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Emergent phases and novel critical behavior in a non-Markovian open quantum system

H. F. H. Cheung, Y. S. Patil and M. Vengalattore
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853∗

Open quantum systems exhibit a range of novel out-of-equilibrium behavior due to the interplay
between coherent quantum dynamics and dissipation. Of particular interest in these systems are
driven, dissipative transitions, the emergence of dynamical phases with novel broken symmetries,
and critical behavior that lies beyond the conventional paradigm of Landau-Ginzburg phenomenol-
ogy. Here, we consider a parametrically driven two-mode system in the presence of non-Markovian
system-reservoir interactions. We show that the non-Markovian dynamics modifies the phase dia-
gram of this system resulting in the emergence of a novel broken symmetry phase in a new univer-
sality class that has no counterpart in the corresponding Markovian system. This emergent phase is
accompanied by enhanced two-mode entanglement that remains robust at finite temperatures. Such
reservoir-engineered dynamical phases can potentially shed light on universal aspects of dynamical
phase transitions in a wide range of non-equilibrium systems, and aid in the development of tech-
niques for the robust generation of entanglement and quantum correlations at finite temperatures
with potential applications to quantum control, state preparation and metrology.

I. INTRODUCTION

Due to the commensurate influence of quantum co-
herence and dissipation, the dynamical behavior of open
quantum systems conforms neither to the framework of
unitary quantum evolution nor to thermodynamic de-
scriptions [1, 2]. Motivated by various applications to
quantum information science, experimental realizations
of such open systems have been developed in platforms
spanning trapped ions [3], circuit-QED systems [4], op-
tomechanical systems [5] and hybrid quantum systems
[6]. The exploration of novel dynamical phases and
the development of techniques for robust quantum state
preparation and control in these systems presents signif-
icant theoretical and experimental challenges that lie at
the interface of atomic physics, quantum optics, and con-
densed matter physics.

In addition to the traditional approach of Hamiltonian
design, open quantum systems are amenable to control
by modifying the nature of their environment. As such,
the concept of reservoir-engineering [7] has emerged as a
promising paradigm for the realization of novel states of
open and driven quantum systems. In certain cases, it
has been shown that reservoir-engineering can be used to
coax the open quantum system into phases that might
not be accessible through more conventional forms of
quantum state preparation [8, 9]. Aside from present-
ing alternate routes to quantum state preparation, such
reservoir-engineered quantum phases present intriguing
questions in their own right. For instance, it is unclear to
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what extent driven, dissipative transitions in open quan-
tum systems accommodate the central paradigms of scale
invariance, symmetry breaking and universality that un-
derpin our understanding of equilibrium and quantum
phase transitions.

Here, we explore the driven, dissipative transitions of
a parametrically driven two-mode quantum system in
the presence of a non-Markovian environment. This is a
minimal physical realization of the parametric oscillator
model [10, 11] and is closely connected to the open Dicke
model [12–14], the superradiant phase transition [15] and
the Lipkin-Meshkov-Glick model [16]. In the presence
of a Markovian reservoir, it has been shown that this
system exhibits a non-equilibrium phase transition into
an ordered state that develops beyond a critical magni-
tude of the external drive [17]. Further, recent work has
shown that the presence of a sub-ohmic reservoir modifies
the critical exponents of this non-equilibrium transition
while preserving the steady-state phase diagram [18–20].

In this work, we go beyond these prior results and iden-
tify a class of experimentally accessible non-Markovianity
that leads to significant changes in the phase diagram
of this system, leading to the emergence of a dynamical
phase with novel broken symmetries and critical behavior
that is distinct from that observed in the Markovian sys-
tem. We also demonstrate that this novel emergent phase
manifests significantly enhanced correlations and entan-
glement than can be realized in the corresponding Marko-
vian system. This two-mode entanglement is shown to
persist even at finite temperatures and is a unique feature
of the non-Markovian system-reservoir dynamics that al-
lows for the backflow of information from the environ-
ment back into the system [21, 22]. This robust entan-
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glement is distinct from Markovian system-reservoir dy-
namics that usually results in an irreversible loss of infor-
mation and correlations into the environment. As such,
our work points to an experimentally realizable instance
where reservoir engineering techniques aid in the creation
of robust, finite temperature correlations and entangle-
ment with applications to various forms of metrology and
quantum information processing.

II. MODEL

The Hamiltonian of our system is [23, 24]

H/~ =
∑
k

ωkâ
†
kâk − χx̂P x̂ix̂s − (FP e

−iωP tâ†P + h.c.)

where the indices k = {i, s, P} denote the idler, signal
and pump modes at frequencies ωk, and âk denote their
annihilation operators. The second term represents a
two-mode interaction of strength χ between the signal
and idler modes mediated by the actively driven pump.
The third term represents the classical drive of the pump
mode with magnitude FP at its resonant frequency ωP .
The influence of the reservoir is incorporated through a
master equation [25] and leads to Heisenberg-Langevin
equations of the form

ȧi = −1

2

∫ t

−∞
γ(t− t′)ai(t′)dt′ + iga†saP + ifi

ȧs = −1

2

∫ t

−∞
γ(t− t′)as(t′)dt′ + iga†iaP + ifs

ȧP = −γP
2
aP + igaias + iFP

where γ(t) is the dissipation kernel in the rotating frame,
and is related to the Langevin forces fi,s through the
fluctuation-dissipation theorem, and the normalized cou-
pling strength is g = χx0,ix0,sx0,P with x0,{i,s,P} denot-
ing the zero point amplitudes of the respective modes. In
the above, we have made the rotating wave approxima-
tion, assumed that ωP = ωi + ωs and that the damping
rate of the pump mode γP is much larger than those
of the signal and idler modes, in close accordance with
experimental realizations of this model [23]. The equa-
tions of motion are invariant under the transformation
(âi, âs) → (âie

+iφ, âse
−iφ) for φ ∈ [0, 2π). In addition,

the presence of the classical drive at the pump frequency
implies that the equations of motion are also invariant

under the transformation (âi, âs, âP ) → (â†i , â
†
s,−â

†
P ).

Thus, the physical system possesses both a U(1) sym-
metry and a Z2 symmetry.
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FIG. 1. (a) Schematic of the two-mode system. (b) The phase
diagram as a function of the drive strength µ ≡ FP /Fcr and
the normalized reservoir decay rate (γ0τr)−1. The color scale
indicates the least negative real part of the eigenvalues λ of
the dynamical matrix (see text). Critical points and phase
boundaries (white dashed lines) correspond to the vanishing
of this real part, i.e. a divergent relaxation time. The non-
Markovian system-reservoir dynamics leads to the formation
of exceptional points both in the disordered phase and the
U(1) phase. The trajectory of these exceptional points is in-
dicated by the green dashed lines. (see text).

For a Markovian reservoir, i.e. γ(t) = γ0δ(t), this sys-
tem exhibits a continuous transition at a critical pump
amplitude Fcr = γP γ0

4g from a disordered (parametric am-

plifier) phase to an ordered phase characterized by para-
metric self-oscillation of the signal and idler modes. This
transition is accompanied by the spontaneous breaking of
the U(1) symmetry related to the difference between sig-
nal and idler phases [10, 24]. Similar phenomenology also
arises in the closely related open Dicke model [12, 26].

Here, we consider the case where the signal and idler
modes are in contact with a reservoir through a dissipa-

tion kernel γ(t) = γ0
e−t/τr

τr
, where τr represents the co-

herence time or ‘memory’ of the non-Markovian reservoir.
This form of non-Markovian dynamics arises naturally
in the context of several cavity optomechanical systems
[23, 24, 27, 28] as well as hybrid systems in which an op-
tomechanical system is coupled to coherent ensembles of
quantum spins [29, 30].
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III. MEAN FIELD SOLUTIONS AND THE
PHASE DIAGRAM

The Heisenberg-Langevin equations yield distinct
steady state dynamical phases for this sytem. Such
steady state solutions for the signal and idler modes can
be represented by the form ai,s = |ai,s|eiθi,se−i∆i,st. The
Heisenberg-Langevin equations can be linearized around
these steady state solutions and cast in Fourier space as
−iωa = Σa+v (see Appendix C). Here, a = (ai, as, aP )T ,
and the noise forces v are zero-mean gaussian variables
whose correlation function is related to the dissipation
kernel via the fluctuation-dissipation theorem. The eigen-
values λ of the inverse susceptibility matrix (or the dy-
namical matrix)−Σ−iωI determine the low energy eigen-
spectrum and steady-state phase diagram of this system.
Phase boundaries between dynamical states of distinct
symmetries are associated with a vanishing of the least
negative real part of the eigenvalues λ, i.e. a divergent
relaxation time [31, 32]. The stability of the mean field
dynamical phases to generic perturbations is indicated by
non-positive real parts of the eigenvalues. The mean field
solutions of this non-Markovian system allow for three
stable dynamical phases (Fig. 1).

Disordered Phase : - In the limit of small pump drive,
the intrinsic dissipation dominates the dynamics of the
system. The steady state solution has a vanishing ampli-
tude of the signal and idler modes. The nonlinear interac-
tion between the two modes realizes a parametric ampli-
fier with a phase-dependent gain that induces squeezing
of composite quadratures formed from linear combina-
tions of the signal and idler quadratures [24]. We denote
this regime as the disordered or parametric amplifier (PA)
phase.

U(1) Phase : - We first consider the regime of small
reservoir coherence time, i.e. (γ0τr)

−1 � 1. Note that
the Markovian regime is obtained in the limit (γ0τr)

−1 →
∞. For a normalized pump drive µ = FP /Fcr > 1, the
signal and idler modes exhibit parametric self-oscillation
at their resonant frequencies ωi,s. The steady-state solu-

tions are āi,s = i
√
γ0γP
2g e±iφ/2

√
µ− 1. The U(1) symme-

try corresponding to the unconstrained phase difference
φ between the signal and idler modes is spontaneously
broken at the phase boundary µcr = 1. As such, we de-
note this as the U(1) phase. These solutions are consis-
tent with the corresponding phases in a purely Markovian
system.

U(1)×Z2 Phase : - In contrast, as the coherence time
τr is increased, the system is qualitatively modified due
to the competing effects of dissipation and reservoir co-
herence. As the timescales of these processes become

commensurate, the eigenvalues morph into complex con-
jugate pairs analogous to PT symmetry breaking. For
(γ0τr)

−1 < 1
2 , a new limit cycle phase emerges with

the signal and idler modes either given by the solution
āi ∝ ieiφ/2e−i∆t

√
µ− µcr, ās ∝ ie−iφ/2ei∆t

√
µ− µcr,

or by the solution āi ∝ ieiφ/2ei∆t
√
µ− µcr, ās ∝

ie−iφ/2e−i∆t
√
µ− µcr. These solutions correspond re-

spectively to a clockwise or counter-clockwise precession
of the relative phase between these modes at an emer-
gent limit cycle frequency ∆ = τ−1

r

√
γ0τr

2 − 1 that de-
pends solely on the environmental parameters. The un-
derlying Z2 symmetry reflecting these two choices is thus
spontaneously broken in this limit cycle phase (see Fig.
2(a)). Further, the critical drive strength monotonically
decreases as µcr = 2

γ0τr
.

In this emergent limit cycle phase, the signal and idler
modes exhibit self-oscillatory behavior not at their nom-
inal resonances but at shifted frequencies ωi → ωi ±
∆, ωs → ωs ∓ ∆, with the choice of ±∆ corresponding
to a spontaneous breaking of a Z2 symmetry. In contrast
to the fixed phase difference between the signal and idler
modes in the U(1) phase, the phases of these modes now
oscillate at a rate ∆ in this limit cycle phase. To fur-
ther establish that this is a distinct phase, we calculate
the dynamical states for a fixed drive µ > 1 as the reser-
voir coherence time is reduced (Fig. 2(b)). We find that
below the phase boundary (γ0τr)

−1 = 1
2 , the limit cycle

frequency ∆ continuously grows from zero with its magni-
tude increasing as the square root of the distance from the
critical point. We also compute the spectrum of ∆ using
a linearized equation, and find that its variance diverges
at the U(1) − U(1) × Z2 phase boundary, (γ0τr)

−1 = 1
2

(see Fig.2(b), Appendix F). The square root dependence
of ∆ below the critical point and the divergence of its
noise spectrum are characteristic of a continuous phase
transition with an order parameter ∆.

IV. EFFECT OF FLUCTUATIONS AND
STABILITY OF THE MEAN FIELD PHASES

Here, we examine the stability of the mean field phases
to generic gaussian perturbations. As described in the
previous section, the stability of the mean field dynami-
cal phases can be analyzed by evaluating the eigenspec-
trum of the dynamical matrix that governs the response
of the various modes to perturbations. In particular, the
stability of each of the dynamical phases is indicated by
non-positive real parts of the eigenvalues λ of the dynam-
ical matrix [31]. In other words, the mean field states are
stable if the system responds to such perturbations by
relaxing back to its steady state with a finite damping
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FIG. 2. (a) Schematic distinction between the U(1) and the
U(1)× Z2 phases. The former phase is characterized by self-
oscillation of the signal and idler modes with a spontaneously
chosen phase difference φ between these modes. In contrast,
the latter phase is further characterized by a limit cycle at
an oscillation frequency ∆. There are two possible manifesta-
tions of such a limit cycle, corresponding to the choice of the
sign of the limit cycle frequency. A particular choice of this
sign spontaneously breaks the Z2 symmetry.
(b) The transition between the U(1) and the U(1)×Z2 phase
versus the normalized reservoir decay rate, (γ0τr)−1. The crit-
ical point occurs at (γ0τr)−1 = 1

2
, corresponding to a diver-

gent variance, Var(∆), of the limit cycle frequency ∆. Below
this critical point, these modes no longer self-oscillate at their
nominal resonances but shift to ωi → ωi ± ∆, ωs → ωs ∓ ∆,
corresponding to a breaking of the Z2 symmetry (see inset,
bottom). In contrast to the spontaneously chosen but con-
stant phase difference between the two modes in the U(1)
phase, the phases of these modes now oscillate (see inset, top)
at the frequency ∆ that continuously grows from zero below
the critical point. The calculations in this figure are performed
for µ = 2.

rate. Similarly, phase boundaries are indicated in such
an analysis by a vanishing real part of the least nega-
tive eigenvalue, i.e. a divergent relaxation time. While
these calculations are detailed in Appendix C, we outline
the procedure and discuss the main implications of these

results below.

The Heisenberg-Langevin equations can be linearized
around each distinct steady state solution as ai,s,P =
āi,s,P + δai,s,P , where āi,s,P are the respective mean field
solutions in the three dynamical phases. Cast in matrix
form, the response of the fluctuations δai,s,P to the noise
forces is governed by the susceptibility matrix (also re-
ferred to as the dynamical matrix [31]). As shown in
[24], this analysis is more conveniently performed for the
respective cross-quadratures of the signal and idler modes
and takes the form δx̃ = −(Σ(ω)+iωI)−1ṽ (see Appendix
C). The poles of the susceptibility matrix are given by
complex frequencies ω satisfying Det[Σ(ω) + iωI] = 0
and the eigenvalues of the inverse susceptibility matrix
are defined as λ = −iω. The real part of these eigen-
values correspond to the damping rate of the system’s
response to generic perturbations.

This analysis, performed by linearizing the system
around the disordered (PA) phase, yields the eigenval-

ues λ± = γ0
4

[
(µ− 2

γ0τr
)±

√
(µ+ 2

γ0τr
)2 − 8

γ0τr

]
. Deep

in the Markovian regime, (γ0τr)
−1 � 1, these eigenval-

ues are purely real and negative for µ < 1 indicating the
stability of this phase. As the reservoir coherence time is
increased, the eigenvalues remain real and negative in the
vicinity of the critical point µ = 1 (orange curves in Fig.
3). Similar analysis can also be performed by linearizing
the system around the mean field solutions for the U(1)
and U(1)×Z2 phases indicating that these solutions too
are stable to generic perturbations in their respective do-
mains. This stability is illustrated for the three phases
for representative choices of the parameter (γ0τr)

−1 in
Fig. 3.

In addition to confirming the stability of the mean field
phases, the above analysis also sheds light on other fea-
tures of this system that arise from the non-Markovian
system-reservoir interactions. In particular, it reveals the
emergence of new phenomenology associated with the
presence of exceptional points [33, 34] in the phase di-
agram. For (γ0τr)

−1 > 2, the eigenvalues corresponding
to the disordered phase are purely real and the system
can be mapped onto the Markovian system. However,
as the coherence time of the reservoir is increased, the
eigenvalues morph into complex conjugate pairs for suf-
ficiently small drive µ. This qualitative shift in the na-
ture of the eigenvalues from purely real to complex conju-
gate values occurs at a distinct point in the system where
two eigenvalues (and their corresponding eigenmodes) co-
alesce. Such distinct points are referred to as exceptional
points and are associated with unique topological prop-
erties akin to a Berry’s phase [34].

In the disordered phase, we find that the locus of excep-
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FIG. 3. The behavior of the low lying eigenspectrum corresponding to the disordered phase (orange), U(1) phase (green) and
U(1)× Z2 phase (blue). The eigenvalues are obtained by linearizing the equations of motion around the steady state solutions
in the three different phases. Shown here are two eigenvalues with the lowest negative real parts for each phase. Figures (a)
to (c) demonstrate the trend with increasing reservoir coherence time τr showing the relative positions of the exceptional point
(blue circle) and the critical point (green circle) vs the drive strength µ. For the disordered phase (orange traces), the imaginary
part of the eigenvalue is represented as the width of the eigenmode. The exceptional point corresponds to a coalescence of
the eigenvalues and eigenmodes and a vanishing imaginary part. The critical point occurs when the disordered phase becomes
unstable (Re[λ] > 0) and gives way to the broken symmetry phases. (a) In the regime 1

2
< (γ0τr)−1 < 2, the exceptional point

occurs before the critical point governing the transition to the U(1) phase. The eigenvalues are purely real in the vicinity of
the critical point. As such, the critical behavior in this regime can be mapped onto a supercritical pitchfork bifurcation. (b) At
(γ0τr)−1 = 1

2
, the exceptional point and the critical point coincide, i.e. the real and imaginary parts of the eigenvalues vanish

simultaneously at the critical point, indicating the emergence of the U(1) × Z2 phase. (c) Deep in the non-Markovian regime,
i.e. (γ0τr)−1 < 1

2
, the critical point occurs before the exceptional point and the transition to the U(1)× Z2 phase occurs when

the eigenvalues are purely imaginary. Here, the critical behavior corresponds to a supercritical Hopf bifurcation. The displayed
eigenspectra correspond to (a) (γ0τr)−1 = 1.25, (b) (γ0τr)−1 = 0.50, and (c) (γ0τr)−1 = 0.15.

tional points is described by the contour (µγ0τr + 2)2 −
8γ0τr = 0 (see Appendix E). Similarly, the contour of
exceptional points in the U(1) phase is described by the
equation 4+4γ0τr(4−8µ)+((2µ−3)γ0τr)

2 = 0. As seen in
Fig. 1, the trajectories of these exceptional points within
the disordered and U(1) phase meet at the multicritical
point µ = 1, (γ0τr)

−1 = 1
2 . At this multicritical point, the

exceptional points coincide with a critical point, i.e. both
the real and imaginary parts of the eigenvalues λ simulta-
neously vanish, heralding the emergence of the U(1)×Z2

phase.

The relative positions of the exceptional points and the
phase boundary is shown in Fig. 3 for various regimes of
reservoir coherence times. For small reservoir coherence
time with (γ0τr)

−1 > 1
2 , the exceptional point occurs for

pump drives µ < 1. As such, the eigenvalues of the disor-
dered phase are purely real near the critical point (Fig. 3
(a)). As the reservoir coherence time is increased, the ex-
ceptional point approaches the critical point µ = 1 from
below. In contrast, for large reservoir coherence times
(γ0τr)

−1 < 1
2 , the exceptional point occurs for values of

pump drive beyond the critical pump strength. As such,

the eigenvalues corresponding to the disordered phase are
purely imaginary at the critical point separating the dis-
ordered phase from the U(1)× Z2 phase (Fig. 3(c)). At
the multicritical point (γ0τr)

−1 = 1
2 , the critical point

µcr = 1 coincides with the exceptional point and the real
and imaginary parts of λ± simultaneously vanish (Fig.
3(b)), leading to non-reciprocal behavior and the simul-
taneous breaking of a discrete (Z2) symmetry in addition
to the U(1) symmetry related to the signal-idler phase
difference.

V. NOVEL CRITICAL BEHAVIOR

In addition to the emergence of the novel U(1) ×
Z2 phase, the presence of the non-Markovian system-
reservoir interactions also result in novel critical behav-
ior in this system. Note that the phase diagram defines
three phase transitions : the PA − U(1) transition, the
PA−U(1)×Z2 transition, and the U(1)−U(1)×Z2 tran-
sition. These phase boundaries meet at the multicritical
point defined by the parameters µ = 1, (γ0τr)

−1 = 1
2 .
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Below, we discuss the critical behavior at each of these
phase boundaries.
The PA− U(1) phase transition : - In the Markovian

limit of this system, i.e. (γ0τr)
−1 � 1, the transition into

the U(1) phase occurs at the normalized drive amplitude
µ = 1. Accordingly, we can define the reduced distance
from criticality as ε = (µ − 1). The eigenvalues λ corre-
sponding to the disordered phase are purely real in the
vicinity of the phase boundary. Moreover, the least neg-
ative eigenvalue scales near the critical point as λ(ε) ∼ ε,
thereby defining the critical exponent νz = 1 in this
regime. Further, the steady-state amplitudes of the sig-
nal and idler modes in the U(1) phase scale as |ai,s| ∼

√
ε,

defining the critical exponent β = 1/2. Lastly, the vari-
ance of this steady-state amplitude and the susceptibility
of this order parameter diverges near the phase boundary
according to the relation Var(ai,s) ∼ |ε|−1, defining the
critical exponent γ = 1. These exponents are identical
to the PA−U(1) phase transition in the Markovian sys-
tem. We also note that this phase transition can also be
viewed as a supercritical pitchfork bifurcation [35].
The PA−U(1)×Z2 phase transition : - In the regime

(γ0τr)
−1 < 1

2 , the transition between the disordered
phase and the U(1)×Z2 phase occurs at the critical point
µcr = 2

γ0τr
. Defining the reduced distance from criticality

as ε ≡ µ−µcr
µcr

, the eigenvalues λ corresponding to the dis-

ordered phase are purely imaginary in the vicinity of this
critical point, i.e. λ(ε) ∼ ε+i(∆+O(ε)). Due to the non-
zero limit cycle frequency ∆ near the critical point, this
transition corresponds to a supercritical Hopf bifurcation
[36, 37] with an additional Z2 symmetry.

From the above discussions, it can be seen that the
transition out of the disordered phase morphs from a su-
percritical pitchfork bifurcation for (γ0τr)

−1 > 1
2 to a

supercritical Hopf bifurcation for (γ0τr)
−1 < 1

2 . At the

multicritical point µ = 1, (γ0τr)
−1 = 1/2, the eigenval-

ues corresponding to the disordered phase coalese and
the critical point coincides with an exceptional point, i.e.
both the real and imaginary parts of the eigenvalues si-
multaneously vanish with λ ∼ ε+ 2i

√
|ε|. As such, in ad-

dition to the divergent relaxation time represented by the
vanishing real part of the eigenvalue, the vanishing imagi-
nary part sets an additional divergent timescale near crit-
icality. This latter divergence corresponds to the period
of the limit cycle in the U(1)×Z2 phase at this multicriti-
cal point. Further, this divergent period of the limit cycle

at the critical point also implies that the transition can-
not be mapped onto to a conventional supercritical Hopf
bifurcation. The dual divergence of the relaxation and
oscillation timescales, corresponding to the coincidence
of a critical point with an exceptional point, is a unique
feature of the non-Markovian dynamics. Additionally,
the variance of the steady-state amplitudes at the mul-
ticritical point diverges as Var(ai,s) ∼ |ε|−2, defining the
critical exponent γ = 2.

The U(1) − U(1) × Z2 phase transition : - The phase
transition between these two phases can be accessed by
tuning the normalized system-reservoir coherence time
(γ0τr)

−1. The phase transition occurs at (γ0τr)
−1 = 1

2 ,
and the appropriate reduced distance from criticality is
given by εr = 2(γ0τr)

−1 − 1. As described earlier, the

limit cycle frequency ∆ grows as O(
√
|εr|) and the am-

plitude of the limit cycle is independent of the distance
to the critical point. Again, these scaling relations are
distinct from limit cycle behaviors found in other driven
dissipative systems or a conventional supercritical Hopf
bifurcation where instead, the frequency of the limit cycle
scales as O(1) near criticality while the amplitude of the
limit cycle scales as O(

√
ε) [35, 38, 39].

VI. ENHANCED SQUEEZING AND
CORRELATIONS DUE TO NON-MARKOVIAN

DYNAMICS

Next, we discuss the two-mode squeezing and entangle-
ment in this system and the effect of non-Markovian dy-
namics on the observed entanglement. As is well known
from prior work on this model [10, 24], the two-mode in-
teraction results in correlations, squeezing and entangle-
ment between quadratures of the signal and idler modes.
In comparison to the corresponding Markovian system,
the presence of the non-Markovian system-reservoir in-
teractions and the appearance of the exceptional point
near the U(1) − U(1) × Z2 phase boundary result in an
enhanced degree of entanglement between the two modes.

As shown in [24], the fluctuation spectra and two-
mode correlations are obtained from the power spec-
tral densities of the cross-quadratures via the relation

SX,Y (ω) = 1
2π (Σ̃X,Y + iωI)−1D(Σ̃†X,Y − iωI)−1, where

the diffusion matrix is given by
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FIG. 4. (Top) The logarithmic negativity EN as a measure
of the bipartite entanglement [40, 41] between the signal and
idler modes vs the drive strength µ and the normalized reser-
voir decay rate (γ0τr)−1. (Bottom) In the U(1)×Z2 phase, the
entanglement between the two modes extends well beyond the
quantum regime and can be observed even for large thermal
occupancy of the two modes. The logarithmic negativity is
shown for increasing thermal occupancy n̄th vs drive strength
for (γ0τr)−1 = 1

5
. For comparison, the logarithmic negativity

for a Markovian system with n̄th = 5 is shown by the dashed
line.

D = 1
2


4g2

γ0γP
γ̃′(ω)(n̄th,i + 1

2 ) 0 0

0 4g2

γ0γP
γ̃′(ω)(n̄th,s + 1

2 ) 0

0 0 4g2

γ2
0
γP (n̄th,P + 1

2 )



where γ̃′(ω) = Re[γ̃(ω)] = γ0
1

1+(ωτr)2 and the thermal

phonon numbers are related to the effective temperature

of the modes, i.e. n̄th,i,s,P = (exp(
~ωi,s,P
kBT

) − 1)−1. The
steady state variances of the cross-quadratures can be
obtained from the fluctuation spectrum using the Wiener-
Khintchine theorem by integrating the fluctuations,

σX,Y =

∫ ∞
−∞

SX,Y (ω)dω

Below threshold, the squeezed and amplified variances
(normalized to the thermal variances) are respectively
given by

σsq =
2(γ0τr)

−1

(1 + µ)(2(γ0τr)−1 + µ)

σamp =
2(γ0τr)

−1

(1− µ)(2(γ0τr)−1 − µ)

The squeezed variance at steady state is minimized at

7



µ = µcr = min(1, 2(γ0τr)
−1). In particular, close to the

multicritical point µcr = 1, (γ0τr)
−1 = 1

2 , we obtain a

steady state squeezing limit σsq = 1
4 , outperforming the

Markovian steady-state squeezing limit of σsq = 1
2 .

Above threshold, in the U(1) phase, the normalized
variances of the cross-quadratures are given by

σx+
=
n̄th,P + 1

2

n̄th + 1
2

2(µ− 1)(µ+ (γ0τr)
−1)

µ(2(γ0τr)−1 + 2µ− 1)
+

+
(γ0τr)

−1

µ(2(γ0τr)−1 + 2µ− 1)
σx− →∞

σy+ =
n̄th,P + 1

2

n̄th + 1
2

2(µ− 1 + (γ0τr)
−1)

(2(γ0τr)−1 + 2µ− 3)
+

+
(γ0τr)

−1

(µ− 1)(2(γ0τr)−1 + 2µ− 3)

σy− =
(γ0τr)

−1

1 + 2(γ0τr)−1

where x±, y± are the cross-quadratures composed of sym-
metric and anti-symmetric combinations of the signal and
idler quadratures (see Appendix D). Here, we have as-
sumed that n̄th ≡ n̄th,i ≈ n̄th,s.

In the U(1) × Z2 phase, the non-zero limit cycle fre-
quency ∆ introduces a coupling between the nominally
orthogonal cross-quadratures. Aside from this modifica-
tion, the computation of the various variances proceeds
as before.

By dynamically varying the pump drive strength µ on
timescales short compared to γ−1

0 and τr, we can achieve
a degree of transient squeezing much larger than that
achievable in steady state [42]. In fact, the variance
of the transiently squeezed cross-quadratures scales as

(n̄th + 1
2 ) 2(γ0τr)−1

(1+µ)(2(γ0τr)−1+µ) ∝
1
µ2 for large drive strength,

in contrast to the Markovian scaling (n̄th + 1
2 ) 1

1+µ ∝
1
µ ,

where n̄th is the average thermal population of the signal
and idler modes (see Appendix D, [24], [42]). This en-
hancement over a Markovian system is also reflected in

the logarithmic negativity EN = − 1
2 log2

[
min(

σsq
σzpm

, 1)
]
,

where σzpm is the zero point variance of the cross-
quadratures. As can be seen in Fig. 4, this enhanced
degree of entanglement persists even at large thermal oc-
cupancy of the signal and idler modes. We speculate that
this enhancement is due to the topological properties of
the exceptional point and the non-reciprocal behavior of
the system in its vicinity.

VII. CONCLUSIONS

In summary, we consider a parametrically driven two-
mode quantum system and identify a class of non-
Markovian system-reservoir interactions that results in
the emergence of a novel broken symmetry phase in this
quantum system. We analyze the phase diagram of this
system and show that the emergent phase is accompanied
by the appearance of exceptional points in the system.
This emergent phase manifests a larger degree of two-
mode entanglement than would be observed in the corre-
sponding Markovian system. We note that the two-mode
system and the form of non-Markovianity considered here
are readily accessible in cavity optomechanical systems as
well as various hybrid quantum systems, paving the way
for experimental demonstrations of these predictions well
into the quantum regime. Future work will extend this
analysis to the regime of spatially multimode optome-
chanical systems and discuss the interplay between non-
Markovian correlations, optomechanical synchronization,
spatial fluctuations and driven, dissipative dynamics. In
addition to realizing metrologically relevant optomechan-
ical states, we suggest that this interplay also offers a
new arena for disorder-free optomechanical realizations
of dynamical phases with novel broken symmetries such
as have been recently observed in spin systems [43, 44] .
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Appendix A: Equations of motion

The Hamiltonian for the two-mode driven dissipative
system is given by [10, 23, 24]

H/~ =
∑

k={i,s,P}

ωkâ
†
kâk−χx̂P x̂ix̂s− (FP e

−iωP tâ†P +h.c.)

(A1)

In the interaction picture with H0/~ =
∑
k ωkâ

†
kâk, and

making the rotating wave approximation, the interaction

Hamiltonian transforms toH/~ = −g(â†sâ
†
i âP+â†P âsâi)−

8



(FP â
†
P + h.c.) where g = χx0,ix0,sx0,P and x0,k denotes

the zero-point amplitude of the respective modes. Here,
we have assumed that the pump mode is actuated by a
resonant, classical force and that ωP = ωi + ωs.

Further, the influence of the reservoir on these modes

is incorporated through noise operators f̂ and takes the

form Hr/~ = −
∑
k(â†kf̂k + h.c.). For the signal and idler

modes, these noise forces are zero-mean, gaussian ran-
dom variables whose two-point correlation is related to
the dissipation kernel γ(t) in accordance with the fluc-
tuation dissipation theorem. Here, we assume that the
signal and idler modes are in contact with a colored
reservoir with a dissipation kernel given by γ(t − t′) =
γ0τ
−1
r exp(−(t− t′)/τr)Θ(t− t′) where Θ(t) is the Heav-

iside step function. Accordingly, these noise forces sat-

isfy the following relations, 〈fk〉 = 0, and 〈fk(t)f†l (t′)〉 =

δkl×(n̄th+1) γ02τr
e−|t−t

′|/τr where n̄th = (exp(
~ωi,s
kBT

)−1)−1.

In accordance with typical experimental situations in
optomechanical systems [23], we assume that the pump
mode is in contact with a Markovian reservoir and that its
damping rate is much larger than those of the signal and
idler modes, i.e. γP � γ0. This leads to the Heisenberg-
Langevin equations of the form

ȧi = −1

2

∫ t

−∞
γ(t− t′)ai(t′)dt′ + iga†saP + ifi (A2)

ȧs = −1

2

∫ t

−∞
γ(t− t′)as(t′)dt′ + iga†iaP + ifs (A3)

ȧP = −γP
2
aP + igaias + iFP (A4)

Here, we are ignoring the Langevin forces on the pump.
As explained in [24], the pump noise can be ignored in
evaluating the dynamical steady-state phases or the de-
gree of two-mode correlations below threshold. Above
threshold, this pump noise has an appreciable effect
on the two-mode squeezing. In our calculations of the
squeezing spectra above threshold, this pump noise is in-
cluded by assuming that the pump mode is in contact
with a Markovian reservoir as explained in [24].

These equations can be recast by defining the dimen-
sionless amplitudes Ai,s = ai,s

2g√
γ0γP

and AP = aP
2g
γ0

to

obtain

Ȧi =
1

2

[
−
∫ t

−∞
γ(t− t′)Ai(t′)dt′ + iγ0A

∗
sAP + iγ0f̃i

]
(A5)

Ȧs =
1

2

[
−
∫ t

−∞
γ(t− t′)As(t′)dt′ + iγ0A

∗
iAP + iγ0f̃s

]
(A6)

ȦP =
1

2
[−γPAP + iγPAiAs + iγPµ] (A7)

where f̃i,s = γ−1
0

4g√
γ0γP

fi,s and we have defined the nor-

malized drive strength µ = FP /Fcr where Fcr = γP γ0
4g .

Appendix B: Steady state dynamical phases and
mean field phase diagram

We consider the situation where the signal and idler
modes are not driven, i.e. they are only subject to the
Langevin forces originating from their coupling to the
colored reservoir. In contrast, the pump mode is actively
driven by a classical force represented by the normalized
drive µ. In various regimes of the drive strength µ and
the reservoir coherence time τr, we consider dynamical
steady-state phases represented by the ansatz

Ai,s = Āi,se
−i∆i,st (B1)

AP = ĀP (B2)

Substituting this ansatz into Eqns. (A5-A7), we obtain

−i∆iĀie
−i∆it = −1

2
e−i∆itĀiγ̃(∆i) + i

γ0

2
Ā∗sĀP e

i∆st (B3)

−i∆sĀse
−i∆st = −1

2
e−i∆stĀsγ̃(∆s) + i

γ0

2
Ā∗i ĀP e

i∆it (B4)

0 = −1

2
γP ĀP + i

γP
2
ĀiĀse

−i(∆i+∆s)t + i
γP
2
µ

(B5)

Here, we have used the fourier transform of the dissipa-
tion kernel, γ̃(ω) =

∫
dtγ(t)eiωt = γ0(1− iωτr)−1.

These equations always admit the trivial solution Āi =
Ās = 0, ĀP = iµ. For dynamical steady-states with finite
signal and idler amplitudes, the above equations require
∆i + ∆s = 0. Hence, below we define ∆ ≡ ∆i = −∆s.
Eqns. (B3,B4) together yield the following condition(

γ̃(∆)

2
− i∆

)(
γ̃(−∆)

2
+ i∆

)∗
Āi =

γ2
0

4
|ĀP |2Āi (B6)

9



Since γ̃(−ω) = γ̃∗(ω), this requires steady-state phases
with non-zero signal and idler mode amplitudes to satisfy
the condition (

γ̃(∆)

2
− i∆

)2

=
γ2

0

4
|ĀP |2 (B7)

indicating that γ̃0
2 ≡

γ̃(∆)
2 − i∆ is real and positive. Fur-

ther, Eqns. (B3,B4) in combination with Eqn. (B5) yields
the following expression for the signal and idler ampli-
tudes,(

γ̃0

γ0

)2
[

1 + 2

∣∣∣∣γ0

γ̃0

∣∣∣∣ |Āi,s|2 +

∣∣∣∣γ0

γ̃0

∣∣∣∣2 |Āi,s|4
]

= µ2 (B8)

⇒ |Āi,s| =

√
µ− γ̃0

γ0
(B9)

Accordingly, we define the critical pump amplitude µcr =
γ̃0/γ0 as the drive strength beyond which the signal and
idler modes develop a non-zero amplitude, i.e. the onset
of parametric self-oscillation.

Lastly, given the constraint from Eqn. (B7) that γ̃0/2
be real-valued and positive, we obtain

1

2
γ̃(∆)− i∆ =

1

2

γ0

1 + τ2
r∆2

+ i∆

(
1

2

γ0τr
1 + τ2

r∆2
− 1

)
∈ R

(B10)
yielding ∆ = 0, or ∆ = τ−1

r

√
γ0τr

2 − 1. Note that the

latter solution is only meaningful for γ0 ≥ 2τ−1
r .

Based on these relations, we can identify three distinct
dynamical phases in this system.

• In the regime γ0 ≤ 2τ−1
r , the coherence time of the

reservoir is small compared to the intrinsic damp-
ing time of the signal/idler modes. Here, we obtain
the condition ∆ = 0 and γ̃0 = γ̃(0) = γ0. Hence,
the critical drive strength is given by µcr = 1. In
this regime, for drive strengths µ < 1, the only
stable phase is the trivial solution Āi = Ās =
0, ĀP = iµ. This is the disordered or paramet-
ric amplifier phase. As the drive strength is in-
creased beyond µcr = 1, the parametric amplifier
phase becomes unstable (Fig. 3(a)) and gives way
to the parametric oscillator phase characterized by
Āi,s = ie±iφ/2

√
µ− 1, ĀP = i. The signal-idler

phase difference φ is unconstrained and the emer-
gence of this parametric oscillator phase is accom-
panied by the spontaneous breaking of the U(1)

symmetry associated with the choice of this phase.
As such, we denote this to be the U(1) phase.

• In the regime γ0 > 2τ−1
r , the coherence time of

the reservoir is long compared to the damping
time of the signal/idler modes. As seen from
Eqns. (B9,B10), in this regime the critical point
shifts to µcr = 2(γ0τr)

−1 < 1. For µ < µcr,
the only stable phase is the disordered or trivial
solution with Āi,s = 0. For drive strengths µcr < µ,
the disordered phase is unstable and gives way to a
self-oscillating phase with non-zero ∆, given either
by the solution Āi = ieiφ/2e−i∆t

√
µ− µcr, Ās =

ie−iφ/2ei∆t
√
µ− µcr, ĀP = iµcr or by the

solution Āi = ieiφ/2ei∆t
√
µ− µcr, Ās =

ie−iφ/2e−i∆t
√
µ− µcr, ĀP = iµcr, where

∆ = τ−1
r

√
γ0τr

2 − 1. In this dynamical phase,
the signal and idler modes undergo self-oscillation
at frequencies that are shifted away from their
nominal frequencies by an amount ∆. In addition
to the breaking of the U(1) symmetry associated
with the choice of the signal-idler phase difference
φ, this phase also breaks the discrete Z2 symmetry
associated with the sign of the frequency shift ∆.
As such, we denote this dynamical phase as the
U(1) × Z2 phase. For µ > 1, all three solutions
exist but the trivial solution and the U(1) solution
are unstable, with the U(1)×Z2 solution remaining
as the only stable dynamical phase.

These three dynamical phases along with the phase
boundaries demarcating these phases are shown in Fig.(1)
of the main text.

Appendix C: Exceptional points and stability of
mean field dynamical phases

The stability of the mean-field dynamical phases to
generic perturbations is demonstrated by evaluating the
eigenvalues of the susceptibility matrix Σ + iωI as dis-
cussed in the main text. In particular, a stable dy-
namical phase is indicated by a susceptibility matrix
whose eigenvalues have non-positive real parts. We out-
line the calculation of these eigenvalues for each dy-
namical phase below. We first distinguish between the
mean amplitudes and the fluctuations by writing Ai,s =
(Āi,s + δAi,s)e

−i∆i,st with the mean amplitudes in each
dynamical phase given by the expressions in the previous
section. The equations of motion Eqns. (A5-A7) yield
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∂t

 δAi
δAs
δAP

 =

∫ t

−∞
dt′

 − 1
2γ(t− t′) 0 iγ02 Ā

∗
sδ(t− t′)

0 − 1
2γ(t− t′) iγ02 Ā

∗
i δ(t− t′)

iγP2 Āsδ(t− t
′) iγP2 Āiδ(t− t

′) −γP2 δ(t− t
′)

 δAi(t
′)

δAs(t
′)

δAP (t′)


+

 0 iγ02 ĀP 0
iγ02 ĀP 0 0

0 0 0

 δA∗i
δA∗s
δA∗P

+
i

2

 γ0f̃i(t)

γ0f̃s(t)
γPµ

 (C1)

As shown in [24], the complex fluctuations can be decom-

posed into real quadratures in the form δA = δ~α + iδ~β
such that the above equation can be recast as

δ~̇α =

∫ t

−∞
dt′Mα(t− t′)δ~α(t′) + vα(t) (C2)

δ~̇β =

∫ t

−∞
dt′Mβ(t− t′)δ~β(t′) + vβ(t) (C3)

where vα,β are the Langevin noise terms and

Mα,β(t) =
1

2

 −γ(t) ∓γ0|ĀP |δ(t) γ0|Ās|δ(t)
∓γ0|ĀP |δ(t) −γ(t) γ0|Āi|δ(t)
−γP |Ās|δ(t) −γP |Āi|δ(t) −γP δ(t)


(C4)

Further, we define cross-quadratures of the signal and
idler modes according to the relations x± = (αi ±
αs)/
√

2, y± = (βi ± βs)/
√

2 such that the two-mode cor-
relations due to parametric down-conversion are manifest
as amplification and squeezing of the above quadratures.
The fluctuations of these cross-quadratures are related to

the original quadrature fluctuations δ~α, δ~β via the rela-
tions

δX = Rδ~α; δY = Rδ~β; R =
1√
2

 1 1 0
1 −1 0

0 0
√

2


(C5)

where δX = (δx+, δx−, δxP )T , δY = (δy+, δy−, δyP )T .
The fluctuations of the cross-quadratures are governed
by the equation

∂tδX =

∫ t

−∞
dt′ΣX(t− t′)δX(t′) + vX(t) (C6)

∂tδY =

∫ t

−∞
dt′ΣY (t− t′)δY(t′) + vY (t) (C7)

where ΣX,Y = RMα,βRT and vX,Y = Rvα,β . By mov-
ing to the frequency domain, the above equations can be

recast as 
δx̃+

δx̃−
δx̃P
δỹ+

δỹ−
δỹP

 = −(Σ + iωI)−1ṽ (C8)

where δx̃+ denotes the fourier transform of δx+ etc. and

Σ(ω) =

(
Σ̃X 0

0 Σ̃Y

)
(C9)

We note that in the U(1)×Z2 phase where ∆ 6= 0, the sus-
ceptibility matrix does not remain block diagonal due to
correlations between the various cross-quadratures. How-
ever, the procedure for evaluating the eigenvalues and
stability remains the same.

The poles of the susceptibility matrix are defined by
complex ω satisfying Det[−Σ − iωI] = 0 and the eigen-
values of the inverse susceptibility matrix are defined
as λ = −iω. The real part of these eigenvalues corre-
sponds to the damping rate of the system’s response to
generic perturbations. As such, the stability of the mean
field dynamical phases is indicated by a non-positive real
part of the eigenvalues. Critical points governing con-
tinuous transitions between distinct dynamical phases is
indicated by a vanishing of this real part or equivalently,
a divergent relaxation time. The linearization around the
trivial (parametric amplifier) solution yields the eigenval-
ues

λ± =
γ0

4

[
(µ− 2

γ0τr
)±

√
(µ+

2

γ0τr
)2 − 8

γ0τr

]
(C10)

As such, for (γ0τr)
−1 > 2, the eigenvalues are purely real

and the system can be mapped onto the Markovian sys-
tem. As the coherence time of the reservoir is increased,
the eigenvalues morph into complex conjugate pairs for
sufficiently small drive strength µ. This change from real
eigenvalues to complex conjugate eigenvalues occurs at
a point where the two eigenvalues (and corresponding
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eigenmodes) coalesce. Such points are called exceptional
points. In this system, the exceptional point approaches
the critical point from below as the coherence time τr is
increased. For (γ0τr)

−1 = 1
2 , the exceptional point and

the critical point coincide at µ = 1. This heralds the
emergence of the U(1)×Z2 phase. For even larger reser-
voir coherence times, (γ0τr)

−1 < 1
2 , the exceptional point

occurs beyond the critical point governing the transition
from the disordered phase to the U(1)× Z2 phase. This
behavior of the exceptional point relative to the critical
point is depicted in Fig. 3 of the main text.

Similar linearization can also be performed around
the U(1) and the U(1) × Z2 phases using the formal-
ism described above. The calculations, while straightfor-
ward, are laborious and are not reproduced here. The
real parts of the respective eigenvalues as a function of
drive strength µ and normalized reservoir coherence time
(γ0τr)

−1 are shown in Fig. 3. As can be seen, the real
parts of the eigenvalues of the susceptibility matrix for
these phases are negative for large µ indicating that these
dynamical phases are indeed stable to generic perturba-
tions.

The Markovian case is retrieved from Eqn.(C10) in the
limit τr → 0, i.e. λ+ = γ0

2 (µ− 1). Note that λ− → 1/τr
corresponds to the rate at which the reservoir follows the
system, and can be adiabatically eliminated in the limit
of small τr. The exponent with which λ vanishes, λ ∼ |ε|,
where ε = (µ − µcr)/µcr is the reduced distance from
criticality, defines the conventional critical exponent νz
for the phase transition: νz = 1 in the Markovian case.
In contrast, for (γ0τr)

−1 = 1/2, the eigenvalues are

λ± =
γ0

4

[
(µ− 1)±

√
(µ− 1)(µ+ 3)

]
(C11)

and thus scale near criticality as

λ± =
γ0

4

[
ε±

√
ε(4 + ε)

]
≈ γ0

4

[
ε± 2i

√
−ε
]
∼ ε± 2i

√
|ε|

(C12)
Both the real and imaginary part of the eigenvalue vanish
at criticality, with the real part being proportional to |ε|
and the imaginary part being proportional to

√
|ε|. While

the divergent dissipation timescale is set by the vanish-
ing real part, and also occurs in the Markovian case, the
vanishing imaginary part of λ sets an additional diver-
gent oscillation timescale for the system near criticality.
This novel critical behavior is solely attributable to the
non-Markovianity of the system-bath interactions.

For (γ0τr)
−1 < 1/2, i.e. across the PA − U(1) × Z2

phase transition, the eigenvalues are

λ± =
γ0

4
[(µ− µcr)± i(∆ +O(µ− µcr))] (C13)

where µcr = 2
γ0τr

< 1 and ∆ = 2
√
µcr(1− µcr) =

τ−1
r

√
γ0τr

2 − 1. In particular, while the real part does
vanish at criticality (µ → µcr), its imaginary part re-
mains finite at ∆ > 0. As such, λ(ε) ∼ ε+ i∆ ∼ ε+ iO(1)
as ε → 0. Due to the finite limit cycle frequency at the
critical point, this phase boundary can be associated with
a supercritical Hopf bifurcation [35].

Appendix D: Two-mode correlations and
entanglement in the steady state and transient

regime

As shown in [24], the fluctuation spectra and two-mode
correlations are obtained from the power spectral densi-
ties of the cross-quadratures via the relation

SX,Y (ω) =
1

2π
(Σ̃X,Y + iωI)−1D(Σ̃†X,Y − iωI)−1 (D1)

where the diffusion matrix is given by

D = 1
2


4g2

γ0γP
γ̃′(ω)(n̄th,i + 1

2 ) 0 0

0 4g2

γ0γP
γ̃′(ω)(n̄th,s + 1

2 ) 0

0 0 4g2

γ2
0
γP (n̄th,P + 1

2 )



where γ̃′(ω) = Re[γ̃(ω)] = γ0
1

1+(ωτr)2 and the thermal

phonon numbers are related to the effective temperature

of the modes, i.e. n̄th,i,s,P = (exp(
~ωi,s,P
kBT

) − 1)−1. The

steady state variances of the cross-quadratures can be
obtained from the fluctuation spectrum using the Wiener-
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Khintchine theorem by integrating the fluctuations,

σX,Y =

∫ ∞
−∞

SX,Y (ω)dω (D2)

Below threshold, the squeezed and amplified variances
(normalized to the thermal variances) are respectively
given by

σsq =
2(γ0τr)

−1

(1 + µ)(2(γ0τr)−1 + µ)
(D3)

σamp =
2(γ0τr)

−1

(1− µ)(2(γ0τr)−1 − µ)
(D4)

For a given (γ0τr)
−1, the squeezed variance below

threshold is minimized at µ = µcr = min(1, 2(γ0τr)
−1).

In particular, close to the multicritical point µcr =
1, (γ0τr)

−1 = 1
2 , we obtain a steady state squeezing

limit σsq = 1
4 , outperforming the Markovian steady-state

squeezing limit of σsq = 1
2 .

To achieve a squeezing better than this steady-state
minimum, we can implement a transient protocol, where
the pump drive strength µ is set to a value larger than

µcr for a period of time that is short compared to γ−1
0 .

Within this short duration, pump depletion and satura-
tion effects can be neglected. The amplified quadrature
grows with an exponential envelope, and the squeezed
quadrature decays with an exponential envelope to the
asymptote given by the expression above, yielding a de-
pendence of σsq ∝ 1

µ2 for large drive amplitudes. This

protocol works when the absolute amplitude of motion is
small enough that the linearization around the disordered
solution remains valid.

Note that by setting τr → 0, we recover the Markovian
case expressions. In particular, the degree of squeezing is
σsq = 1

1+µ , and the divergence of the amplified quadra-

ture is σamp = 1
1−µ = 1

|µ−µcr| ∼
1
|ε| . In other words,

the divergence of the amplified fluctuations has an expo-
nent −1 in |ε| in the Markovian limit. In contrast, for
(γ0τr)

−1 = 1/2, the divergence of σamp has an exponent
−2, i.e. σamp = 1

(1−µ)2 ∼
1
|ε|2 . A change in this expo-

nent compared to the Markovian case is another signature
of novel critical behavior induced by the non-Markovian
system-bath interactions.

Above threshold, in the U(1) phase, the normalized
variances of the various cross-quadratures are given by

σx+
=
n̄th,P + 1

2

n̄th + 1
2

2(µ− 1)(µ+ (γ0τr)
−1)

µ(2(γ0τr)−1 + 2µ− 1)
+

(γ0τr)
−1

µ(2(γ0τr)−1 + 2µ− 1)
(D5)

σx− →∞ (D6)

σy+ =
n̄th,P + 1

2

n̄th + 1
2

2(µ− 1 + (γ0τr)
−1)

(2(γ0τr)−1 + 2µ− 3)
+

(γ0τr)
−1

(µ− 1)(2(γ0τr)−1 + 2µ− 3)
(D7)

σy− =
(γ0τr)

−1

1 + 2(γ0τr)−1
(D8)

where we have assumed that n̄th ≡ n̄th,i ≈ n̄th,s.
In the U(1) × Z2 phase, the non-zero frequency shifts

∆ introduce correlations between the nominally uncor-
related Langevin forces in orthogonal cross-quadratures.
In addition, as mentioned previously, this frequency shift
also introduces time-dependent correlations between the
various cross-quadratures. Aside from these modifica-
tions, the computation of the various variances proceeds
as before. The final expressions are cumbersome and not
reproduced here.

Lastly, the logarithmic negativity is obtained from

the squeezed variances as EN = − 1
2 log2

[
min(

σsq
σzpm

, 1)
]
,

where σzpm is the zero point variance of the cross-

quadratures. These results are shown in Fig. 4 of the
main text.

Appendix E: Trajectory of exceptional points in the
phase diagram

In general, the non-Markovian equations of motion are
more challenging to solve analytically than the Marko-
vian equations. The exponential non-Markovian kernel
γ(t− t′) considered in this work, however, allows for the
definition of auxiliary variables which greatly simplifies

calculations. Defining hi,s =
∫ t
−∞

1
τr
e−(t−t′)/τrai,s(t

′)dt′
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and its dimensionless version Hi,s = hi,s
2g√
γ0γP

, the semi-

classical equations of motion in Eqns. (A5-A7) are sim-
plified to a set of first order differential equations –

Ȧi =
1

2

[
−γ0Hi + iγ0A

∗
sAP + iγ0f̃i

]
(E1)

Ḣi = −Hi/τr +Ai/τr (E2)

Ȧs =
1

2

[
−γ0Hs + iγ0A

∗
iAP + iγ0f̃s

]
(E3)

Ḣs = −Hs/τr +As/τr (E4)

ȦP =
1

2
[−γPAP + iγPAiAs + iγPµ] (E5)

These equations can be further simplified in the mean-
field, i.e. in the limit of zero noise, f̃i,s → 0.

In the disordered PA phase below threshold (µ ≤
max[1, 2/γ0τr]), AP can be adiabatically eliminated as
AP ≈ iµ, as derived earlier. The complex Eqns. (E1-
E4) can then be block diagonalized into decoupled blocks
formed by the pair of cross-quadratures (B := Ai −
A∗s, HB := Hi−H∗s ) and (C := Ai+A∗s, HC := Hi+H∗s ).
Within the parameter space of B,HB , the equations of
motion are simply(

Ḃ

ḢB

)
=

(
γ0µ/2 −γ0/2
1/τr −1/τr

)(
B
HB

)
(E6)

The exceptional points of this dynamical matrix can eas-
ily be evaluated by explicitly solving for the eigenval-
ues and eigenvectors. We find that they coalesce along
the contour defined by (τrγ0µ + 2)2 − 8τrγ0 = 0. Only
one of the roots of this quadratic equation ((γ0τr)

−1 =
1 − µ/2 +

√
1− µ) is inside disordered phase. It cor-

responds to the eigenmode of the system and reservoir
with the least negative real part of the eigenvalue, and
is shown by the dotted contour for µ < 1 in Fig.(1) of
the main text. The eigenvalues along this contour of ex-
ceptional points is

√
γ0/(2τr)−1/τr with the eigenvector

(
√
γ0τr/2, 1)T .

We can similarly compute the exceptional points in
the U(1) phase (µ ≥ 1, (γ0τr)

−1 ≥ 1/2). We linearize
the equations of motion about the steady state solution
evaluated earlier, i.e. Āi,s = ie±iφ/2

√
µ− 1, ĀP = i.

Writing Hi,s in terms of real quadratures, i.e. Hi,s =
Hx,i,s + iHy,i,s, and denoting the deviations from steady
state values with prefix δ, the real quadratures δy+ =
(δyi+δys)/

√
2 (see also Eqn. (C5)) and δHy+ = (δHy,i+

δHy,s)/
√

2 evolve according to(
˙δy+
˙Hy+

)
=

(
−γ0(2µ− 3)/2 −γ0/2

1/τr −1/τr

)(
δy+

Hy+

)
(E7)

The contour of exceptional points in the U(1) phase is
thus defined by 4 + τrγ0(4 − 8µ) + ((2µ − 3)γ0τr)

2 = 0.
Both roots of this quadratic equation yield valid solu-
tions in the U(1) phase. One of them ((γ0τr)

−1 =

µ − 1/2 +
√

2(µ− 1)), which corresponds to the system
and reservoir’s eigenmode with the least negative real
part of the eigenvalue, is shown by the dotted contour
for µ > 1 in Fig.(1) of the main text. The eigenval-

ues and eigenvectors are, again,
√
γ0/(2τr) − 1/τr and

(
√
γ0τr/2, 1)T , respectively.

Appendix F: Critical behavior of the limit cycle
frequency ∆

As described earlier, the limit cycle phase emerges in
the regime (γ0τr)

−1 < 1/2. Below this phase boundary,
the limit cycle frequency is given by ∆ = τ−1

r

√
γ0τr

2 − 1.
Parametrizing the distance from the phase boundary as
εr ≡ 2(γ0τr)

−1 − 1, we see that the order parameter ∆
scales as ∆ ∼ |εr|1/2 with the critical exponent β = 1/2.

For noise small compared to the steady state ampli-
tude R, we can approximate the phase fluctuations as
δφi,s = δαi,s/R (see Eqn. (C5), [24]). We can thus
express the the phase difference as φ = φi − φs =
δφi − δφs =

√
2δx−/R, where x− := (αs − αi)/

√
2.

Its spectrum is Sφ,φ = 2
R2Sx−,x−(ω), with Sx−,x−(ω) =

1
2π (Σ̃x−,x− + iωI)−1D(Σ̃†x−,x− − iωI)−1. The limit cy-

cle frequency ∆ = 1
2 (φ̇i − φ̇s) thus has a spectrum

S∆,∆ = ω2

4 Sφ,φ(ω) = ω2

2R2Sx−,x−(ω).
In the U(1) phase, the power spectral density of the

cross quadrature δx− with unit thermal noise is given by

Sx−,x−(ω) =
1

2π

4γ0

ω2(4− 4τrγ0 + τ2
r (γ2

0 + 4ω2))
(F1)

A factor of 1/ω2 here signifies that the phase difference
φ ∝ x− undergoes diffusion. Note also that this quadra-
ture does not have a µ dependence. Thus, the variance of
the order parameter and hence, the susceptibility of the
order parameter in the vicinity of the phase boundary is
given by

Var(∆) =
1

2R2

∫ ∞
−∞

dω
1

2π

4γ0

(4− 4τrγ0 + τ2
r (γ2

0 + 4ω2))

=
1

2R2

1

2τ2
r (1/(γ0τr)− 1/2)

(F2)

⇒Var(∆) ∼[(γ0τr)
−1 − 1/2]−1 ∼ |εr|−1 (F3)

This yields the critical exponent γ = 1.
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This divergent variance of the limit cycle frequency is
depicted in Fig.(2) of the main text.

Appendix G: RG flow under time rescaling

It is instinctive to think that the finite system-bath in-
teraction timescale τr would rescale to zero under a RG
flow, thereby taking the system to the Markovian limit of
τr → 0. In this section, we show that the system has a RG
fixed point (source) in the phase space of (µ, (γ0τr)

−1) at
the multicritical point (1, 1/2) (see Fig. (1) of the main
text). This fixed point is clearly distinct from the Marko-
vian fixed point at (γ0τr)

−1 → ∞, and as shown below,
the flow around this point can push the system further
away from the Markovian limit.

The first order differential equations of motion in the
disordered PA phase in the zero noise limit, derived ear-
lier as Eqn.(E6), can be recast as a second order differ-
ential equation in B as

B̈(t) = (
γ0µ

2
− 1

τr
)Ḃ(t) +

γ0

2τr
(µ− 1)B(t) (G1)

Rescaling time by b, as t′ = t/b, we get

1

b2
B̈(t′) =

1

b
(
γ0µ

2
− 1

τr
)Ḃ(t′) +

γ0

2τr
(µ− 1)B(t′) (G2)

Note that being a linear equation, B is itself not rescaled.
In order to maintain the functional form of Eqn.(G1), the
renormalized parameters (γ′0, τ

′
r, µ
′) should satisfy

γ′0µ
′

2
− 1

τ ′r
= b(

γ0µ

2
− 1

τr
) (G3)

γ′0
2τ ′r

(µ′ − 1) = b2
γ0

2τr
(µ− 1) (G4)

Note that these two equations are under-determined in
(γ′0, τ

′
r, µ
′). However, in order to focus on how the system-

bath interaction timescale τr rescales under this time-
rescaling, and how the system flows in the (µ, (γ0τr)

−1)
parameter space, we fix the parameter γ0, i.e. constrain

γ′0 = γ0. Note that γ0 signifies the total strength of dis-
sipation, i.e.

∫∞
0
dtγ(t) = γ0.

We solve Eqns.(G3-G4) for (µ′, τ ′r) and evaluate the
flow as the vector field ( ddbµ

′, ddb (γ0τ
′
r)
−1). This flow is

shown in Fig.(5). The open red circle marks the unstable
fixed point at (µ = 1, (γ0τr)

−1 = 1/2), the multicriti-
cal point of Fig.(1) of the main text. The flow around
this fixed point indicates that the ratio (γ0τr)

−1 can flow
to either larger or smaller values, i.e. the system can

FIG. 5. RG flow of the system following a rescaling of time,
shown in the (µ, (γ0τr)−1) parameter space. The open red
circle marks an unstable fixed point at the multicritical point
(µ = 1, (γ0τr)−1 = 1/2), distinct from the Markovian fixed
point that occurs at (γ0τr)−1 →∞. Contrary to intuition, the
flow shows that under time rescaling, the finite system-bath
interaction timescale need not rescale to zero (the Markovian
limit).

rescale either toward or farther from the Markovian limit
of (γ0τr)

−1 →∞.

Note that the above analyses is done by linearizing the
system around the disordered PA solution. While this
analysis correctly predicts the presence of the multicriti-
cal point at µ = 1, (γ0τr)

−1 = 1/2 and the emergence of
the limit cycle phase for (γ0τr)

−1 < 1/2, the interpreta-
tion of the RG flow deep within the U(1) phase or the
U(1)×Z2 phase would require the linearization of the RG
equations about the respective steady solutions in those
phases, and is not considered here.
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