t) = −cF

ω
f(t) sin[φ(t)]ẑ, (2)

where F is the peak strength, ω is the carrier frequency,
f(t) is the temporal envelope of the laser pulse, and φ(t)
is a phase function. For a chirp-free pulse, the phase
function is a linear function of time, φ(t) = φ0 + ωt,
where φ0 is the CEP.

B. Description of Chirped Pulses

There are two commonly used analytic descriptions
of a linearly-chirped laser pulse. One way is to sim-
ply add a term in the chirp-free phase function that is
quadratic in the time t so that the laser field has a time-
dependent frequency that is linear in time, as done in
Refs. [4, 8, 18]. In order to determine the role of the
chirp, typically the pulse durations and peak amplitudes
are fixed (i.e., independent of chirp). For an ultrashort
laser pulse, which has a frequency bandwidth, a different
description has been used in which the frequency band-
width of the chirped pulse is kept the same as that of the
corresponding chirp-free pulse [27, 28]. In this paper we
combine aspects of both pulse formulations.
Specifically, the phase function φ(t) for a linearly-

chirped pulse has the form,

φ(t) = φ0 + ωt+
δ

2
t2, (3)

where δ = d2φ(t)/dt2 is the pulse chirp. In this work the
vector potential (2) for each of the two linearly-chirped
components i of a two-color laser pulse waveform (with
each component having a Gaussian-shaped temporal en-

velope fi(t) ≡ e−αit
2

) thus takes the form,

Ai(t) = −cFi

ωi

e−αit
2

sin(ωit+ δit
2/2 + φi), (4)

where Fi, ωi, φi and δi are the amplitude, frequency,
CEP, and chirp parameter of the ith color field. The
Gaussian envelope parameter αi is related to the pulse
duration τi by αi = 2 ln 2/τ2i , where the pulse duration τi
is defined as the full width at half maximum of the inten-
sity profile. It is convenient to introduce a dimensionless
chirp parameter βi, defined by

δi = 2αiβi. (5)

Then the pulse duration τi may be expressed as

τ2i = ∆2
i (1 + β2

i ), (6)

where ∆i is the pulse duration in the absence of chirp,
i.e., when βi = 0. The chirp-independent bandwidth Γi

of the ith component pulse is then

Γi = 4 ln 2/∆i. (7)

In this paper we consider two-color pulse waveforms in
which i = 1 corresponds to the component pulse with a
carrier frequency ω, i = 2 corresponds one with carrier
frequency 2ω, and i = 3 corresponds to one with car-
rier frequency 3ω. The vector potential for the two-color
pulse waveform for the ω–2ω case is thus,

A1+2(t) = A1(t) +A2(t), (8)

and the one for the ω–3ω case is,

A1+3(t) = A1(t) +A3(t). (9)

Note that the durations of these three component pulses
are assumed to be different, since in experiments these
can be separately adjusted (see, e.g., Refs. [29–31]).
Specifically, we assume that the parameter ∆i equals

∆i =
√
iTi , (10)

where the period Ti is defined by Ti ≡ 2π/ωi. For clarity
in this study, we focus only on the sign of the chirp, i.e.,
we compare results for positive (βi > 0) and negative
(βi < 0) chirps having the same absolute magnitude,
which is fixed at |βi| = 2 in all calculations with chirped
pulses. Thus our chirped pulses have pulse durations

τi =
√
5∆i =

√
5iTi. (11)

With two colors and the choice of positive (+) or negative
(−) chirp for each color, there are four possible combina-
tions of chirp, i.e., (+,+), (+,−), (−,+) and (−,−).
Our goal is to determine which combinations give the

highest HHG yields and cutoff energies. Since our aim
is to focus on the role of chirp in optimizing the short
pulse waveform, when comparing results for our two-
color chirped pulses to results for two-color unchirped
pulses, we keep the pulse durations τi for both chirped
and unchirped pulses the same. As we shall show, for
few-cycle pulses the most important features of the two-
color pulse waveform are those in the neighborhood of
the peaks of the two-color pulse envelopes and thus the
results we present are not very sensitive to the differ-
ences in the pulse durations of the ω–pulse (τ1) and the
2ω–pulse (τ2) or 3ω–pulse (τ3).

C. Calculation of HHG Spectra

The HHG spectra are calculated using the two methods
used in Ref. [5]. One is to solve the three dimensional
time-dependent Schrödinger equation (TDSE) for an H
atom interacting with a laser electric field F (t) that is
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linearly polarized along the z-axis. Within the dipole
approximation, the azimuthally symmetric TDSE is thus,

i
∂

∂t
Ψ(r, t) =

[

p
2

2
− 1

r
+ zF (t)

]

Ψ(r, t), (12)

where the electric field F (t) is derived from the vector
potential in either Eq. (8) or (9): F (t) = −∂tA(t)/c, in
which A(t) ≡ A(t) · ẑ. The TDSE is solved in spheri-
cal coordinates using a time-dependent generalized pseu-
dospectral method [32], in which the wavefunction is ex-
panded in Legendre polynomials and the time propaga-
tion is carried out using a second-order split-operator
technique. The convergence of our TDSE calculations
was monitored by increasing the basis size and the grid
density in both space and time.
The dimensionless harmonic spectrum S(Ω) is ob-

tained from the Fourier transformed dipole acceleration
along the z-axis D̈z(Ω):

S(Ω) =
1

h̄c3

∣

∣

∣
D̈z(Ω)

∣

∣

∣

2

, (13)

where the Fourier transform is defined by

D̈z(Ω) =
1√
2π

∫

∞

−∞

D̈z(t)e
−iΩtdt , (14)

and the time-dependent dipole acceleration D̈z(t) is [33]

D̈z(t) ≡ 〈Ψ(r, t)|−z̈|Ψ(r, t)〉

= 〈Ψ(r, t)|∂V (r)

∂z
|Ψ(r, t)〉+ F (t) , (15)

in which V (r) = −1/r is the atomic potential for an H
atom, and thus ∂V (r)/∂z = z/r3. Note that the factor
h̄c3 in the denominator of Eq. (13) has been given ex-
plicitly (where h̄ = 1 in a.u.) in order to clearly indicate
that S(Ω) is dimensionless.
The second method employs an analytical description

of HHG spectra produced by few-cycle laser pulses [22].
In this analytic description, the dimensionless harmonic
spectrum ρ(Ω) is obtained by coherently adding a handful
of amplitudes corresponding to ionized electron trajecto-
ries (labeled by j and k) from different half-cycles of the
laser pulse:

ρ(Ω) =
∑

j,k

sjk cos(ϕj − ϕk)Aj(E)Ak(E), (16)

where the harmonic photon energy Ω and the returning
electron energy E satisfy the relation:

Ω = E + |E0|. (17)

Here E0 is the ground-state energy of the electron, which
equals E0 = −1/2 for the hydrogen atom. In Eq. (16),
each amplitude Aj(E) equals the square root of a product

of three factors representing the three steps of high har-
monic generation: the ionization factor Ij , the propaga-

tion factor Wj(E), and the recombination factor σ(r)(E):

Aj(E) ≡
√

IjWj(E)σ(r)(E) . (18)

Also, in Eq. (16) ϕj is the phase of the jth amplitude
and the factors sjk = ±1 are sign factors. The calculation
of each Aj(E) amplitude begins by finding a correspond-

ing classical trajectory that starts at t
(j)
i (the ionization

time), and ends at t
(j)
r (the recombination time). For a

detailed description of the calculation of the amplitudes
Aj(E), the phases ϕj , the sign factors sjk, and the times

t
(j)
i and t

(j)
r , see Refs. [5, 22].

III. RESULTS AND DISCUSSION

Commonly used two-color fields include those in which
a pulse with carrier frequency ω is combined with either a
second harmonic pulse (ω–2ω) or a third harmonic pulse
(ω–3ω). These two combinations can have very different
alignments of the fundamental and harmonic field max-
ima and minima. For the ω–2ω field waveform one can
never align all the major extrema of the two color con-
stituents. As shown in Fig. 1(a), the maxima are aligned
at t = 0 but are anti-aligned at t = 0.5T1, where T1 is the
period of the fundamental frequency. However, for the
ω–3ω field waveform, the extrema can be aligned at both
t = 0 and t = 0.5T1 [see Fig. 3(a) below]. Owing to such
different alignment possibilities as well as to the fact that
HHG spectra are extremely sensitive to the time-profile
of a laser pulse waveform, the strategies for choosing the
best chirp combinations are different for the ω–2ω and
ω–3ω field waveforms. These different strategies are dis-
cussed in turn in Secs. III A and III B for pulses having
zero CEPs (so that the two fields are aligned at t = 0).
The case of nonzero CEPs is considered in Sec. III C. For

TABLE I. Laser parameters for the chirped and unchirped
pulses used in our HHG calculations. For each component
pulse i, we give the carrier wavelength, λi (nm) (= 2πc/ωi),
the carrier frequency, ωi (a.u.), the pulse duration, τi (fs)
[see Eq. (11)], the carrier period, Ti (fs), and the absolute
magnitude of the dimensionless chirp parameter, |βi|. For
each of the component pulses, the CEP φi = 0 and the peak
pulse intensity is Ii = cF 2

i /(8π) = 6× 1013 W/cm2.

i λi (nm) ωi (a.u.) τi (fs) Ti (fs) |βi|

1 2400 1.90(-2) 17.9 8.0 2

1 2400 1.90(-2) 17.9 8.0 0

2 1200 3.80(-2) 12.6 4.0 2

2 1200 3.80(-2) 12.6 4.0 0

3 800 5.70(-2) 10.3 2.7 2

3 800 5.70(-2) 10.3 2.7 0
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FIG. 1. Two-color (ω–2ω) pulse waveforms and their HHG spectra. The (ω–2ω) waveforms defined in Eqs. (1) and (8) are
comprised of component pulse fields i = 1 and i = 2, defined by Eq. (4), having field parameters given in Table I. Panels
(a) and (b): Electric field pulses for carrier wavelengths λ1 = 2400 nm [long dashed (blue) line], λ2 = 1200 nm [short dashed
(green) line], and the two-color combined field waveform [solid (red) line] plotted vs. time in units of T1 ≡ 2π/ω1 = 8.0 fs. The
arrows indicate the ionization (i) or recombination (r) times of the three electron trajectories given in Table II. Highlighted
areas in the vicinity of times t = −0.25T1 and t = +0.75T1 are discussed in the main text. Panel (c): HHG spectra ρ(Ω) [see
Eq. (16)] produced by the unchirped and chirped pulse waveforms in Panels (a) and (b) calculated using the analytic description
of short-pulse HHG of Ref. [22]. The arrows indicate the HHG plateau cutoff energies produced by the trajectories listed in
Table II. Panel (d): TDSE results S(Ω) [see Eq. (13)] for the same HHG spectra as in Panel (c). To facilitate comparison with
the TDSE results S(Ω) in Panel (d), each of the analytic spectra ρ(Ω) in Panel (c) is multiplied by the constant factor 3.08.
This factor is chosen so that the values of the TDSE and analytic curves for the unchirped pulses are equal at the position of
the lowest cutoff energy, i.e., ρ(Ω = 112 eV) = S(Ω = 112 eV) for the unchirped pulses.

convenient reference, the laser parameters for our chirped
and unchirped pulses in the ω–2ω and ω–3ω cases are
given in Table I.

A. Case of ω–2ω chirped laser pulses: HHG

enhancement by improving pulse alignment

The ω–2ω fields plotted in Fig. 1 are those for the
chirped and unchirped component pulses i = 1 and i = 2
in Table I. The pulse durations of the unchirped pulses
in Fig. 1(a) are set equal to those of the chirped pulses,
i.e., ∆1 = 17.9 fs and ∆2 = 12.6 fs with chirp parame-
ters |βi| = 0. This is done since the HHG spectrum is
sensitive to the pulse length of an ultrashort pulse [22]
and our aim here is to isolate the effects of chirp on the
HHG spectra.

For the ω–2ω pulse waveform in Fig. 1(a), the peaks
of the two component pulses interfere constructively at
t = 0 where their electric fields are aligned, but interfere
destructively at t = −0.5T1 and t = +0.5T1, at which
their electric fields are anti-aligned. For times approxi-
mately a quarter period on either side of t = ±0.5T1, the
combined field waveform (indicated by the solid line) has

two minima. Owing to the periodicity of the ω–2ω fields,
if one uses chirp to increase the field minimum in the
vicinity of t = −0.25T1, then one expects to also increase
the field minimum in the vicinity of t = +0.75T1. These
two important minima are highlighted in Fig. 1(a). The
increase of the first minimum will increase the ionization
rate just before the maximum in the combined field at
t = 0, while the increase of the second minimum will in-
crease the return energy of electrons ionized by the peak
field near t = 0. In order to increase the minimum of the
ω–2ω waveform near t = −0.25T1, one must move the
minima of the ω and 2ω component fields at t = −0.5T1

and t = −0.25T1 respectively closer together. This can
be done by introducing a negative chirp in the ω–pulse
and a positive chirp in the 2ω–pulse. The resultant fields
are plotted in Fig. 1(b) and one can see the enhanced field
strength in the highlighted areas. Note that the peak in-
tensity of the chirped pulse remains the same as that of
the unchirped pulse because the fields are not affected
by the chirp at t = 0. With this optimization strategy,
the HHG spectrum produced by the chirped ω–2ω pulse
waveform exhibits a clear enhancement of the HHG yield
for harmonic photon energies greater than 120 eV as com-
pared to the HHG spectrum produced by the unchirped
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TABLE II. Ionization and recombination times, t
(j)
i and t

(j)
r

(in units of T1), cutoff energies E
(j)
cut, ionization factors Ij ,

and instantaneous Keldysh parameters γ̃j for three important
electron trajectories j = 1−3 that determine the HHG spectra
in Fig. 1(c) produced by the unchirped and chirped ω–2ω
pulse waveforms shown in Figs. 1(a) and (b).

j t
(j)
i t

(j)
r E

(j)
cut (eV) Ij γ̃j

(a) unchirped ω–2ω

1 -0.98 -0.18 138 2.7(-4) 0.68

2 -0.33 0.13 195 5.6(-6) 0.96

3 0.020 0.80 112 3.7(-3) 0.47

(b) chirped (−,+)

1′ -0.96 -0.19 135 4.3(-6) 0.98

2′ -0.33 0.13 194 3.7(-5) 0.83

3′ 0.025 0.79 150 3.5(-3) 0.47

ω–2ω pulse waveform, as shown in Figs. 1(c) and (d),
where we present the HHG spectra produced by our an-
alytic method and by our TDSE method respectively.
We notice also that the cutoff energy of the lower energy
plateau in the HHG spectrum is increased from approx-
imately 112 eV to 150 eV with only a small decrease in
the HHG yield.
In order to determine the physical mechanisms respon-

sible for these enhancements of the HHG spectrum, we
employ our analytic description of HHG spectra pro-
duced by few-cycle pulses. In this description, the har-
monic spectrum is obtained by coherently adding the am-
plitudes corresponding to a handful of electron trajecto-
ries ionized from different half-cycles in the vicinity of
the maximum of the short-pulse envelope [5]. For each
jth electron trajectory, one can calculate the ionization

and recombination times t
(j)
i and t

(j)
r , the instantaneous

Keldysh parameter γ̃j at the time of ionization, the ion-
ization factor Ij (which largely determines the spectral

intensity), and the cutoff energy E
(j)
cut. These quantities

are given respectively by Eqs. (13), (18), (19) and (25) of
Ref. [5] and are listed in Table II for the HHG spectra in
Fig. 1(c) produced by the unchirped and chirped ω–2ω
pulse waveforms in Figs. 1(a) and (b).
In Figs. 1(a) and (b) we indicate the ionization and

recombination times, t
(j)
i and t

(j)
r , for each of the key

electron trajectories j = 1 − 3 and j = 1′ − 3′ given
in Table II for the unchirped and chirped ω–2ω pulse
waveforms respectively. Also, in Fig. 1(c) we indicate
the cutoff energies for each of these three trajectories for
both the unchirped and chirped pulse waveforms.
It is clear from Table II that the approximately order

of magnitude increase in the HHG yield for harmonic en-
ergies greater than 160 eV stems from the nearly order
of magnitude increase in the ionization rate for electron
trajectory j = 2′ in the case of the chirped ω–2ω pulse
waveform. One sees also that the extension of the lower-
energy HHG plateau cutoff energy from 112 eV to 150 eV

60 80 100 120 140 160 180 200

-17

-16

-15

-14

-13

-12

-11

lo
g 1

0[
(

)]

Photon energy  (eV)

 unchirped
 chirped +,-
 chirped +,+

100 120 140 160 180 200

-15

-14

-13

-12

lo
g 1

0[
(

)]

Photon energy  (eV)

 unchirped
 chirped -,+
 chirped -,-

(a)

(b)

FIG. 2. Comparison of HHG spectra ρ(Ω) [see Eq. (16)] pro-
duced by ω–2ω pulse waveforms with four chirp combinations
β = ±2 of the ω– and 2ω–pulse fields. (a) HHG spectra for
the chirp combinations (−,+) and (−,−), where the result for
the former is the same as that in Fig. 1(c). (b) HHG spectra
for the chirp combinations (+,−) and (+,+). For comparison,
in each panel the HHG spectrum produced by the unchirped
pulse is also plotted.

is due to the greater recombination energy obtained by
the electron on trajectory j = 3′, which dominates the
spectrum in this energy region. In particular, the signifi-
cance of the electron trajectory j = 1′ is greatly reduced
owing to the nearly two orders of magnitude reduction of
its ionization rate. Figures 1(c) and (d) show also that
both the analytic and the TDSE results have fine oscil-
lation structures in the energy region below 160 eV. The
origin of these small peaks is the interference of two or
more partial amplitudes from different trajectories [22].
For example, for the chirped case in Fig. 1(c), there are
three contributing partial amplitudes, 1′, 2′ and 3′. Tra-
jectory 3′ is the dominant one since its ionization factor
is more than two orders of magnitude higher than those
of the other two, which are responsible for the fine oscil-
lation structures.

The HHG spectra from our analytical calculations in
Fig. 1(c) agree well with the TDSE results in Fig. 1(d).
The discrepancy in the absolute yields of the analytic
and TDSE results by an overall factor is expected, as the
analytic theory assumes that the instantaneous Keldysh
parameter of the jth trajectory is small, i.e., that γ̃j
is small compared to unity. In the present calculations,
this is not always the case (see Table II). The less smooth
curves of the TDSE results as compared to the analytic
results for harmonic energies above 170 eV may be due
to interference of more than one trajectory, whereas the
analytic results stem from only the j = 2 or j = 2′ tra-
jectory in the unchirped and chirped cases respectively.
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FIG. 3. Two-color (ω–3ω) pulse waveforms and their HHG spectra. The (ω–3ω) waveforms defined in Eqs. (1) and (9) are
comprised of component pulse fields i = 1 and i = 3, defined by Eq. (4), having field parameters given in Table I. Panels (a)
and (b): Electric field pulses for carrier wavelengths λ1 = 2400 nm [long dashed (blue) line], λ3 = 800 nm [short dashed (green)
line], and the two-color combined field waveform [solid (red) line] plotted vs. time in units of T1 ≡ 2π/ω1 = 8.0 fs. The arrows
indicate the ionization (i) or recombination (r) times of two important electron trajectories given in Table III. Highlighted areas
in the vicinity of times t = ±0.25T1 are discussed in the main text. Panel (c): HHG spectra ρ(Ω) [see Eq. (16)] produced
by the unchirped and chirped pulse waveforms in Panels (a) and (b) calculated using the analytic description of short-pulse
HHG of Ref. [22]. The arrows indicate the HHG plateau cutoff energies produced by the trajectories listed in Table III. Panel
(d): TDSE results S(Ω) [see Eq. (13)] for the same HHG spectra as in Panel (c). To facilitate comparison with the TDSE
results S(Ω) in Panel (d), each of the analytic spectra ρ(Ω) in Panel (c) is multiplied by the constant factor 5.81. This factor
is chosen so that the values of the TDSE and analytic curves for the unchirped pulses are equal at the position of the lowest
cutoff energy, i.e., ρ(Ω = 119 eV) = S(Ω = 119 eV) for the unchirped pulses.

For clarity, our results in Figs. 1(c) and (d) are presented
in the high-energy region of the HHG spectrum since it
is in this important energy region that chirp effects are
most significant.

The optimal combination of chirps for the unchirped
ω–2ω pulse waveform in Fig. 1(a) is thus (−,+), in which
the ω–pulse is negatively chirped and the 2ω–pulse is pos-
itively chirped. We have also carried out calculations for
the other three combinations of chirped pulses: (+,−),
(−,−) and (+,+). The resultant HHG spectra are plotted
in Fig. 2. In Fig. 2(a) one sees that both the (−,+) and
(−,−) chirped pulse waveforms also result in an enhance-
ment of the HHG yield for photon energies above 120 eV,
but the optimal (−,+) chirp combination produces the
greatest enhancement. On the contrary, in Fig. 2(b) one
sees that both the (+,−) and (+,+) chirped pulse wave-
forms result in a decrease in HHG yields as compared to
the unchirped pulse case, with the opposite of the optimal
combination, i.e. (+,−), giving the lowest HHG yield in
the high energy region. Although Fig. 2 only shows our
analytic calculation results for the HHG spectra, results
of our TDSE calculations (not shown) are similar.

B. Case of ω–3ω chirped laser pulses: HHG

enhancement by increasing pulse asymmetry

The strategy for enhancing the HHG spectrum pro-
duced by an ω–3ω pulse waveform using chirp differs from
that for the ω–2ω pulse waveform considered in the pre-
vious subsection. In the latter case we have shown that
(for pulses with zero CEPs) the ω–pulse and 2ω–pulse
fields are anti-aligned at t = ±0.5T1 [see Fig. 1(a)]. In
that case we introduced chirps in the ω–pulse and 2ω–
pulse fields that slightly improved the alignment of the
two fields at times t = ±0.5T1 + 0.25T1. In the case of
an ω–3ω pulse waveform, however, the ω–pulse and 3ω–
pulse fields are aligned at times t = ±0.5T1 and produce
nearly symmetric oscillations of the two-color waveform
that are centered at times t = ±0.25T1 [see highlighted
areas in Fig. 3(a)]. In this case the strategy for enhancing
HHG yields and increasing HHG plateau cutoff energies
is to introduce chirps in the ω–pulse and 3ω–pulse fields
that result in a reduced symmetry of the oscillations cen-
tered at t = ±0.25T1 in the two-color waveform.

The ω– and 3ω–pulse fields and their superposition
waveform are presented in Fig. 3(a) for the component
field parameters given in Table I. Examining the ω–3ω
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pulse waveform (the solid line) in Fig. 3(a), one sees that
electrons ionized by the large field amplitude centered at
the time t = −0.5T1 are accelerated back to the atom a
half-cycle later by the oppositely-directed large field am-
plitude centered at t = 0. Similarly, electrons ionized
by the large field amplitude centered at t = 0 are accel-
erated back to the atom a half-cycle later by the large
field amplitude centered at t = +0.5T1. By introduc-
ing chirps in the ω–pulse and 3ω–pulse fields, one can
enhance these dominant motions by changing the am-
plitudes of the small oscillations of the waveform in the
highlighted areas in Fig. 3(a) centered at t = ±0.25T1.
Specifically, one wishes to use chirp to increase the am-
plitudes of the first half cycles of the oscillations at times
t <∼ ±0.25T1 and reduce the amplitudes of the second
half cycles of the oscillations at times t >∼ ±0.25T1. By
thus increasing the asymmetry of these two minor half-
cycles [see the highlighted areas in Fig. 3(a)], the elec-
trons ionized by the peak field amplitudes centered at
times t = −0.5T1 and t = 0 gain more energy during
their acceleration back to the atom.

This strategy for using chirp to enhance the HHG spec-
trum produced by the ω–3ω pulse waveform requires that
one positively chirps the ω–pulse while negatively chirp-
ing the 3ω–pulse. As before, our chirp parameter is
|βi| = 2. By introducing these chirps, the magnitude
of the ratio of the amplitude of the first half cycle to
the amplitude of the second half cycle in the highlighted
area of Fig. 3 at t = −0.25 is changed from 0.87 to 1.15.
Similarly, the magnitude of the ratio of the amplitude of
the first half cycle to the amplitude of the second half
cycle in the highlighted area of Fig. 3 at t = +0.25 is
changed from 1.15 to 1.82. Thus, the (+,−) chirps of the
ω– and 3ω–pulses respectively increase the asymmetry in
the magnitude of the first half cycle to that of the sec-
ond half cycle of each of the minor oscillations at times
t = ±0.25T1. The increase in these asymmetries in turn
results in a significant increase of the HHG plateau cut-
off energy as well as an increase in the HHG yield above
130 eV, as shown in Figs. 3(c) and (d) which present re-
spectively our analytic and TDSE results for this ω–3ω
case in the high-energy region of the HHG spectrum.

The origin of these enhancements of the HHG spec-
trum yields and cutoff energies can be understood from
our analytic description of short-pulse HHG spectra. For
each of the two most important electron trajectories,
j = 1, 2, in the high-energy HHG spectrum, we present

in Table III the ionization and recombination times t
(j)
i

and t
(j)
r , the instantaneous Keldysh parameter γ̃j at the

time of ionization, the ionization factor Ij (which largely
determines the spectral intensity), and the cutoff energy

E
(j)
cut. In our analytic approach, the amplitudes for these

trajectories result in the HHG spectra given in Fig. 3(c)
that are produced by the unchirped and chirped ω–3ω
pulse waveforms in Figs. 3(a) and (b). Comparing the
trajectory parameters in Table III for the unchirped and
chirped ω–3ω pulse waveforms, one sees that the j = 2′

TABLE III. Ionization and recombination times, t
(j)
i and t

(j)
r

(in units of T1), cutoff energies E
(j)
cut, ionization factors Ij ,

and instantaneous Keldysh parameters γ̃j for two important
electron trajectories j = 1, 2 that determine the high-energy
HHG spectra in Fig. 3(c) produced by the unchirped and
chirped ω–3ω pulse waveforms shown in Figs. 3(a) and (b).

j t
(j)
i t

(j)
r E

(j)
cut (eV) Ij γ̃j

(a) unchirped ω–3ω

1 -0.45 0.10 140 1.3(-3) 0.94

2 0.043 0.60 119 3.0(-3) 0.83

(b) chirped (+,−)

1′ -0.45 0.11 145 2.6(-3) 0.85

2′ 0.035 0.62 142 4.6(-3) 0.78

trajectory has a greatly increased cutoff energy as com-
pared to that for the j = 2 trajectory. Also, the ioniza-
tion factors for the j = 1′ and 2′ trajectories are signifi-
cantly larger than those for the j = 1 and 2 trajectories.
In addition to these enhancements, the chirped pulse

HHG spectrum has fine-structure oscillations in the en-
ergy region above 130 eV that are absent in the unchirped
pulse spectrum. These fine-structure oscillations origi-
nate from the interference between the two trajectories
j = 1′ and 2′ of the chirped pulse. This interference is
absent in the unchirped pulse HHG spectrum owing to
the very different cutoff energies of the j = 1 and 2 tra-
jectories, as shown in Table III. Thus in the energy region
from about 135 eV to 150 eV, the unchirped spectrum is
dependent mainly on the j = 1 trajectory and hence is
quite smooth. By introducing chirps in the ω–pulse and
3ω–pulse fields, the cutoff energy of the j = 2′ trajectory
increases from 119 eV to 142 eV, which is about the same
as the cutoff of the j = 1′ trajectory. Hence, the fine-
structure oscillations with an energy interval of about
1 eV (or about twice the ω photon energy of 0.51 eV) are
the result of interference of these two trajectories over
the entire high-energy region of the HHG spectrum.
The HHG spectra from our analytical calculations in

Fig. 3(c) agree well with the TDSE results in Fig. 3(d).
As noted previously, the discrepancy in the absolute
yields of the analytic and TDSE results by an overall
factor is expected, as the analytic theory assumes that
the instantaneous Keldysh parameter of each contribut-
ing trajectory is small, i.e., γ̃j is small compared to unity.
In the present calculations, in each case these parameters
are smaller than but comparable to unity (see Table II).
The optimal combination of chirps for the unchirped

ω–3ω pulse waveform in Fig. 3(a) is thus (+,−), in which
the ω–pulse is positively chirped and the 3ω–pulse is neg-
atively chirped. We have also carried out calculations for
the other three combinations of chirped pulses: (−,−),
(−,+), and (+,+). The resultant HHG spectra are plot-
ted in Fig. 4. In Fig. 4(a) one sees that both the (+,−)
and (−,−) chirped pulse waveforms result in an enhance-
ment of the HHG yield for photon energies above about
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FIG. 4. Comparison of HHG spectra ρ(Ω) [see Eq. (16)] pro-
duced by ω–3ω pulse waveforms with four chirp combinations
β = ±2 of the fundamental and harmonic fields. (a) HHG
spectra for the chirp combinations (+,−) and (−,−), where
the result for the former is the same as that in Fig. 3(c). (b)
HHG spectra for the chirp combinations (−,+) and (+,+).
For comparison, in each panel the HHG spectrum produced
by the unchirped pulse is also plotted.

130 eV, but the optimal (+,−) chirp combination pro-
duces the greatest enhancement, especially above 140 eV.
On the contrary, in Fig. 4(b) one sees that both the (−,+)
and (+,+) chirped pulse waveforms result in a decrease
in HHG yields as compared to the unchirped pulse case,
with the opposite of the optimal combination, i.e. (−,+),
giving the lowest HHG yield in the high energy region.
Although Fig. 4 only shows our analytic calculation re-
sults for the HHG spectra, results of our TDSE calcula-
tions (not shown) are similar.

C. Cases of ω–2ω and ω–3ω two-color pulses having

non-zero CEPs

In Secs. III A and III B we have studied HHG spec-
tra produced by ω–2ω and ω–3ω two-color pulse wave-
forms and have developed strategies for using chirp to
increase HHG yields and plateau cutoff energies. In each
of those two cases, the ω–pulse and the pulses with car-
rier frequencies 2ω and 3ω were assumed to have equal
peak pulse intensities and zero CEPs. In this section we
demonstrate how similar chirp strategies can be used in
the case when the CEPs are non-zero. In this case, the
ω–pulse is no longer aligned with the 2ω– or 3ω–pulse at
t = 0. The appropriate strategy is then to use chirps to
improve the alignment of the ω–pulse field and the field of
the 2ω– or 3ω–pulse at significant times close to t = 0. As
examples, we consider two cases of two-color pulse wave-

TABLE IV. Ionization and recombination times, t
(j)
i and t

(j)
r

(in units of T1), cutoff energies E
(j)
cut, ionization factors Ij ,

and instantaneous Keldysh parameters γ̃j for two important
electron trajectories j = 1, 2 that determine the high-energy
HHG spectra in Fig. 5(c) produced by the unchirped and
chirped ω–2ω pulse waveforms shown in Figs. 5(a) and (b).

j t
(j)
i t

(j)
r E

(j)
cut (eV) Ij γ̃j

(a) unchirped ω–2ω

1 -0.65 0.10 203 5.7(-5) 0.80

2 0.00068 0.41 129 1.6(-3) 0.54

(b) chirped (+,−)

1′ -0.66 0.10 211 6.3(-4) 0.62

2′ -0.0058 0.43 149 1.8(-3) 0.53

forms in which the fundamental field has a non-zero CEP
φ1. Owing to the generally good qualitative agreement
of the results of our analytic description of short-pulse
HHG spectra and our TDSE results, in this section we
only present results of our analytic description.
Consider first the ω–2ω pulse waveform studied in

Sec. III A but in which the fundamental field now has
a CEP φ1 = π/4. The unchirped ω–pulse and 2ω–pulse
fields as well as the ω–2ω pulse waveform are shown in
Fig. 5(a). Examining the highlighted region centered at
t = −0.75T1 we see that the ω–pulse and 2ω–pulse fields
both have minima that occur at slightly different times.
By introducing chirps, we aim to improve the alignment
of these two fields so that the depth of the minimum of
the ω–2ω pulse waveform increases. This can be accom-
plished by introducing a positive chirp β1 = +2 in the
ω–pulse and a negative chirp β2 = −2 in the 2ω–pulse,
as shown in Fig. 5(b). Comparing Figs. 5(a) and (b),
one sees also that the nearly symmetric oscillation of the
two-color pulse waveform centered at about t = −0.38T1

becomes quite asymmetric in the chirped pulse case.
The resulting HHG spectra of the chirped and unchirped
ω–2ω pulse waveforms are shown in Fig. 5(c). One ob-
serves that the chirped pulse waveform has a much higher
HHG yield for harmonic energies above about 135 eV
and also that both the low-energy plateau and the high-
energy plateau have significantly greater cutoff energies.
Our analytic description of HHG spectra enables us to

understand the origin of these enhancements in terms of
the two important electron trajectories contributing to
the high-energy HHG spectrum. The ionization and re-
combination times of these two trajectories are indicated
in Figs. 5(a) and (b) and their respective cutoff energies
are indicated in Fig. 5(c). In Table IV we give the val-
ues of these parameters of the two trajectories as well as
their ionization factors and instantaneous Keldysh pa-
rameters. One sees from Fig. 5 and Table IV that the
(+,−) chirp has increased the ionization factor for tra-
jectory j = 1′ by an order of magnitude, explaining the
great increase in yield in the chirped pulse HHG spectrum
for harmonic energies greater than about 160 eV. This
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FIG. 5. Two-color (ω–2ω) pulse waveforms and their HHG
spectra. Panels (a) and (b): Electric fields of an ω–pulse,
a 2ω–pulse, and the superposed ω–2ω pulse waveform. The
field parameters are the same as in Fig. 1 except that the ω–
pulse has a non-zero CEP, φ1 = π/4. The arrows indicate the
ionization (i) or recombination (r) times given in Table IV for
the two most important trajectories. Highlighted areas in the
vicinity of times t = −0.75T1 and t = +0.25T1 are discussed
in the main text. Panel (c): HHG spectra ρ(Ω) [see Eq. (16)]
produced by the unchirped and chirped pulse waveforms in
Panels (a) and (b) calculated using the analytic description
of short-pulse HHG of Ref. [22]. The arrows indicate the HHG
plateau cutoff energies produced by the trajectories listed in
Table IV.

increase in the ionization factor of the trajectory j = 1′

was accomplished by using chirp to improve the align-
ment of the minima of the ω–pulse and 2ω–pulse fields
in the highlighted regions in the vicinity of t = −0.75T1

[cf. Figs. 5(a) and (b)]. The chirps also increased the
alignment of the field minima in the second highlighted
regions in Figs. 5(a) and (b) near t = +0.25T1. This re-
sulted in an increase in the recombination energy of the
trajectory j = 2′ by 20 eV, explaining the extension of
the low-energy harmonic plateau from 129 eV to 149 eV.
Finally, a small increase in the cutoff energy of the trajec-
tory j = 1′ was produced by increasing the asymmetry of
the oscillation of the two-color waveform in the vicinity
of t = −0.38T1.
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FIG. 6. Two-color (ω–3ω) pulse waveforms and their HHG
spectra. Panels (a) and (b): Electric fields of an ω–pulse,
a 3ω–pulse, and the superposed ω–3ω pulse waveform. The
field parameters are the same as in Fig. 3 except that the ω–
pulse has a non-zero CEP, φ1 = π/3. The arrows indicate the
ionization (i) or recombination (r) times given in Table V for
the three most important trajectories. Highlighted areas in
the vicinity of times t = ±0.5T1 are discussed in the main text.
Panel (c): HHG spectra ρ(Ω) [see Eq. (16)] produced by the
unchirped and chirped pulse waveforms in Panels (a) and (b)
calculated using the analytic description of short-pulse HHG
of Ref. [22]. The arrows indicate the HHG plateau cutoff
energies produced by the trajectories listed in Table V.

Consider second the ω–3ω pulse waveform studied in
Sec. III B but in which the ω–pulse field now has a non-
zero CEP, φ1 = π/3. The unchirped ω–pulse and 3ω–
pulse fields as well as the ω–3ω pulse waveform are shown
in Fig. 6(a). Examining the highlighted region located
about t = −0.5T1 we see that the ω–pulse and 3ω–pulse
fields both have minima that occur at slightly different
times. By introducing chirps, we aim to improve the
alignment of these two fields so that the depth of the
minimum of the ω–3ω pulse waveform increases. This can
be accomplished by introducing a negative chirp β1 = −2
in the ω–pulse and a positive chirp β2 = +2 in the 3ω–
pulse, as shown in Fig. 6(b). The resulting HHG spectra
of the chirped and unchirped ω–3ω pulse waveforms are
shown in Fig. 6(c). One observes that the chirped pulse
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TABLE V. Ionization and recombination times, t
(j)
i and t

(j)
r

(in units of T1), cutoff energies E
(j)
cut, ionization factors Ij ,

and instantaneous Keldysh parameters γ̃j for three important
electron trajectories j = 1, 2, 3 that determine the high-energy
HHG spectra in Fig. 6(c) produced by the unchirped and
chirped ω–3ω pulse waveforms shown in Figs. 6(a) and (b).

j t
(j)
i t

(j)
r E

(j)
cut (eV) Ij γ̃j

(a) unchirped ω–3ω

1 -0.58 0.068 167 1.2(-6) 1.7

2 -0.067 0.56 142 8.5(-5) 1.2

3 0.43 1.1 93.1 3.2(-5) 1.3

(b) chirped (−,+)

1′ -0.57 0.067 166 9.5(-4) 0.97

2′ -0.059 0.55 146 2.4(-4) 1.1

3′ 0.46 1.0 80.6 1.5(-3) 0.92

waveform has a much higher HHG yield across the entire
harmonic energy spectrum shown.

Our analytic description of HHG spectra enables us to
understand the origin of this enhancement of the HHG
yield in terms of three important electron trajectories
contributing to the high-energy HHG spectrum. The ion-
ization and recombination times of these three trajecto-
ries are indicated in Figs. 6(a) and (b) and their respec-
tive cutoff energies are indicated in Fig. 6(c). In Table V
we give the values of these parameters of the three trajec-
tories as well as their ionization factors and instantaneous
Keldysh parameters. One sees from Fig. 6 and Table V
that the (−,+) chirp has increased the ionization factors
significantly for all three trajectories j = 1′, 2′, and 3′,
explaining the great increase in yield in the chirped pulse
HHG spectrum for all harmonic energies shown. An in-
crease in the ionization factor of the trajectory j = 1′

by nearly three orders of magnitude was accomplished
by using chirp to improve the alignment of the minima
of the ω–pulse and the 3ω–pulse fields in the highlighted
regions in the vicinity of t = −0.5T1 [cf. Figs. 6(a) and
(b)]. The chirps also increased the alignment of the field
minima in the third highlighted regions in Figs. 6(a) and
(b) near t = +0.5T1. This resulted in an increase in the
ionization factor of the trajectory j = 3′ by nearly two
orders of magnitude, explaining the increase in the yield
of the low-energy HHG plateau (at the cost of a slightly
lower cutoff energy). Finally, a small increase in the ion-
ization factor of the trajectory j = 2′ was produced by
improving the alignment of the fundamental and third
harmonic fields in the second highlighted region located
near t = 0. This increase in the ionization factor of the
j = 2′ trajectory contributed to the increase in the HHG
yield for harmonic energies from about 90 eV to 150 eV.

D. Applicability to other atoms

Although our analysis of chirp effects in a two-color
field has been presented for a one electron system, the
results we obtain should be applicable also for many-
electron systems. Specifically, in this paper we have pre-
sented results for the H atom because electron correla-
tion effects are absent and hence our TDSE results are
exact. In the three-step analytic model for HHG that we
have employed, the first step depends only on the bind-
ing energy of the valence electron. Since Ar and many
other atoms have binding energies comparable (within
a few eV) of that for the H atom and since the second
step of the three-step model treats the electron as moving
freely in the laser field, these two steps are similar for a
wide range of atoms. The main atom-specific part of the
three-step model is the recombination step. For the H
atom, this third step is known analytically and for other
atoms the third (recombination) step can be obtained
from existing fully-correlated results for photoionization
cross sections (using the principle of detailed balance).
The factorization of the HHG spectrum into a quasi-

universal “electron wave packet” factor (produced by the
first two steps of the three-step model) and a target-
specific recombination factor has been successfully em-
ployed to describe HHG by atoms [34–37] as well as by
ions [38] and molecules [39]. Whereas the H atom pho-
toionization cross section is smoothly decreasing, those
for rare gas atoms can have structure, which is reflected
in the HHG spectra, as has been confirmed experimen-
tally [40]. However, all of the results we present in the
current paper have mainly to do with the first two steps
of the three-step model, i.e., the ionization and the excur-
sion of the active electron away from and back to the ion.
Whatever the recombination amplitude happens to be for
other atomic, ionic, or molecular targets, the HHG yield
will increase if the active electron moves under the influ-
ence of the chirped fields we propose. In brief, since the
chirp effects on HHG spectra that we present originate
from laser-induced electron dynamics, which have been
shown to be independent of electron correlation effects in
numerous prior studies [34–40], they are expected to be
applicable to any atomic (or molecular) system.

IV. SUMMARY AND CONCLUSIONS

We have studied how chirp can be used to enhance the
yields and plateau cutoff energies of the HHG spectrum
produced by a few-cycle, linearly-polarized pulse wave-
form comprised of two-color component pulses that are
linearly-chirped. We have studied two common two-color
cases: ω–2ω pulses and ω–3ω pulses, in which either the
ω–pulse and the 2ω– or 3ω–pulses have zero CEPs or in
which the ω–pulse has a non-zero CEP. In all cases we
consider only chirp parameters having the same magni-
tude, so that our focus is on the signs of the chirps in the
ω–pulse and the 2ω– or 3ω–pulses. As we have shown,
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the general strategy is two-fold. In cases in which major
peaks of the two-color component pulses are not aligned,
one can use the chirp to improve the alignment by bring-
ing the neighboring minima or maxima closer to each
other in time, so that the resultant field has a higher
strength and consequently leads to an increased yield of
the HHG spectrum. In cases in which the major peaks
of the two-color fields are aligned, chirps can be used
to enhance the asymmetry of smaller peaks so that the
net acceleration of the ionized electron back to the atom
leads to an increased recombination energy and, hence,
a higher HHG plateau cutoff energy. In both cases, one
should positively chirp one color and negatively chirp the
other in order to achieve the best enhancement of the
HHG spectrum. The physical mechanisms responsible
for these enhancements can be explained based on the
well-known three-step model of HHG [1, 23–26].

To conclude, two things should be noted. First, our
studies have focused on the use of chirp to sculpt two-
color pulse waveforms in order to enhance HHG spec-
tra based on a semiclassical analytic analysis of the
unchirped waveforms. This analytic approach to opti-
mal control of HHG differs from approaches based upon
various kinds of iterative algorithms, although both ap-
proaches share the same goals. Second, for all cases we
consider, enhanced HHG spectra result from oppositely

chirping the two-color pulses, i.e., the ω–pulse and the
2ω– or 3ω–pulse should be chirped either in the combina-
tion of (+,−) or (−,+). Experiments can thus try these
two possible chirp strategies to see which works best in
enhancing the HHG spectrum as compared to that ob-
tained using unchirped two-color pulses. Thus this work
contributes to a more comprehensive understanding of
how to sculpt synthesized waveforms of two-color, few-
cycle pulses, which can benefit not only HHG but also
attosecond pulse generation and other related topics.
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G. Cerullo, and F. X. Kärtner, “High-energy pulse syn-
thesis with sub-cycle waveform control for strong-field
physics,” Nature Photonics 5, 475–479 (2011).

[31] A Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon,
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