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Quantum walks are a promising methodology that can be used to both understand and imple-
ment quantum information processing tasks. The quantum stochastic walk is a recently developed
framework that combines the concept of a quantum walk with that of a classical random walk,
through open system evolution of a quantum system. Quantum stochastic walks have been shown
to have applications in as far reaching fields as artificial intelligence. However, there are significant
constraints on the kind of open system evolutions that can be realized in a physical experiment.
In this work, we discuss the restrictions on the allowed open system evolution, and the physical
assumptions underpinning them. We show that general direct implementations would require the
complete solution of the underlying unitary dynamics, and sophisticated reservoir engineering, thus
weakening the benefits of experimental implementation.

I. INTRODUCTION

With the ever increasing experimental control over sin-
gle and complex quantum systems [1–4], harvesting the
power of quantum physics for new technologies is no
longer a far-fetched idea. For a clear example of the
quantum world entering day-to-day life, one needs to look
no further than quantum cryptography [5]. Quantum
walks [6] are one of the most prominent frameworks in
which to design and think about quantum algorithms.
Both the continuous- [7] and discrete-time [8, 9] versions
have been shown to provide speed-up over classical infor-
mation processing tasks [10], and are universal for quan-
tum computing [11, 12]. Classical (probabilistic) and
quantum unitary random walks yield different distribu-
tions due to interference effects between different paths
the walker can take on the associated graph network.
Combining the two, a stochastic, continuous-time quan-
tum walk (QSW) can be defined in an axiomatic manner
to include unitary and non-unitary effects, and include
both classical and quantum walks as limiting cases [13].

While a general purpose quantum computer is still far
over the horizon, intermediary technologies have been
emerging with the promise to breach classical limitations.
Within these, implementations of quantum neural net-
works, efficient quantum transport, and boson sampling
[14] have appeared as some of the platforms displaying
the power of quantum walks. In many cases, such as exci-
tation transfer in photosynthetic complexes, or in neural
networks, one of the key questions is the role of coherence
in the process efficiency. Therefore, their description in a
QSW formalism is natural [15, 16]. More recently, novel
exciting intermediary applications of quantum technolo-
gies have been proposed in artificial intelligence [17–19],

which, at its core, involves an autonomous agent that can
learn from environmental input and react to it, changing
its behavior as more input is received. One such proposal
uses quantum stochastic walks to speed-up the learning
of the agent [18].

As a standard quantum walk arises from unitary evo-
lution, which is a special case of reversible evolution, the
associated graphs are undirected. However, the stochas-
tic processes present in QSWs can give some direction-
ality to the graph network, at the price of introducing
decoherence. Directionality, in turn, can enhance trans-
port [20], or speed-up memory access in artificial intel-
ligence [18]. In order to preserve quantum speedup, the
nature of the decoherence, i.e. its selectivity and rate,
need to be carefully designed.

In this work we investigate the implementation of
QSWs with no active control of the environment or ancil-
lary systems. We describe the limitations to physical im-
plementations of such a QSW, and show that only a very
restricted set of graphs can be implemented with quan-
tum systems under the canonical nondegenerate weak-
coupling assumptions. Our results suggest that a large
class of master equations often found in literature can-
not be directly engineered in real systems without either
active environmental control, or solving the full system
dynamics prior to its implementation. To our knowl-
edge, this is the first rigorous demonstration of this claim.
It should be noted that continuous-time, unitary quan-
tum walks have recently been implemented in different
systems, such as photonics (where efficient quantum cir-
cuits were used to implement a class of graphs [21] and
determine vertex centrality [22]) and NMR (where time-
reversal asymmetry lead to near-perfect transport [23]).

It is important to stress one key difference in our ap-
proach. We focus on the implementation of purpose-built
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quantum stochastic walks. It is well known and accepted
that nature provides us with countless processes which
can be described by QSWs. Understanding these can aid
not only the understanding of nature, such as in trans-
port problems, but also to find protocols to counter the
effects of noise in quantum technologies. Our focus is
on the opposite direction, i.e., one has the mathematical
description of a QSW which performs a given task, and
wants to design the coherent and incoherent processes
that implement it. That is to say, our results do not
affect models of physical processes based on QSWs, but
only to algorithm and device designs, such as the imple-
mentations mentioned above [15, 16, 18].

II. PROBLEM DESCRIPTION

The classical random walk is an important and well
studied model in statistical physics [24] describing the
probabilistic movement of a walker along a graph. Sys-
tem evolution in a classical random walk is described by
the transition probabilities from one node of the graph to
all other nodes connected to it. In a quantum walk the
evolution is instead described by transition probability
amplitudes, that is, by unitary evolution of the quantum
state describing the walker. Therefore, the main differ-
ence between classical and quantum walks is coherence.

The generalization encompassing both concepts is the
so called quantum stochastic walk [13]. Each quantum
stochastic walk is defined by its Lindblad master equa-
tion, which can be generally written as

ρ̇ = −i
[
Ĥ, ρ

]
+
∑

k

γk

(
L̂kρL̂

†
k −

1

2

{
L̂
†
kL̂k, ρ

})
, (1)

where ρ denotes the density operator of the walker, L̂k

are the Lindblad operators and γk the associated rates
(transition probabilities) responsible for the incoherent

part of the time evolution, and Ĥ is the Hamiltonian
describing the coherent part of the time evolution. The
structure of the graph is encoded by the associated ma-
trices - nonzero elements of Ĥ encode coherent edges and
those of the Lindblad operators encode incoherent edges.
Equation (1) incorporates both the classical random walk
and the quantum walk as special cases, and also allows
for the study of more general walks that exhibit both
coherent quantum and random classical behavior.

The quantum stochastic walk has been used to develop
new quantum algorithms, such as the machine learning
algorithms of Refs. [18, 19], and to model transport phe-
nomena in photosynthetic complexes [20] and quantum
neural networks [15]. In these, the incoherent evolution
conserves the excitation number of the graph, so that
evolution remains in the fixed excitation subspace when
a given number of walkers is present, and the walkers can-
not be lost. If we consider the situation where each node
of the graph is represented by a qubit, then the Lindblad
operator describing incoherent excitation exchange from

node n to node m of the graph is given by L̂k = σ̂−
n σ̂+

m.
The full Lindblad equation is therefore given by

ρ̇ = −i
[
Ĥ, ρ

]

+
∑

nm

γnm

(
σ̂+
mσ̂−

n ρσ̂
+
n σ̂

−
m −

1

2

{
σ̂+
n σ̂

−
mσ̂+

mσ̂−
n , ρ

})
, (2)

and it is the physical implementation of this walk that
will be the focus of this work. Note that for a general,
potentially directed walk, we must allow γnm 6= γmn.

It is important to notice that eq.(2) and the following
analysis apply to walks with any number of walkers, as
long as this is a conserved quantity. Let us consider a
single-excitation QSW. In this case only N basis states
are required to describe a walk on N nodes. Therefore
a quantum computer would require only log2 N qubits,
and this can in principle be efficiently (in memory) sim-
ulated on a classical computer (but not in terms of run
time). However, QSWs with more than one excitation
have faster scaling (in number of qubits), albeit subex-
ponential, and need not have an efficient classical imple-
mentation. Moreover, equation eq.(2) is not a specific
example of one QSW, but is a generic description, and
in general the evolution of any particle number conserv-
ing fixed-excitation system can be written in the form
of eq.(2). Therefore, the results presented here apply to
a large class of open quantum systems, including most
QSW-based algorithms found in the literature. Later
in the paper we will also briefly comment on relaxing
the assumption of particle number conservation, further
broadening the applicability of our results.

While approaches to achieve open-system dynamics ex-
ist for few qubits, the physical implementation of the
quantum stochastic walk of eq.(2) is challenging, as in-
coherent excitation exchange between many nodes is re-
quired, while at the same time the excitation must be
protected from decaying into the environment. In the
following we will show explicitly that the incoherent evo-
lution of eq.(2) cannot be built without active control of
the system and environment, or the solution of the com-
plete unitary dynamics. While it is well known that mas-
ter equations built from phenomenological models can
lead to unphysical results [25, 26], our work, on the other
hand, focuses on whether a microscopic implementation
can be created to mimic the desired dynamics.

It is important to note that in this work we consider the
quantum stochastic walk as defined in Ref. [13], and not
the open quantum walk of Refs. [27, 28], which, despite
the similar nomenclature, is an entirely different frame-
work of open system evolution involving both internal
and positional degrees of freedom of the walker. The
QSW investigated here follows the paradigm of Ref. [7],
where the continuous time evolution takes place exclu-
sively on the position space of the walker, with no inter-
nal (coin) space needed.
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III. BUILDING A QSW FROM STANDARD

DECOHERENCE MODELS

We consider the standard microscopic derivation of a
Lindblad form master equation in the weak coupling limit
[29] using the secular approximation. While in principle
the Lindblad equation can also be derived in the singu-
lar coupling limit [29], this situation only plays a minor
role in quantum computing platforms as it requires either
strong damping or high bath temperature for the Markov
approximation to be valid. Even though in the case of a
QSW this would only apply to some degrees of freedom,
it is more than challenging to engineer a quantum system
where some degrees of freedom are coherent and others
are strongly damped in a controlled way.

We assume from here on a system with nondegenerate
transition frequencies. We begin with a Hamiltonian of
the form

Ĥ = ĤS + ĤB + ĤSB, (3)

where ĤS is the self-Hamiltonian of the system, which
in our case describes the graph, and ĤB is the self-
Hamiltonian of the environmental bath, possibly consist-
ing of many distinct baths. The term ĤSB describes the
system-bath interaction, and without loss of generality
has the form

ĤSB =
∑

k,j

η̃
(j)
k Ŝ

(j)
k ⊗ B̂k, (4)

where Ŝ
(j)
k and B̂k are system and bath operators re-

spectively, and each bath k can interact with many local

nodes j with a coupling strength given by η̃
(j)
k . Start-

ing from these, our goal is to obtain a Lindblad master
equation of the form of eq.(2). In the following, Latin
letters are used for the system local basis states {|m〉},
and Greek letters for the system eigenbasis, {|α〉}. In the
local basis, the master equation takes the form [30]

d

dt
ρmn =−

i

~

∑

m′

Hs,mm′ρm′n +
i

~

∑

n′

ρmn′Hs,n′n

+
∑

m′n′

Rmn,m′n′ρm′n′ , (5)

where Hs,mm′ ≡ 〈m| Ĥs |m
′〉 describes coherent dynam-

ics and Rmn,m′n′ the incoherent transition rates in the
local basis.

Within the secular approximation, fast oscillating
terms are neglected and the transition rates between di-
agonal elements, i.e., Rmm,nn ≡ Γmn, can be written as

Γmn =
∑

α6=α′

Tmn;αα′Γαα′ −
∑

αβ

T̃mn;αβΓ̃αβ. (6)

Here Γαα′ represents the transition rate between eigen-

states, Γ̃αβ their total dephasing rate, and we have de-

fined T̃mn;αβ ≡ 〈m| α〉 〈β| m〉 〈α| n〉 〈n| β〉 and Tmn;αα′ ≡

|〈m| α〉|
2
|〈α′| n〉|

2
. All other contributions are sup-

pressed under the secular approximation, as we have as-
sumed all transition frequencies are nondegenerate. The
interested reader is encouraged to see Section II.G of ref-
erence [30] for a detailed presentation of the calculations
leading to eq.(6). Let us define

Ξ1 =
∑

α6=α′

Tmn;αα′Γαα′ (7)

Ξ2 =
∑

αβ

T̃mn;αβΓ̃αβ , (8)

so that Γmn = Ξ1 − Ξ2.

As discussed before, eq.(2) does not allow for incoher-
ent annihilation of local excitations and so we require
that Γmn = 0 whenever |m〉 and |n〉 contain a different
number of excitations, while allowing other Γmn to be
fashioned in accordance with the desired dynamics. How-

ever, as Γαα′ , Γ̃αβ , Tmn;αα′ ≥ 0 the first sum in eq.(6),
Ξ1, will be non-negative. Vanishing transition rates then
mean that either both Ξ1 and Ξ2 vanish, or that Ξ1 = Ξ2.
We will now consider these scenarios.

IV. EIGENSTATE TRANSITION RATES

To determine the conditions required to set Γmn = 0
we start by looking at Ξ1 = Ξ2 6= 0. Non-zero terms
in the sum in Ξ2 would require the existance of pairs
of eigenstates {|α〉 , |β〉} with non-zero overlap with both

|m〉 and |n〉, otherwise T̃mn;αβ = 0. Thus, avoiding tran-
sitions between local states with different excitation num-
bers, by cancelling the two sums of eq.(6), would demand
eigenstates of the system Hamiltonian spanning states
with different numbers of walkers. However, as discussed
previously, applications of quantum walks usually rely on

number-conserving graphs. As such, T̃mn;αβ = 0 for all
|m〉 and |n〉 with a different number of excitations, and
Ξ2 = 0. Therefore, Ξ1 must also vanish so that Γmn = 0.
We will now examine the requirements to set Ξ1 = 0.

The transition rates between eigenstates are given
by [30]

Γαα′ =
2π

~Zb

∑

ωω′

e−E
ω′/(kBT )δ (ǫα − ǫα′ + Eω − Eω′)

× |Vαω,α′ω′ |2 , (9)

where Zb is the bath partition function, kB the Boltz-
mann constant, and T the bath temperature. Here ǫα
and |α〉 (Eω and |φB(ω)〉) are the system (bath) eigenen-
ergies and eigenvectors, and

Vαω,α′ω′ ≡ 〈α, φB(ω)| ĤSB |α′, φB(ω
′)〉 . (10)
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For the interaction Hamiltonian of eq.(4) we have

Vαω,α′ω′ = 〈α, φB(ω)|
∑

k,j

η̃
(j)
k Ŝ

(j)
k ⊗ B̂k |α

′, φB(ω
′)〉

=
∑

k,j

η
(j)
k 〈α| Ŝ

(j)
k |α′〉

≡ 〈α|V (ω, ω′) |α′〉 , (11)

where η
(j)
k = η̃

(j)
k 〈φB(ω)| B̂k |φB(ω

′)〉.
Let us focus on transitions between local basis states

|m〉 and |n〉 with

|m〉 =
∑

α

cα |α〉 ; |n〉 =
∑

α′

c′α′ |α′〉 . (12)

As Γαα′ , Tmn;αα′ ≥ 0, Ξ1 will vanish only if Γαα′ = 0
for all {α, α′} with cα, c

′
α′ 6= 0. From eq.(9) we see that

Γαα′ = 0 only if Vαω,α′ω′ vanishes for all bath states for
which the Dirac Delta is non-zero. Let us assume that
the bath spectrum is dense, as is already implied by the
Markov approximation being applicable, such that the
energy conservation condition ǫα − ǫα′ + Eω − Eω′ =
0 can always be fulfilled. This means that, to prevent
transitions |m〉 ↔ |n〉 we require that for all {α, α′} with
cα, c

′
α′ 6= 0, the following statements can be inferred from

one another

〈α|V (ω, ω′) |α′〉 = 0 (13)

=⇒ cαc
′
α′ 〈α|V (ω, ω′) |α′〉 = 0 (14)

=⇒
∑

α,α′

cαc
′
α′ 〈α|V (ω, ω′) |α′〉 = 0 (15)

=⇒ 〈m|V (ω, ω′) |n〉 = 0. (16)

Of course, the validity of this last equality does not imply
Γαα′ = 0, but if it does not hold, then Γαα′ 6= 0 for at
least one pair {α, α′}.

The naturally occuring coupling of qubit nodes to their
environments can be described by the usual decoherence
maps: qubit decay, dephasing and depolarization. Below
we investigate these maps as a means to fulfill equations
(13-16).

V. SEMI-LOCAL DECAY INTO THE

RESERVOIR.

Let us start with qubit decay into their environments,

where Ŝ
(j)
k = σ̂

(j)
x , and work out the above condition,

eq.(16), for |n〉 = |1〉n (one walker at node n) and |m〉 =
|0〉 (vacuum state). For this,

〈m|V (ω, ω′) |n〉 =
∑

k,j

η
(j)
k 〈0| σ̂(j)

x |1〉n =
∑

k

η
(n)
k = 0.

(17)

As all transitions |1〉n ↔ |0〉 have to be avoided, this
must hold for all n, and so

V (ω, ω′) =
∑

k,j

η
(j)
k σ̂(j)

x =
∑

j

σ̂(j)
x

∑

k

η
(j)
k = 0. (18)

This is an effective system-bath decoupling, as
〈α|V (ω, ω′) |α′〉 = 0, which implies Γαα′ = 0 for all eigen-
states |α〉, |α′〉. Therefore, if we require that Ξ1 vanish
for all transitions |1〉n ↔ |0〉, it must vanish for all tran-
sitions, regardless of the nodes and number of excitations
involved.

As Ξ2 vanishes for excitation conserving QSWs, and as
we have just shown, so too must Ξ1, we argue that local-
decay cannot be used to generate any relevant dynamics
of the form of eq.(2). We note that it is clear that the
calculations shown above can be directly generalized to

Ŝ
(j)
k = σ̂

(j)
y .

While transitions from a single-excitation subspace to
the vaccum were used to draw the above conclusion,
eq.(18) shows that the entire Hilbert space of the qubits
is decoupled from the environment, and not only a spe-
cific subspace. Moreover, the calculations can be readily
generalized for any pair of local states with different num-

ber of walkers. Thus Ŝ
(j)
k = σ̂

(j)
x and Ŝ

(j)
k = σ̂

(j)
y cannot

be used to generate QSWs of the form of eq.(2) with any
number of walkers.

VI. SEMI-LOCAL RESERVOIR INDUCED

DEPHASING

We now look at qubit dephasing, described by cou-

pling operators Ŝ
(j)
k = σ̂

(j)
z . From the arguments above,

we immediately see that this can in principle be used to
generate Γαα′ = 0, as

∑

k,j

η
(j)
k 〈m| σ̂(j)

z |n〉 = 0, (19)

is trivially fulfilled if |m〉 and |n〉 have different local ex-
citation numbers. By the same token, in the 1-walker
subspace, this is also fulfilled by any two states |1〉m and
|1〉n, with m 6= n, which could suggest another effective
system-bath decoupling.

However, this does not imply Γmn = 0 for such states.
As mentioned before, the validity of eq.(16) does not im-
ply eq.(13), and we require that eq.(13) be valid for the
correct set of eigenstates to guarantee that Γmn = 0 when
we want it to be. If, for example, two eigenstates span
both |1〉m and |1〉n, then it is possible to have Γmn 6= 0
even though eq.(16) holds.

Setting Γmn to a given value would thus require one
to know all eigenstates with non-zero overlap with states
|m〉 and |n〉, and engineer a reservoir that fulfills eq.(6)
for the desired Γmn. We will further discuss the impli-
cation of this conclusion below, but for now note that
while we used single-excitation states above, the preceed-
ing analysis can be straightforwardly generalized to sub-
spaces of any fixed number of excitations.

The next point is to see if we can cancel local pure
dephasing, which will unequivocally occur in this set-
ting, while maintaining Γmn 6= 0 between fixed excitation
states of the nodes. Local pure dephasing is described by
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the rate

Γ̃mn ≡ Rmn,mn =
∑

α6=α′

T̃mn;αα′Γαα′ −
∑

αβ

Tmn;αβΓ̃αβ ,

(20)

and we desire that this vanish. As we require
that Γmn 6= 0, there must be eigenstates for which

T̃mn;αα′ , Γαα′ , Tmn;αβ, Γ̃αβ 6= 0. Therefore, in gen-
eral, we need to cancel the two sums in eq.(20) to ob-

tain Γ̃mn = 0, which requires an environment tailored
to the graph. While engineering an environment that
is locally compatible with the graph Hamiltonian is in
principle doable, adapting the environment to the global
eigenstates of the graph is equivalent to first solving the
problem the quantum computer is supposed to solve.

The conclusions drawn above show that if the Hamil-
tonian of the graph preservers excitation number, then
local dephasing can be used to obtain Γmn 6= 0 only for
transitions that conserve excitation number, as desired.
However, to do so we must first calculate the eigensys-
tem of HS , then solve a set of coupled equations that give
the appropriate system-bath couplings for the desired in-
coherent transition rates and zero local pure dephasing.
This is effectively reservoir engineering, and can be a con-
siderable undertaking when the graph is of sufficient size.
However, it must be noted that as both dephasing and
HS preserve excitation number, only one block of the
Hamiltonian must be diagonalized, corresponding to the
appropriate number of walkers. This is not true for lo-
cal decay, which does not conserve excitation number.
As discussed earlier, in the single-walker case on an N -
dimensional graph, this is equivalent to diagonalizing an
N -dimensional effective Hamiltonian, which can be effi-
ciently done on a classical computer, so the main chal-
lenge would lie on the experimental implementation of
the engineered reservoir.

VII. DEPOLARIZING CHANNEL

A common decoherence model is the depolarizing chan-
nel, described by a coupling of the reservoir to all qubit

operators, σ̂
(j)
x , σ̂

(j)
y and σ̂

(j)
z . The calculations above can

be easily generalized to show that such coupling to the
bath leads to all the restrictions found for both decay
and dephasing. As expected, this model cannot lead to
the desired master equation.

In both the decay and dephasing cases, it is in principle
possible to solve the full set of equations, eq.(6), and
find parameters for which all the unwanted transitions
vanish. However, this would involve full diagonalisation
of both ĤS and ĤB, and possibly (definitely in the case
of local decay) require very intricate bath engineering.
In addition, such techniques would intricately link the
coherent and incoherent transition rates.

One possibility would be to design reservoirs such that
for certain pairs of states, the energy conservation con-
dition of eq.(9) cannot be fulfilled, and thus, eq.(16)

would not be valid. In doing so, one would cancel un-
wanted transitions by a careful designed reservoir spec-
trum. While such strategies for reservoir engineering can
be useful [31–35], for the applications usually envisioned
for quantum walks their use would again rely on the la-
borious solution of the complete unitary problem.

We note that other types of Lindblad equations can be
conceived, where local excitation decay plays an impor-
tant role, e.g., in an energy transfer process [16]. How-
ever, as these models do not usually include incoherent
creation of excitations, implementations of such dynam-
ics would be plagued by the same issues discussed here,
even at zero temperature, as transitions between system
eigenstates that lower the energy of the system are not
guaranteed to conserve excitation number in the node
basis when the coupling between nodes is strong. More
concretely, as a consequence of the secular approximation
the rates Γmn and Γnm cannot be independently set, so
preventing one such transition while allowing the other
would pose the same requirements as for eq.(2). By the
same token, the secular approximation prevents the di-
rect implementation of any directed graph.

VIII. DISCUSSION AND CONCLUSIONS

Master equations in Lindblad form describe the most
general quantum state evolution that is guaranteed to be
completely positive and trace preserving. However, the
set of Lindblad operators allowed for a given physical
system is limited by the physical interactions naturally
occurring. In other words, often the mathematical for-
mulation of a dynamical system cannot be realizable in
real world applications. We have studied such limitations
for an arbitrary, number-conserving, stochastic master
equation, under the usual secular and Markov approx-
imations. We have discussed the problems of creating
such an evolution using ubiquitous decoherence models,
such as pure dephasing, amplitude damping, and depo-
larizing channels.

Our results show that microscopic implementation of
general open system evolution can only be realized if the
full unitary dynamics have been solved, and control of
the reservoir is available. For interesting cases, actual ex-
perimental implementations of quantum stochastic walks
are intended to tackle classically hard problems, which
makes solving the full unitary dynamics of the system
infeasible. Moreover, as all two-body system-bath inter-
actions can be described by the interaction Hamiltonians
studied above, carefully designed interactions can only
circumvent the restrictions found by properly engineered
local reservoir spectra, or for systems for which the sec-
ular approximation does not apply. In the latter case,
this could be done by suitable use of degenerate tran-
sitions; however, engineering these would again require
complete knowledge of the unitary dynamics. Our results
affect any direct implementation of continuous-time, ex-
citation conserving QSWs. Algorithmic applications of
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QSWs must either work within the constraints presented
here or use indirect implementations of the required dy-
namics. As investigated in Ref. [36], an alternative ap-
proach to circumvent some of these issues could be to
simulate the quantum stochastic walk on a quantum com-
puter using an adapted quantum trajectories techniques;
however, this can only be used for a restricted class of
QSWs.

Although the difficulties in implementing stochastic
processes and/or reservoir engineering are sometimes rec-
ognized, to our knowledge this is the first careful analysis
of the underlying reasons for these difficulties. However,
we note that our results are only valid within the model
described by eq.(2), and it is not obvious how they would
impact ancilla-based implementations of continuous-time
QSWs [37], or QSWs with time-dependent, active control
[38]. As such, it is likely that in nature there exist many

processes accurately described by QSWs, but any direct
laboratory implementation will require overcoming the
obstacles described here, which can only be practically
achieved by violating one of the assumptions in section
III (two-body interactions, the Born-Markov approxima-
tion, no ancillary systems).
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