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Abstract

For many atomic and molecular targets positronium (Ps) scattering looks very similar to elec-

tron scattering if total scattering cross sections are plotted as functions of the projectile velocity.

Recently this similarity was observed for the resonant scattering by the N2 molecule. For cor-

rect treatment of Ps-molecule scattering incorporation of the exchange interaction and short-range

correlations is of paramount importance. In the present work we have used a free-electron-gas

model to describe these interactions in collisions of Ps with the N2 molecule. The results agree

reasonably well with the experiment, but the position of the resonance is somewhat shifted towards

lower energies, probably due to the fixed-nuclei approximation employed in the calculations. The

partial-wave analysis of the resonant peak shows that its composition is more complex than in the

case of e−N2 scattering.

PACS numbers:
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I. INTRODUCTION

The observed similarity between electron and Ps scattering by neutral targets [1–3] was

recently extended to resonant scattering in Ps-N2 [3, 4] and Ps-CO2 [2] collisions. In par-

ticular the very well-known resonance in e−N2 scattering of the Πg symmetry [5] looks very

similar to the observed resonance in the Ps-N2 scattering if cross sections for both processes

are plotted as functions of the projectile velocity. This similarity prompts a theoretical ques-

tion if the observed phenomenon is universal, that is can one predict with confidence that

there is a resonance in Ps-molecule scattering if a resonance is observed in electron-molecule

scattering?

The Πg resonance in e−N2 scattering has been studied in many theoretical and experi-

mental papers, and it served in fact as a “workhorse” for many theoretical models of resonant

electron-molecule collisions. (For a review of early work on the resonant e−N2 collisions see

[5]). Theoretical papers on e−N2 resonant scattering can be separated into two categories:

calculations performed in the fixed-nuclei approximations [6–11] and calculations which ac-

count for vibrational motion [12–17]. In the second class of calculations a single resonance

is split into series of peaks, so-called boomerang oscillations [13], which appear because the

resonance lifetime is comparable with the vibrational period in N2.

The importance of resonance phenomena in electron-molecule collisions cannot be overem-

phasized since resonances drive many inelastic processes in these collisions, particularly

vibrational excitation and dissociative electron attachment [18, 19]. Therefore, if similar

resonances exist in Ps-molecule collisions, they can drive similar processes, particularly Ps-

impact vibrational excitation and dissociative Ps attachment.

A recent experimental paper [4] confirmed earlier predictions [3] of the resonant Ps−N2

scattering and extended previous measurements towards the challenging region of low Ps

energies. In interpreting their results, the authors [4] assumed that the electron, on the

average, is closer to the target than the positron [20], and averaged the electron scattering

cross section for N2 over the momentum distribution of electron in Ps. The result of this

convolution exhibits a resonance peak which is somewhat too broad as compared to the

experimental data. As will be shown in the present paper, the idea of Ps-electron–target-

electron correlation is justified by the proper treatment of the exchange interaction and short-

range Ps-target correlations. However, the distortion of Ps by the target due to the long-
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range electrostatic interaction should be treated simultaneously with the target distortion.

This leads particularly to the van der Waals force at large distances.

To account for the Pauli exclusion principle, much effort was done in the past to enforce

orthogonality between the wavefunction of the Ps electron and the target electrons by using

orthogonalizing pseudopotentials [21–23] and orthogonal exchange kernels [24–26]. In our

previous pseudopotential treatment of Ps collisions [27–30] we mocked the orthogonality con-

straint by using pseudopotentials with repulsive cores. However, for the complete inclusion

of exchange in electron-molecule collisions the orthogonality constraint is not sufficient. The

exchange interaction contains a substantial attractive component due to the so-called Fermi

hole, and is particularly responsible for the Πg resonance in electron-N2 scattering [5, 10].

Inclusion of electron exchange in Ps collisions with atoms and molecules in a completely ab

initio way is a very challenging task [31], and has been accomplished only for simple targets

such as the hydrogen atom [32, 33] and rare-gas atoms [34–37]. An even more challenging

problem is incorporation of short-range correlations in Ps-atom and Ps-molecule scattering.

A recent work of Green et al. [37] incorporated them in Ps-rare-gas-atom scattering in the

lowest order of perturbation theory. It seems reasonable that higher-order corrections are

not significant in this case, and this justifies the perturbative approach used in the present

paper.

In the present paper we use the free-electron-gas (FEG) exchange and correlation energies

obtained in the previous paper of this series [38] to construct exchange and correlation

potentials for Ps-N2 scattering and calculate Ps-N2 scattering cross sections in the fixed-

nuclei approximation. This is a necessary first step in treatment of Ps-N2 scattering before

incorporation of the vibrational dynamics. The orthogonality constraint is not important

for the resonant scattering since there is no occupied πg orbital in the N2 molecule, therefore

we do not include it.

The rest of the paper is organized as follows. In Sec. II we present exchange and

correlation potentials for Ps-N2 scattering. In Sec. III we describe our calculations of

Ps ionization in Ps-N2 collisions. In Sec. IV we present the results for elastic and total

scattering cross sections. We then turn to conclusions and an outlook. Atomic units are

used throughout unless stated otherwise.
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FIG. 1: (Color online) Legendre components of Ps-N2 scattering potentials. a) Exchange potential.

b) Correlation potential.

II. SCATTERING POTENTIALS

In the previous paper [38] we have derived expressions for the exchange and correlation

energies as functions of the Fermi energy. In order to introduce the dependence of these

energies on the projectile position relative to the target we determine the Fermi energy in

terms of the charge density of N2 using the near Hartree-Fock wave-functions of Cade et al.

[39]. The Ps-N2 scattering potentials obtained in this way are then expanded in Legendre

polynomials. In Fig. 1 we show the lowest three components (λ=0,2,4) of this expansion for

both the exchange and correlation potentials for a velocity of 0.05 a.u., the total potential

is obtained by summing these.
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The correlation potential at large distances is matched to the van der Waals potential

with a cut-off of the form

VW (R) = −
C0 + C2P2(cosχ)

(R2 +R2
c)

3
(1)

where R is the position of the center of Ps relative to the center of N2, χ is the angle between

R and the internuclear axis, and Rc is a cutoff radius. The van der Waals coefficients C0

and C2 were calculated from the London formula using the polarizabilities of N2, α0=11.89

a.u. and α2=4.19 a.u. giving C0 = 111.8 a.u. and C2 = 39.4 a.u.

In order for the correlation potential to match smoothly to the asymptotic form we have

chosen a cutoff radius of Rc = 1.08 a.u. and for the spherical component λ = 0 switched

from the correlation potential to the asymptotic form at R=3.2 a.u. In Fig. 2 we show

the potential determined in this way compared with the asymptotic form at values of R

between 2.5 and 4.5 a.u. for the Ps velocity of 0.01 a.u. We see that this procedure gives a

smooth transition from the correlation potential to the van der Waals potential. For the non-

spherical component λ = 2 we use the same cutoff radius, but switch from the correlation

potential to the van der Waals form at R = 5.4 a.u. We have chosen a small velocity since

this is the region in which the long range van der Waals potential has the largest effect on

the scattering.

III. IONIZATION

Apart from elastic scattering, the largest contribution to the total cross section for positro-

nium collisions is expected to be Ps ionization (break-up). Previously we have calculated Ps

ionization cross sections in collisions with molecular hydrogen [28] assuming that the e−−H2

and e+−H2 scattering potentials are spherically symmetric and using the binary encounter

approximation [40, 41]. This approximation, along with the pseudopotential approach to

elastic Ps-H2 scattering, led to total cross sections in good agreement with experimental

measurements. We have also used the binary encounter approximation to calculate Ps ion-

ization cross sections in collision with rare gas atoms Ar, Kr and Xe [29] which were in good

agreement with previous calculations using the impulse approximation [42]. In this section

we generalize the binary encounter approximation to non-spherical potentials.
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FIG. 2: Solid line: spherical component of the van der Waals potential (1). Dashed line: spherical

component of the correlation potential. The van der Waals form is used for R > 3.2 a.u.

A. e
− and e

+−N2 scattering

The binary encounter approximation described below depends fundamentally on the body

frame T -matrix elements in the fixed-nuclei approximation for both electron and positron

scattering by N2. To calculate these scattering matrices we have used the static potential

determined from the N2 ground state wave-function [39] and the Hara free electron gas

exchange (HFEGE) [43] potential. We have also added a polarization potential of the form

Vpol(r) = [−
α0

2r4
−

α2

2r4
P2(cos θ)]C(r) (2)

where

C(r) = 1− exp(−(r/rc)
p). (3)
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is a cutoff function and rc is an adjustable cutoff parameter. For both electron and positron

collisions the polarization potential is attractive, but the cutoff parameter and power param-

eter p may be different. For electron molecule scattering it is usual to take p = 6 and that is

the choice we make in the present calculations. For e+−N2 scattering, however, calculations

by Darewych [44] have shown that the choice p = 6 cannot reproduce the shape of the

experimentally observed cross sections below 10 eV. Later calculations by Elza et al. [45]

using a fully adiabatic potential with p = 1 provided good agreement with the experimental

measurements of Hoffman et al. [46].

For e−−N2 scattering we have used the wavefunction of Cade et al. [39] and the HFEGE

exchange potential of Morrison and Collins [10]. For the polarization potential we use

α0 = 11.78 a.u. and α2 = 4.19 a.u., and a cut-off radius of rc = 2.341 a.u which are the

same values as used in [10].

In Fig. 3 (a) we show our calculated total e−−N2 cross sections compared with the cal-

culations of Morrison and Collins[10] and the recommended elastic cross sections of Itikawa

[47]. Our results are slightly larger than that of [10] although we use the same scattering

potentials. However, in our calculation, we have used partial waves up to lmax = 17 while

Morrison and Collins have used lmax = 26. Inclusion of more partial waves should improve

the agreement between the calculations although slight numerical differences may also be

responsible for some disagreement.

Both calculations are somewhat higher than the recommended elastic cross sections.

This is particularly true at the position of the Πg shape resonance. The reason for the

large disagreement in this region is that the calculations have been done in the fixed-nuclei

approximation and do not take into account the motion of the nuclei. When nuclear motion

is taken into account the well known oscillatory structure [12, 13] of the cross section is seen

in the region of the resonance which is not seen in a fixed-nuclei calculation.

In Fig. 3 (b) we show our calculated e+−N2 cross section as a function of positron velocity

compared with the measurements of Hoffman et al. [46]. In this calculation we have used

the static potential plus the adiabatic with cutoff polarization potential (ADPOS) of [45].

Our calculations are in good agreement with these calculations and the experimental values

for positron velocities below 1.0 a.u.

In Fig. 4 we show e−−N2 differential cross sections at representative scattering energies

of 2.46 eV (v = 0.425 a.u.) and 10 eV (v = 0.857 a.u.). At 2.46 eV the cross section is at
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FIG. 3: (a) Total elastic e−−N2 cross section as a function of electron velocity. Present calculation

including Σ, Π and ∆ symmetries: solid line. Calculations of Morrison and Collins [10]: open

circles. Recommended elastic cross sections of Itikawa [47]: squares. b) Elastic e
+−N2 cross

sections as functions of positron velocity. Present calculation: solid line. Experimental values of

Hoffman et al. [46]: open circles, and calculations of Elza et al. [45]: squares.

the peak of the Πg shape resonance, and our calculated differential cross sections are much

larger than the measurements and vibrational close coupling (VCC) calculations of Sun et

al. [16]. This is again due to the fact that our calculation uses the fixed nuclei approximation

in which scattering in the resonance region is dominated by the Πg T -matrix. When the

vibrational motion is included contributions from the Σg and other symmetries become

important [16] which can change the magnitude and shape of the differential cross section

at and near the resonance. At 10 eV we have better agreement between experiment and the
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FIG. 4: (Color online) e−−N2 differential cross sections at an incident electron energy of 2.46 eV

(v = 0.425 a.u.) (panel a) and 10 eV (v = 0.857 a.u.) (panel b). Present fixed-nuclei calculation:

solid lines. Measurements of Sun et al. [16]: circles. Measurements of Gote and Ehrhardt [48]:

open squares. Vibrational close coupling calculations of Sun et al. [16]: dashed red lines.

VCC calculations, which is generally the case at energies that are not near the Πg resonance.

B. Binary encounter approximation

The binary encounter approximation is based on the assumption that the electron and

positron in Ps interact independently with the target molecule and the ionization cross

section due to either electron or positron collision may be written as [40]
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σ±

ion =
1

vB
〈|v− vB|

∫

∆E>I
dσ±〉. (4)

where vB is the relative collision velocity, v is the electron (positron) velocity relative to the

Ps center-of-mass, dσ± is the differential cross section for e+−B or e−−B elastic scattering,

and the integration is restricted by the angles which result in the energy transfer to electron

(positron) ∆E greater than the Ps ionization potential I = 6.8 eV. As a result of collision

with the target B the electron (positron) velocity changes from u to u′ in the lab frame

where the molecule B is at rest, so that [28]

∆E = vB · (u− u′).

The main difference between our present calculation of Ps ionization and our previous,

spherically symmetric, calculations appears in the differential cross section. For a molecule

with a ground state of Σ symmetry the differential cross section averaged over molecular

orientation may be written in terms of the body-frame T-matrix elements as [5]

dσ

dΩ
=

1

4u2

∑

µ

∑

L

AµLT
Λ
l,l0T

Λ′∗

l′,l′
0

PL(cos θs), (5)

where l0, l are initial and final angular momenta of the scattered electron, Λ is its projection

on the internuclear axis, θs is the LAB-frame scattering angle (the angle between u and u′)

and µ = (l, l0, l
′, l′0,Λ,Λ

′). The coefficients result from angular momentum coupling and are

given, in terms of Wigner 3-j symbols, by

AµL = il0−l+l′−l′
0(2L+ 1)[(2l0 + 1)(2l + 1)(2l′ + 1)(2l′0 + 1)]1/2







l l′ L

0 0 0







×







l0 l′0 L

0 0 0













l l′ L

Λ −Λ′ Λ′ − Λ













l0 l′0 L

Λ −Λ′ Λ′ − Λ





 . (6)

Inserting this expression for the differential cross section into (4) and performing the

integration over azimuthal angles φ and φ′ leads to an expression for the ionization cross

section that is averaged over molecular orientation

σion =
π

4vB

∫

∞

I/2vB
duu

∫ 1−I/vBu

−1

d(cos θ)|g1s(u
2 + v2B + 2uvB cos θ)|2
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FIG. 5: Ionization of Ps by impact with N2 using the binary encounter approximation. The curve

labeled ’Total’ is the sum of the electron (e−) and the positron (e+) contributions.

×
∑

µL

AµLT
Λ
l,l0

TΛ′∗

l′,l′
0

PL(cos θ)
∫ cos θ+vB/u

cos θ+I/vBu
d(cos θ′)PL(cos θ

′) (7)

where |g1s|
2 is the velocity distribution of the electron (positron) in Ps given by

1

4π
|g1s(v

2)|2 =
1

4π

256

π(4v2 + 1)4
.

The integration limits follow from the restriction that ∆E > I [28, 29].

In Fig. 5 we present the total ionization cross section and contributions due to electron

and positron. At velocities near threshold the electron contribution is dominant, but at

higher velocities the electron contribution decreases and the positron contribution remains

flat until they become comparable around 1.8 a.u. This happens because as the Ps velocity
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increases, vB in equation (7), the lower limit on the integration over u, the positron velocity,

gets closer to zero, but in this region the positron cross section is rapidly increasing. The

situation is different from what we see in the case of rare-gas atoms [29] and H2 [28] where

the electron contribution remains dominant for all Ps velocities.

IV. RESULTS AND DISCUSSION

In order to obtain fixed nuclei T -matrices for Ps scattering we solve the set of coupled

equations describing Ps-N2 scattering using the integral equation method [49]. From these

T -matrices we obtain the elastic cross section that is averaged over molecular orientation.

In Fig. 6 we present our theoretical elastic, ionization and total cross sections, and com-

pare the latter with the experimental data [1, 4]. The theoretical resonance peak’s position

(v = 0.34 a.u.) is slightly shifted towards lower Ps velocities relative to the experimental

peak position (v = 0.46 a.u.) The latter might be due to the the fixed nuclei-approximation

which does not take into account the vibrational dynamics. However, there is a secondary

peak at a slightly higher velocity of v = 0.44 a.u. In our previous calculations [30], a signif-

icant difference between the theory and experiment was observed at higher velocities where

the experimental cross section remains practically flat and stays close to the e−N2 cross

section, whereas the theoretical curve was showing a relatively fast decrease with growing

v. A similar tendency was observed in Ps-H2 calculations [28]. The present calculations

which take into account short-range correlations agree much better with the measurements

at higher velocities.

In order to understand the composition of the resonance peaks we show, in Fig. 7, the

partial cross sections for the scattering symmetries included in our calculation of the total

elastic cross section. Unlike the case of e−-N2 scattering we do not see the resonance in the

Πg symmetry, but see a peak in the ∆g partial cross section which is responsible for the

maximum in the total cross section at v = 0.34 a.u. and a peak in the Πu partial cross

section which is mainly responsible for the maximum in the total cross section at v = 0.44

a.u. We should note though that the actual dependence of the cross section on Ps energy

should be more complicated, since inclusion of vibrational motion of the target will create

additional structure in the cross section (boomerang oscillations [13]) which is not resolved

yet in measurements [1, 4].
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FIG. 6: Cross sections for Ps scattering with N2. Theory: Solid line, elastic cross section; dashed

line, total cross section; dotted line, ionization cross section. Experiment: squares, Brawley et al.

[1]; open circles, Shipman et al. [4].

These differences from e−-N2 scattering can be understood by looking at the spherically

symmetric (λ=0) components of the potential and considering some of dominant potential

matrix elements V M
LL′. For the spherically symmetric component there is no d-wave reso-

nance, in fact the potential supports a weakly bound state. Also there is an f-wave shape

resonance. When anisotropy is included in the potential (λ is increased) the Σg matrix

element V 0
22 becomes more attractive. In the ∆g symmetry the matrix element V 2

22 becomes

weaker and the bound state moves into the continuum and a resonance appears in this

symmetry. For the Πg symmetry the matrix element V 1
22 does not change very much as

anisotropy is included and we do not see a resonance appear. The peak at v = 0.44 a.u. is
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FIG. 7: (Color online) Partial cross sections for Ps-N2 elastic scattering a) even (gerade) scattering

symmetries. b) odd (ungerade) scattering symmetries.

related to the f-wave resonance that is seen in the scattering by the spherically symmetric

component of the potential.

Again this is quite different from e−-N2 scattering where a d-wave resonance is seen even

for the spherically symmetric component of the scattering potential and becomes stabilized

in the Πg symmetry as anisotropy is included. However, it might be expected that the

composition of resonances for Ps scattering might be more sensitive to the inclusion of

anisotropy than in electron scattering due to the vanishing of the static potential for Ps

scattering. Finally, but perhaps most importantly, since the Ps electron is bound, there is

no one-to-one correspondence between the electron angular momentum in electron scattering

and Ps angular momentum in Ps scattering.
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Analysis of the low-energy behavior of the Σg phase shifts shows that the scattering length

for Ps-N2 scattering is A = 2.49 a.u. This indicates the absence of the Ramsauer-Townsend

minimum, similar to the case of Ps scattering by rare gas atoms [27, 29]. The dip at v = 0.25

a.u. is due to the resonance behavior of the ∆g contribution which peaks at v = 0.34 a.u.

while the Σg contribution is decreasing.

Overall, the Σg contribution seems to be too large at low energies. This might be caused

by an error in the short-range part of the exchange and correlation potentials [38]: due to

the strong dependence of the electron density on electron coordinate near the target nuclei,

replacing the Fermi momentum by [3π2n(R)]1/3 could be inaccurate.

V. CONCLUSION

In conclusion we have constructed new FEG exchange and correlation potentials allowing

us to describe resonant Ps-N2 scattering similar to the e−N2 resonant scattering in the Πg

symmetry. These potentials were determined from the FEG exchange and correlation ener-

gies calculated in the preceding paper [38] by using the Thomas-Fermi model to introduce the

dependence of the energy on the distance between the projectile and the target. Although

the composition of the Ps-N2 resonance is more complex, our results further confirm the

observed similarity between electron and Ps scattering which can be extended now towards

resonance phenomena. The position of the resonance peak is slightly below the observed

position. This could be due to the neglect of nuclear motion. Therefore the next step in

theoretical development should be incorporation of vibrational dynamics along the lines of

the boomerang model [13]. This also opens an opportunity of calculations of vibrational

excitation cross sections in Ps-N2 collisions.

In previous calculations for rare-gas atoms [27, 29] we constructed a pseudopotential

with a repulsive core to mock the orthogonality condition. In the present calculation we

do not add a repulsive core to the FEG potentials. Recent measurements of Ps-rare gas

scattering at low velocities [50] show a decrease in the cross section in this region. The

pseudopotential calculations as well as other recent calculations [36, 37] do not exhibit such

a decrease. Therefore it is natural that as a next step we plan to apply the present method

to Ps scattering by heavy-rare gas atoms. Future application of the present method to Ps

scattering by other molecules, such as CO2 where a resonance in Ps scattering has also been

15



observed [2], is of interest as well.
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