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Abstract

Exchange and correlations play a particularly important role in positronium (Ps) collisions with

atoms and molecules, since the static potential for Ps interaction with a neutral system is zero.

Theoretical description of both effects is a very challenging task. In the present work we use the

free-electron-gas model to describe exchange and correlations in Ps collisions with molecules similar

to the approach widely used in the theory of electron-molecule collisions. The results for exchange

and correlation energies are presented as functions of the Fermi momentum of the electron gas

and the Ps incident energy. Using the Thomas-Fermi model, these functions can be converted into

exchange and correlation potentials for Ps interaction with molecules as functions of the distance

between the projectile and the target.

PACS numbers:

1



I. INTRODUCTION

Since the discovery [1–3] of similarity between electron and positronium (Ps) scattering

by atoms and molecules, a lot of theoretical effort [4–9] has been directed at explaining

this intriguing phenomenon. The similarity of cross sections for equivelocity electrons and

Ps can be justified by the impulse approximation [4]. However, the impulse approximation

breaks down at low energies, particularly below the threshold for Ps ionization (break-up),

therefore a more sophisticated analysis is required in the low-energy region. Generally at

the Ps velocities above about 0.2 a.u. (energies above 1 eV) the Ps interaction with atoms

is mostly controlled by electrons. Because of the symmetry of the Ps wavefunction with

respect to interchange of the electron and positron coordinates, the direct static potential

(without exchange) between Ps and the atomic or molecular target is zero [10], therefore

the exchange interaction and short-range correlations play an especially important role in

Ps scattering. At low collision energies the long-range van der Waals force between Ps and

the target also becomes important.

In our previous treatment of Ps collisions with rare-gas atoms [5, 8] and molecular hy-

drogen [7] we constructed pseudopotentials for the Ps-target interaction based on electron

and positron scattering phase shifts. These pseudopotentials contain repulsive cores which

mock orthogonality between the wavefunction of the scattered electron and the occupied

molecular orbitals. However, for the complete inclusion of exchange in electron-molecule

collisions the orthogonality constraint is not sufficient. For example in e−N2 collisions the

Πg resonance is mainly due to the exchange interaction [11, 12]. This important effect cannot

be incorporated by the orthogonality constraint used, for example, in Ref. [13] since there

is no occupied πg orbital in N2. Combination of a model attractive exchange potential with

the orthogonality constraint usually gives the best results in terms of agreement with cal-

culations which incorporate exchange exactly. Because of complexity of the exact exchange

potential this method has been widely used in electron-molecule scattering calculations [11].

Exact inclusion of electron exchange in Ps collisions with atoms and molecules is an even

more challenging task [10] and has been accomplished only for simple targets such as the

hydrogen atom [14, 15] and rare-gas atoms [16–19].

Studies of electron-molecule collisions [11] show that the electron scattering phase shifts

can be obtained with good accuracy by using, in addition to the static potential, a local
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exchange potential obtained from calculation of the exchange energy of interaction of a free

electron with a free electron gas (FEG). Originally this potential for electron-molecule colli-

sions was proposed by Hara [20], and is therefore called the Hara free electron gas exchange

(HFEGE) potential. It was successfully used for treatment of electron scattering by N2

[12], CO2 [21], and other targets [22, 23]. Systematic studies of the HFEGE approximation

[12, 24] have shown that it strongly improves the results obtained in the static approxima-

tion without exchange, although at low electron energies the scattering cross sections might

still differ from those incorporating exchange exactly by 50%. However, with the growth

of energy the HFEGE results are improving fast. Further improvement can be achieved by

enforcing the orthogonality of continuum orbitals to the occupied molecular orbitals [24].

Similarly, the treatment of the short-range correlations in electron or positron scattering

by atoms and molecules can be based on the free electron gas model [25, 26]. The full

correlation potential is then obtained by joining the short-range form with the long-range

polarization potential which behaves as −α/(2r4) at large projectile-target distances, where
α is the dipole polarizability of the target. Alternatively, correlations can be included by

using the potential

Vpol(r) = − α

2r4

[

1− exp(−(r/rc)
6)
]

(1)

where rc is a parameter which can be adjusted by comparing calculated cross section with

experimental or completely ab initio results. (For simplicity we write here the potential

for electron-atom scattering which contains only the isotropic term). Similarly, for Ps-atom

collisions we can use an empirical potential of the form

Vcorr(R) = −CW

R6

[

1− exp(−(R/Rc)
8)
]

(2)

where R is the distance between the center of mass of Ps and the center of mass of the target

atom, and CW is the van der Waals constant.

The problem with potentials (1) and (2) is that they can underestimate the short-range

correlations due to uncertainty in the cut-off parameter. The ultimate choice of the cut-off

parameter is often dictated by experiments, but this makes the whole calculation empirical

and diminishes its physical significance, especially in the case of Ps scattering as compared to

electron scattering, since the short-range electron-target interaction is typically dominated

by the static potential, and for Ps scattering the static potential is zero. In addition, the

effective cut-off parameter might be energy dependent. Some indication of this deficiency
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can be observed in pseudopotential calculations [7] of Ps-H2 scattering which employed the

van der Waals potential in the form of Eq. (2). Whereas, with a physically reasonable

choice of Rc, agreement with experiment is good at low Ps velocities below 1.5 a.u., the

theoretical cross section decreases significantly for v > 1.5 a.u., whereas the experimental

cross section remains basically flat. The same tendency was observed in preliminary results

for Ps-N2 scattering [9] which were obtained with the van der Waals potential (2). This

might indicate that short-range correlations are not included properly.

In the present paper we generalize exchange and correlation potentials, developed for

electron scattering, to Ps-molecule scattering and apply them in the next paper of this

series to Ps-N2 scattering [27]. Based on the results of the previous studies of the accuracy

of the FEG approximation for electron scattering [12, 24], we assume that the same level of

accuracy can be achieved in employing the FEG model for Ps scattering. Atomic units are

used throughout unless stated otherwise.

II. EXCHANGE POTENTIAL FOR POSITRONIUM-MOLECULE SCATTERING

A. First-order perturbation theory

The Hara exchange potential [20] was derived for a free incident electron. We want to

extend it to the electron bound in the Ps atom. Consider first the wavefunction describing

Ps in the presence of a free electron in a Fermi sea. The unperturbed wavefunction has the

form

Ψ(q1, q2, rp) =
1√
2

[

Ψ(0)(r1, r2, rp)χm1m2
(1, 2)−Ψ(0)(r2, r1, rp)χm1m2

(2, 1)
]

(3)

where q1, q2 are all electron coordinates including spin coordinates, r1, r2 are spatial electron

coordinates, rp spatial positron coordinates, χm1m2
(1, 2) the electron part of the spin function

(the inessential positron part is omitted), and

Ψ(0)(r1, r2, rp) =
1√
V
eik·r1Ψp(r2, rp) (4)

where k is the momentum of the electron in the Fermi sea, V is the normalization volume,

and Ψp(r2, rp) is the wavefunction of Ps moving with the momentum p,

Ψp(r2, rp) =
1√
V
eip·R2ψ100(ρ2) (5)
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where ψ100(ρ1) is the Ps ground state,

ψ100(ρ) =
e−ρ/2

(8π)1/2
. (6)

The coordinates Ri, ρi, i = 1, 2, are related to ri, rp by the transformation

Ri =
1

2
(ri + rp), ρi = ri − rp.

The total Hamiltonian of the system can be written in two alternative forms

H = H0(1) +HPs(2)−
1

r1p
+

1

r12

or

H = H0(2) +HPs(1)−
1

r2p
+

1

r12

where H0 is the Hamiltonian of a free electron, and HPs is the Hamiltonian of the Ps. Note

that the function Ψ(0)(r1, r2, rp) ≡ Ψ
(0)
1 is the eigenstate of the Hamiltonian H0(1)+HPs(2),

and the function Ψ(0)(r2, r1, rp) ≡ Ψ
(0)
2 is the eigenstate of the Hamiltonian H0(2) +HPs(1)

with the eigenvalue

E(0) =
k2

2
+
p2

4
+ ǫ1

where ǫ1 = −0.25 a.u. is the energy of the ground-state Ps. Therefore the expectation value

of the Hamiltonian over the unperturbed state is

〈Ψ|H|Ψ〉 = E(0)+
1√
2
〈Ψ|− 1

r1p
+

1

r12
|Ψ(0)

1 χm1m2
(1, 2)〉− 1√

2
〈Ψ|− 1

r2p
+

1

r12
|Ψ(0)

2 χm1m2
(2, 1)〉.

Both contributions to the energy correction in the right-hand side are identical, therefore

the correction can be written as

E(1) = 〈Ψ(0)
1 | − 1

r1p
+

1

r12
|Ψ(0)

1 〉 − 〈Ψ(0)
2 χm1m2

(2, 1)| − 1

r1p
+

1

r12
|Ψ(0)

1 χm1m2
(1, 2)〉.

The first (direct) contribution gives zero result because the integrand is odd under inter-

change of r2 and rp. This is a particular case of a general result: interaction of any system

of charges with Ps averaged over the Ps density distribution is zero. In particular, the static

Ps-atom interaction is zero. The second (exchange) contribution is reduced to the integral

E(1) = −δm1m2

V

∫

eik·(r1−r2)Ψ∗
p(r1, rp)Ψp(r2, rp)

(

1

r12
− 1

r1p

)

dr1dr2drp.

As expected, it is nonzero only for m1 = m2.
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We add now summation over all electrons below the Fermi level which have the same

spin direction as the electron in Ps. This leads to the following expression for the exchange

energy Eex in the first order of the perturbation theory

Eex = − 1

V 2

∑

k

∫

eik·(r1−r2)eip·(R2−R1)ψ100(ρ1)ψ100(ρ2)

(

1

r12
− 1

r1p

)

dr1dr2drp

Using the transformation

r = r2 − r1, ρ1 = r1 − rp, r′p = rp

whose Jacobian equals 1, and integrating over r′p, we obtain

Eex = − 1

V

∑

k

∫

e−ik·r+ip·r/2ψ100(ρ1)ψ100(|ρ1 + r|)
(

1

r
− 1

ρ1

)

drdρ1

Perform now summation over k:

1

V

∑

k

e−ik·r =
1

(2π)3

∫

dk̂
∫ kF

0
eik·rk2dk =

k2F
2π2r

j1(kF r)

where kF is the Fermi momentum. and j1 is the spherical Bessel function. Therefore

Eex = −
∫

k2F
2π2r

j1(kF r)e
ip·r/2ψ(ρ1)ψ(|ρ1 + r|)

(

1

r
− 1

ρ1

)

drdρ1. (7)

This result does not depend on the Ps position due to uniformity of the electron gas. For

collisions with atomic and molecular targets kF can be made coordinate-dependent by the use

of the Thomas-Fermi model, and this is what makes the exchange energy dependent on the

projectile coordinate (Hara prescription [20]). According to this approach, kF in expression

(7) should be taken at the coordinate R1+ρ1/2 for the electron part of the interaction and

at the coordinate R1−ρ1/2 for the Ps part of interaction where the coordinate dependence

of kF is given by

kF (r) = [3π2n(r)]1/3

where n(r) is the electron number density in the target. However, such a substitution in

the integrand of Eq. (7) would be inconsistent since until now we assumed that k is a

position-independent wavevector in the plane wave. Indeed such a substitution would lead

to a complex exchange energy which is physically unjustified. Instead we will assume that

kF is a slowly varying function of coordinates and take it at the center of the Ps atom

corresponding to the average position of electron and positron in Ps. This ansatz is justified
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due to the weak dependence of kF on the number density n. Near the nuclei n varies with r

rather rapidly, and kF (r) dependence might become significant. However, at low projectile

energies which we are mostly interested in, the short-range part of the interaction does not

affect partial cross sections except possibly the s-wave contribution. This could create some

error in the Σg contribution to the scattering cross section.

For calculation of the integral we use the explicit form of the ground-state Ps wavefunc-

tion, Eq. (6), and perform the expansions

e−|r+ρ
1
|/2 =

∑

l

(2l + 1)Fl(r, ρ1)Pl(cos θr−ρ1) (8)

eip·r/2 =
∑

l

il(2l + 1)jl(pr/2)Pl(cos θpr) (9)

where θpr is the angle between vectors r and p, θr−ρ1 is the angle between vectors r and

−ρ1, Pl is Legendre polynomial, and Fl is the function introduced in Ref. [5]:

Fl(r1, r2) = (−1)l+1 d

dκ

[

κĥl(κr>)ĵl(κr<)
]
∣

∣

∣

κ=1/2
.

Here r<, r> are less and greater of r1, r2, and ĥl, ĵl are real functions which can be expressed

in terms of spherical Bessel functions as

ĥl(x) = −ilh(1)l (ix), ĵl(x) = iljl(ix).

Integration over angles is performed using

∫

Pl(cos θpr)Pl′(cos θr−ρ1)dr̂dρ̂1 = (4π)2δl0δll′.

Finally we obtain

Eex = −k
2
F

π

∫

e−ρ/2j1(kF r)j0(pr/2)F0(r, ρ)(ρ− r)ρdrdρ. (10)

B. Choice of Ps momentum

When the projectile interacts with the target, its momentum is not equal to the incident

momentum at infinity p. Hara, when deriving the free-electron-gas exchange potential,

assumed that the potential acting on the incident electron is the same as the potential

acting on the electron in the Fermi gas. This resulted in the following effective momentum

p∗ [20]

p∗ =
√
2E∗, E∗ = E + EF + I (11)
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where E is the energy of the incident electron, EF = k2F/2 is the Fermi energy, and I is the

ionization potential. The dependence of p∗ on the distance R between the projectile and

the target is due to dependence of the Fermi momentum on the electron density. Riley and

Truhlar [22] argued that this expression becomes inconsistent at the infinite projectile-target

separation where, according to Eqs. (11), E∗ = E + I whereas the correct relation should

be E∗ = E. Therefore they suggested using instead what they called the “asymptotically-

adjusted” relation between E∗ and E,

E∗ = E + EF .

Neither expression would work for Ps as a projectile since the potential experienced by Ps

is different from that experienced by an electron. It would be more consistent to assume

E∗ = E −Eex, p∗ =
√
4E∗ (12)

where E = p2/4 is the kinetic energy of the incident Ps. However, calculation of Eex(R)

requires the effective momentum as an input. Therefore an iterative procedure has been

developed. We start with p∗ = p, calculate Eex from Eq. (10) and E∗ from Eq. (12), and

repeat the same calculation until the change in Eex between two iterations is small enough.

This method works quite well for sufficiently large Eex. If it is too small, the integration

error is becoming too large at higher iteration steps. This typically occurs at small kF ,

corresponding to large distances R, where Eex calculated with p∗ = p seems to be sufficient.

At kF > 1 the difference between Eex calculated with different values of p∗ starts to increase,

but even at kF = 2.8 it is only about 10%.

C. Exchange energies

In Fig. 1 we present the exchange energy as a function of the Fermi momentum kF for

several Ps momenta p which were chosen to be nonmodified. It is interesting to discuss

the sign of the exchange energy. It is well known that, due to the Pauli exclusion principle,

electron interaction with the electron gas results in the “Fermi hole” [28, 29] which creates an

effective attraction between the individual electron and electron gas, therefore the exchange

energy is negative. The same hole creates an effective repulsion between the positron in Ps

and the gas. However, the electron and positron motion in Ps are correlated in such a way

8



0.0 0.5 1.0 1.5 2.0 2.5
-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

 p=0.2
 0.6
 1.0
 1.4
 1.8

 

 

ex
ch

an
ge

 e
ne

rg
y 

(a
.u

.)

Fermi momentum (a.u.)

FIG. 1: (Color online) FEG exchange energy as a function of the Fermi momentum kF for several

Ps momenta p

that the net energy is in most cases negative, although with some exceptions. As can be

observed from the figure, at p < 1 a.u. and kF < 0.6 a.u. the net exchange energy becomes

positive. This means that at low incident momenta and large distances there is an effective

repulsion between Ps and the target. However, typically this repulsion is small compared to

the van der Waals interaction, therefore the net Ps-target interaction is still attractive.

To show the role of e − e interaction in the exchange energy, in Fig. 2 we compare the

total exchange energy with the e− e contribution. It confirms that the e− e interaction is

dominant.

It is also apparent from Fig. 1 that the dependence of the Eex on the Ps momentum p is

weak, therefore the exchange potential should not be very sensitive to the exact choice of p.
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FIG. 2: (Color online) Full FEG exchange energy (upper curves) compared with the e− e contri-

bution (lower curves). Solid curves: p = 0.2 a.u., dashed curves: p = 1.8 a.u.

In Fig. 3 we present comparison of exchange energy, calculated with the original Ps

momentum p, with the energy calculated with the adjusted momentum given by Eq. (12).

As in the case of Hara potential, the adjustment decreases the absolute value of the exchange

energy. However, in the present case this change is significantly smaller than in the case of

electron scattering because of the relative weakness of the Ps-molecule interaction.

III. FEG CORRELATION ENERGY

Inclusion of short-range correlations in lepton-atom scattering is a very challenging task.

One way to do this is to calculate the second-order correction to the projectile energy in
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FIG. 3: (Color online) FEG exchange energy as a function of the Fermi momentum kF calculated

with the modified Ps momenta for several Ps momenta p∗, Eq. (12) (solid lines) and nonmodified

momenta (dashed lines) for p = 0.2 and p = 1.8.

a free electron gas. It is well known (see, e.g., Ref. [30]) that in the case of the projectile

electron this correction is diverging due to the singularity of the Coulomb potential at

low momentum transfer, and it is necessary to go to higher-order perturbation theory. In

particular in the high-density approximation it is possible to sum all ring diagrams [31] and

obtain the correction equivalent to the random-phase approximation of Bohm and Pines [32].

In what follows below we will show that for Ps the second-order correction is not diverging,

and will obtain formulas for its evaluation.
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A. Second-order correction

We start again with the unperturbed wavefunction describing Ps and a free electron in a

Fermi sea, Eq. (3).

We will include now the virtual excitations of Ps, therefore we replace Eqs. (4), (5) by

Ψ(0)(r1, r2, rp) =
1√
V
eik·r1Ψnlmp(r2, rp)

and

Ψnlmp(r2, rp) =
1√
V
eip·R2ψnlm(ρ2)

where ψnlm(ρ1) is the Ps wavefunction in the state with the principal quantum number

n, orbital angular momentum l and its projection m. The eigenvalues of the unperturbed

Hamiltonian are

Enpk =
k2

2
+
p2

4
+ ǫn

where ǫn is the energy of the Ps in the state {nlm}.
The second-order correction to the ground-state Ps energy interacting with an electron

in the Fermi sea is

E
(2)
1pk =

∑

nlmp′k′m′

1
m′

2

|〈nlmp′k′|H ′|100pk〉|2
E1pk − Enp′k′ + iη

(13)

where H ′ is the perturbation

H ′ =
1

r12
− 1

r2p
,

summation is restricted to electron energies above the Fermi level, k′ > kF , and the in-

finitesimal iη in the denominator provides outgoing-wave boundary condition in the inelastic

channels. The total Ps correlation energy is

Ecorr
1p =

∑

k

E
(2)
1pk

where the summation is over the occupied states below the Fermi level, k < kF .

Due to the antisymmetry of the wavefunction with respect to interchange of q1 and q2,

the matrix element of the perturbation H ′ is reduced to two terms, the direct and exchange

terms. The direct term has the form

Mdir =
δm1m′

1
δm2m′

2

V 2

∫

eiR1·Qeir2·qψ∗
nlm(ρ1)ψ100(ρ1)

(

1

r12
− 1

r2p

)

dr1dr2drp (14)
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where Q = p − p′, q = k − k′. Due to the symmetry properties of the Ps wavefunction

under the inversion

ψ∗
nlm(−ρ)ψ100(−ρ) = (−1)lψ∗

nlm(ρ)ψ100(ρ)

the integrand is odd under interchange of r1 and rp, if l is even, therefore the integral is

nonzero only for odd l.

Perform now integration over r2:

∫ eir2·q

r12
dr2 = eir1·q

4π

q2

∫

eir2·q

r2p
dr2 = eirp·q

4π

q2

Then

Mdir =
4πδm1m′

1
δm2m′

2

V 2q2

∫

eiQ·R1ψ∗
nlm(ρ1)ψ100(ρ1)(e

iq·r1 − eiq·rp)dR1drp.

Changing now integration variables to ρ1 and R1, we obtain

Mdir =
4πδm1m′

1
δm2m′

2

V 2q2

∫

ψ∗
nlm(ρ1)ψ100(ρ1)(e

iq·(R1+ρ1
/2) − eiq·(R1−ρ1

/2))eiQ·R1dR1dρ1.

Integration over R1 leads to the conservation of momentum, Q+ q = 0, and we obtain

Mdir =
8πiδm1m′

1
δm2m′

2
δPP′

V q2

∫

sin(q · ρ1/2)ψ
∗
nlm(ρ1)ψ100(ρ1)dρ1 (15)

where P = p+k. The square modulus of this matrix element can be expressed through the

atomic form factor

Fn(q) =
∑

lm

∣

∣

∣

∣

∫

sin(q · ρ1/2)ψ
∗
nlm(ρ1)ψ100(ρ1)

∣

∣

∣

∣

2

(16)

which appears in the expression of many collision cross sections in terms of momentum

transfer [33], for example in the Born approximation. Methods of its evaluation were re-

viewed by Beigman and Lebedev [33]. However, for our purposes it is more convenient to

use the method developed in Appendix A.

Summation over k and k′ can be replaced by summation over k and q. Then in the

denominator of Eq. (13)

k2 − (k′)2

2
+
p2 − (p′)2

4
= −3

4
q2 + q · (k− 1

2
p)

and

Ecorr
1p =

2(8π)2

V 2

∑

k<kF

∑

|k−q|>kF

∑

n

Fn(q)

q4
(

−3
4
q2 + q · (k− 1

2
p) + ǫ1 − ǫn + iη

) ,
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where we have summed over m′
1, m

′
2 and included an extra factor 2 due to sum over spin

states below the Fermi level.

Using the standard switching from summation over wavevectors to integration, we obtain

Ecorr
1p =

2

π4

∑

n

∫

d3k
∫

d3q
Fn(q)θ(|k− q| − kF )θ(kF − k)

q4
(

−3
4
q2 + q · (k− 1

2
p) + ǫ1 − ǫn + iη

) . (17)

where we have introduced step (Heaviside) functions to account for the constraints on the

integration region. Since Fn(q) behaves as q2 near the origin, the integral is convergent in

q (in contrast to what happens with the free electron correlation energy). The nontrivial

integration variables here are q, k, cos ζ , and cos θ, where ζ is the angle between k and

q, and θ is the angle between p and q. Angular integration and integration in k can be

performed analytically, as shown in Appendix B, and calculation of Ecorr
1p is reduced to

numerical integration in q and summation over n.

Eq. (17) includes only the direct term. Calculation of the exchange-correlation term

is a much more formidable task, and we have neglected it in the present work. A justifi-

cation for this approximation can be found in the recent paper of Green et al. [19] who

used the diagram technique to calculate the correlation energy in Ps-atom interaction. In

particular they showed that the main contribution to the correlation energy is given by the

direct electron-hole loop diagram, and it provides the required van der Waals asymptotic

form for the correlation potential. On the other hand, the two leading contributions to

the exchange-correlation correction partly cancel each other, therefore the total exchange-

correlation contribution can be neglected.

In accordance with the Thomas-Fermi model, the correlation energy can be used for

description of Ps-target correlation potential if kF is considered as a function of the projectile

position R, similar to the method used in electron-atom and electron-molecule scattering.

Outside the target where n(R) and kF (R) become small, the energy is matched with the van

der Waals interaction −CW/R
6. This approach is similar to that used in electron-molecule

collisions [25, 26] where the correlation potential is matched to its long-range part −α/(2r4)
outside the target.
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B. Results for FEG correlation energy

In specific calculations we kept a finite sum in n in Eq. (17) and neglected completely the

integral over the Ps continuum. Calculations show that sum in n is convergent reasonably

well, although sometimes n up to 20 should be included. Physically it is also clear that

highly-excited Rydberg states of Ps should not contribute because of the screening effects

which are not accounted for in the second-order perturbation theory. Some discussion of

the screening effects is given in Sec. IV. At large Ps-target distances the screening effects

become negligible, and the complete sum in all Ps eigenstates, including integration over the

Ps continuum, should be included. However, outside the target we match the correlation

energy with the van der Waals interaction with the proper van der Waals constant. In this

way we incorporate the effect of the Ps continuum implicitly.

In Fig. 4 we present the real part of the correlation energy as a function of the Fermi

momentum. As in the case of the exchange energy, the dependence on Ps momentum p is

weak.

Calculations also show that the imaginary part of the correlation energy is negligible in

the domain p < 2 a.u., kF < 3 a.u. Mathematically this means that the denominator in

Eq. (17) turns to zero for such values of q where the numerator, Fn(q), is small. Physically

this corresponds to insignificance of the inelastic channels, electron-hole excitations and ex-

citations of Ps. For higher momenta ImEcorr starts to grow. The most important inelastic

channel in Ps-atom and Ps-molecule collisions is the Ps ionization which can be included

explicitly by impulse [34] or binary-encounter [7, 8] approximations. In the present applica-

tion of the method to Ps-N2 collisions [27] we neglect ImE
corr and calculate the contribution

of the Ps ionization channel explicitly.

IV. SCREENING EFFECTS

A. Review of the electron gas theory

Screening effects play an important role in the theory of the electron gas. The electron

self-energy in the electron gas is divergent in the second-order perturbation theory [31], and

only accounting for screening effects makes it finite [30]. We will summarize the results for

electron gas first.
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FIG. 4: Correlation energy for Ps in an electron gas as a function of the Fermi momentum kF .

Solid line, Ps momentum p = 0.2 a.u. Dashed line, p = 1.0 a.u.

The electron-electron Coulomb interaction in momentum space

V (q) =
4π

q2
, q = k− k′ (18)

with account of screening is modified as

Vs(q) =
4π

q2 + ξ2

where ξ is the screening constant. Generally, if the external perturbation is time-dependent,

it depends on q and frequency ω, but in the static approximation

ξ2(q) =
2kF
π

[

1−
(

1

q
− 1

4
q

)

ln

∣

∣

∣

∣

∣

1− q/2

1 + q/2

∣

∣

∣

∣

∣

]

.
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In the limit q → 0 we get the Thomas-Fermi screening constant [31, 32]

ξ2TF =
4kF
π
.

The Fourier transform of Vs(q) with q-independent Thomas-Fermi screening constant pro-

duces the Yukawa potential. However, when q-dependence of ξ is taken into account, the

dependence of Vs(r) on r is more complicated: at large r it decays as 1/r3 with superimposed

oscillations (Friedel oscillations [35]):

Vs(r) = const · cos(2kF r)
r3

.

Calculations of the electron exchange energy Eex accounting for screening show a signif-

icant reduction of Eex, but the results obtained with the Thomas-Fermi screening constant

and dynamical screening constant are very close to each other.

B. Electron exchange and correlations in Ps-atom scattering

Calculation of screening effects in Ps interaction with an electron gas is a much more

challenging task than calculation of screening effects for a point charge. If the q-dependence

of the screening constant is not important, we can assume that the electron or positron in

Ps interacts with an electron in the Fermi gas by the potential

Vs(r) = −Z e
−ξr

r

where Z = −1 for electron, and Z = 1 for positron. However, such an approach would be

very approximate, if not wrong, since it treats polarization of the electron gas due to the

electron and positron in Ps independently.

Regarding the Ps self-energy, the second-order correction gives a finite result, as was

discussed above. A simple replacement of the Coulomb potential by the screened potential

in Eq. (14) produces an unrealistically small correlation energy. It is clear, though, from the

discussion above that such a substitution would be inconsistent: it accounts for screening

in interaction of the Ps electron with the Fermi gas and Ps positron with the Fermi gas,

but not for screening in interaction between Ps electron and positron. It is obvious that a

consistent account of screening in Ps interaction with the electron gas requires a much more

advanced theory. On the other hand, Green et al [19], using the diagram technique, found
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that the lowest-order diagram describing creation of electron-hole pair, is sufficient for an

adequate description of Ps-atom scattering. This lowest-order diagram corresponds to our

correlation energy Ecorr. Generally, it is reasonable to assume that since Ps is a neutral

system, the screening effect in this case will not be as significant as for an electron, as is

apparent from comparison of the Fourier transform of the Coulomb potential, Eq. (18) with

the Fourier transform of the Ps-electron interaction, Eq. (15).

V. CONCLUSION

In conclusion we have constructed new FEG exchange and correlation energies allowing us

to describe more completely these effects as compared to our previous treatment of exchange

and correlations in Ps-atom and Ps-molecule scattering. The major difference in methods

used in [5, 8] and the present is that in Refs. [5, 8] we constructed a pseudopotential for the

projectile-target interaction using the electron and positron scattering phase shifts whereas

in the present method is based on the FEG exchange and correlation potentials without

adding a repulsive core mocking the orthogonality condition. Whereas the present method

is more direct in the sense that it does not require electron and positron scattering data, it

includes exchange and correlation effects approximately by modeling the target electrons as

a free electron gas. In the next paper of this series [27] we apply the method developed in the

present paper to the problem of Ps-N2 scattering and show that the new method describes

well the resonant Ps-N2 scattering and high-energy behavior of the total cross section.
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Appendix A. Hydrogen-like formfactors

For calculation of Ps formfactors, Eq. (16), we start with the integral

Inl =
∫

eiq·ρ/2ψ∗
nlm(ρ)ψ100(ρ)dρ.
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This has a nonzero value only for m = 0, if we direct the quantization axis along the

momentum transfer q.

Expanding the plane wave in spherical harmonics and using the standard expressions for

the hydrogen-like wavefunctions:

ψnlm(ρ) =
unl(ρ)

ρ
Ylm(ρ̂)

unl(ρ) = Nnlx
l+1e−x/2F (l + 1− n, 2l + 2, x), x =

2ρ

na0

where F is the confluent hypergeometric function, a0 is the Bohr radius for the hydrogenlike

system (for Ps a0 = 2 a.u.), and Nnl is the normalization constant

Nnl =
1

(2l + 1)!

[

(n+ l)!

2n(n− l − 1)!

]1/2 (
2

na0

)l+3/2

.

Then

Inl = il(2l + 1)1/2
∫

jl(qρ/2)unl(ρ)u10(ρ)dρ

where jl is the spherical Bessel function. Since only the imaginary part of Inl contributes to

the formfactor, Eq. (16), we are interested only in odd values of l.

Use now the polynomial representation of F

F (−nr, 2l + 2, x) =
nr
∑

k=0

(−nr)k
k!(2l + 2)k

xk, nr = n− l − 1

and the integral [36]

∫ ∞

0
ρl+k+3/2 exp

[

− ρ

a0

(

1 +
1

n

)]

Jl+1/2(qρ/2)dρ =

a
l+k+5/2
0

Γ(2l + k + 3)(qa0/4)
l+1/2

y2l+k+3Γ(l + 3/2)
2F1

(

l +
k + 3

2
,−k + 1

2
; l +

3

2
; z

)

(19)

where

y2 =
(

1 +
1

n

)2

+
1

4
q2a20, z =

q2a20
4y2

and 2F1 is the Gauss’s hypergeometric function.

Then we obtain

Inl =
il

(2l + 1)!Γ(l + 3/2)

[

π(2l + 1)(n+ l)!

2nnr!

]1/2 (
qa0
4

)l

nr
∑

k=0

(−nr)k
k!(2l + 2)k

(

2

n

)k+l+3/2 Γ(2l + k + 3)

y2l+3+k 2F1

(

l +
k + 3

2
,−k + 1

2
; l +

3

2
; z

)

. (20)
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The hypergeometric function can be reduced to a polynomial. If k is odd, k = 2m + 1,

m = 0, 1, ..., then the hypergeometric series is truncated as

2F1(l +m+ 2,−(m+ 1); l + 3/2; z) =
m+1
∑

s=0

(l +m+ 2)s(−m− 1)s
(l + 3/2)ss!

zs.

If k is even, k = 2m, we use [36]

2F1(a, b; c; z) = (1− z)−b
2F1

(

c− a, b; c;
z

z − 1

)

.

Then

2F1

(

l +m+
3

2
,−m− 1

2
; l +

3

2
; z
)

= (1− z)m+1/2
m
∑

s=0

(−1)s(−m)s(−m− 1/2)s
s!(l + 3/2)s

(

z

1− z

)s

.

Appendix B. Calculation of correlation energy

To calculate the correlation energy, we start first with Eq. (17) and perform integration

over orientation of the vector k in the coordinate system with the polar axis along vector q.

The integral is reduced to

I1(q,k) = 2π
∫ xmax

−1

dx

qkx+ t(q)

where t(q) = −3q2/4−q ·p/2+ ǫ1− ǫn+ iη. The upper integration limit xmax is determined

from the constraint |k− q| > kF which leads to

x = cos ζ < β(q, k)

where

β(q, k) =
k2 + q2 − k2F

2kq

Therefore

xmax = min[1, β(q, k)]. (21)

To find the right-hand-side in Eq. (21), we look for a domain in the (q, k) plane where

β(q, k) < 1. This occurs for

k − kF < q < k + kF .

Since k < kF , this constraint is simply reduced to q < k + kF . Look now for the domain

where β(q, k) < −1. This occurs if q < kF − k. In summary

I1(q,k) =
2π

qk

[

θ(k + kF − q) ln
β(q, k) + t(q)/qk

−1 + t(q)/qk
+ θ(q − k − kF ) ln

1 + t(q)/qk

−1 + t(q)/qk

]

if k > kF−q
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and

I1(q,k) = 0 if k < kF − q.

Here and below ln is defined as analytic function with the branch cut along the negative

real axis and with the account of Imt > 0. Perform now integration over orientation of q in

the coordinate system with the polar vector along p. Since

t(q) = s(q)− qpy/2, y = cos θ, s(q) = −3q2/4 + ǫ1 − ǫn + iη,

the integration is reduced to

I2(q, k) =
(2π)2

qk

∫ 1

−1
dy

[

θ(k + kF − q) ln
2k/p+ v − y

v − 2k/p− y
+ θ(q − k − kF ) ln

u(q) + k2/pq − y

v − 2k/p− y

]

where

u(q) =
q2 − k2F + 2s(q)

pq
, v(q) =

2s(q)

pq

Using the integral

λ(a) ≡
∫ 1

−1
ln(y − a)dy = (1− a) ln(1− a) + (1 + a) ln(−1− a)− 2

we obtain

I2 = 0 if k < kF − q

I2(q, k) =
(2π)2

qk

[

λ

(

k2

pq
+ u(q)

)

− λ

(

v − 2k

p

)]

if k > q − kF , (22)

I2(q, k) =
(2π)2

qk

[

λ

(

v +
2k

p

)

− λ

(

v − 2k

p

)]

if k < q − kF . (23)

Integration in the (q, k) plane can be organized now as

∫ ∞

0
dq
∫ kF

0
dk =

∫ kF

0
dq
∫ kF

kF−q
dkI ′2(q, k) +

∫ 2kF

kF
dq

(

∫ q−kF

0
I

′′

2 (q, k) +
∫ kF

q−kF
dkI ′(q, k)

)

+
∫ ∞

2kF
dq
∫ kF

0
dkI

′′

2

where for I ′2 we use Eq. (22), and for I
′′

2 Eq. (23).

Integration in k can be performed using the following integrals

G1(a, b, x) ≡
∫

(ax2+bx) ln(ax+b)dx =

(

1

3
ax3 +

1

2
bx2 − b3

6a2

)

ln(ax+b)−1

9
ax3− 1

12
bx2+

b2

6a
x

G2(a, b, x) ≡
∫

(ax3 + bx) ln(ax2 + bx)dx =

(

1

4
ax4 +

1

2
bx2 +

b2

4a

)

ln(ax2 + b)− 1

8
ax4 − 1

4
bx2
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Finally

Ecorr
100 =

8

π2

∑

n>1

∫ ∞

0

dq

q3
Fn(q)G(q)

where

G(q) = G2(−(pq)−1, 1− u(q); kF )−G2(−(pq)−1, 1− u(q); kF − q)

−G2(−(pq)−1,−1− u(q); kF ) +G2(−(pq)−1,−1− u(q); kF − q)

−G1(2p
−1, 1− v(q); kF ) +G1(2p

−1, 1− v(q); kF − q)

+G1(2p
−1,−1− v(q); kF )−G1(2p

−1,−1− v(q); kF − q) if 0 < q < kF (24)

G(q) = G1(−2p−1, 1− v(q); q − kF )−G1(−2p−1,−1− v(q); q − kF )

−G1(2p
−1, 1− v(q); q − kF ) +G1(2p

−1,−1− v(q); q − kF )

+G2(−(pq)−1, 1− u(q); kF )−G2(−(pq)−1, 1− u(q); q − kF )

−G2(−(pq)−1,−1 − u(q); kF ) +G2(−(pq)−1,−1− u(q); q − kF )

−G1(2p
−1, 1− v(q); kF ) +G1(2p

−1, 1− v(q); q − kF )

+G1(2p
−1,−1− v(q); kF )−G1(2p

−1,−1 − v(q); q − kF ) if kF < q < 2kF (25)

G(q) = G1(−2p−1, 1− v(q); kF )−G1(−2p−1,−1− v(q); kF )

−G1(2p
−1, 1− v(q); kF ) +G1(2p

−1,−1− v(q); kF ) if q > 2kF . (26)
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