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In 1961, Rolf Landauer pointed out that resetting a binary memory requires a minimum energy of
kBT ln(2). However, once written, any memory is doomed to loose its content if no action is taken.
To avoid memory losses, a refresh procedure is periodically performed. In this paper we present a
theoretical model and an experiment on a micro-electro-mechanical system to evaluate the minimum
energy required to preserve one bit of information over time. Two main conclusions are drawn: i)
in principle the energetic cost to preserve information for a fixed time duration with a given error
probability can be arbitrarily reduced if the refresh procedure is performed often enough; ii) the
Heisenberg uncertainty principle sets an upper bound on the memory lifetime.

The act of remembering is of fundamental importance
in human life. Not only manmade objects, monuments
and landscapes require maintenance to counterbalance
their deterioration, but also biological systems are sub-
jected to the never-ending task of preserving shapes and
functionalities by fighting the universal tendency of en-
tropy to increase. As a consequence, the study of funda-
mental physical limits in memory devices [1] has received
considerable attention in different contexts in these years.
Examples are in communication-theoretic paradigms [2],
proteins functionality [3], biological noisy neural net-
works [4, 5], future technologies [6, 7] and in the presence
of limited knowledge [8, 9]. However the fundamental en-
ergetic cost to preserve the state of a memory has received
little attention so far. In this work we investigate theo-
retically and experimentally the minimum energy cost
required to preserve classical information stored in digi-
tal devices for a given time and with a given probability
of failure.
To this end we recollect that information is usually

stored in digital devices through binary numbers (0 and
1). As a consequence, it is customary to represent a
memory as a two-state physical system with an observ-
able x and a bistable potential energy landscape (Fig.
1.a)[1, 10–13]. The energy barrier allows to define the
two logic states, e.g. x < 0, representing bit 0 and x > 0,
representing bit 1. Moreover, the barrier allows to sta-
tistically confine x for a given time within one of the
two wells (Fig. 1.b), hence ensuring that one given bit
is stored. This confined state is a non-equilibrium con-
dition that evolves, within the system relaxation time
τk, to thermal equilibrium (Fig. 1.f). This process is
described via the time evolution of the probability den-
sity function p(x, t) as follows. Let us assume we have a
memory where the bit 1 is stored. The initial probability
density p(x, 0) shows a sharp peak centred in the right
well (Fig. 1.b). According to the dynamic of the system,
p(x, t) will first relax inside the right well and then it will
diffuse into the left well, thus developing a second peak
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FIG. 1. A generic binary memory is represented here in terms
of the stochastic dynamics of a variable x subjected to a
bistable potential (a). Panels (b) to (f) show the memory-
loss mechanism when the bit 1 is initially stored. Blue (dark
gray) curves give a qualitative time evolution of p(x, t) as the
relaxation to equilibrium process takes place.

(Fig. 1.b to 1.f). At any given time t, the probability
that the system encodes the wrong logic state is repre-

sented by P0(t) =
∫ 0

−∞ p(x, t)dx. Clearly P0 increases
with time and reaches the thermal equilibrium condition
P0 = 0.5 when the memory is statistically lost (Fig. 1.f).

To fight this natural deterioration of the bit, it is cus-
tomary to perform a cyclic operation called refresh. This
procedure consists in reading and then writing back the
content of the memory, and it is periodically executed
at intervals tR[16, 17]. The refresh operation restores a
non-equilibrium condition by shrinking the width of each
peak of p(x, t). Note that, during this refresh operation
no error correction is performed as the overall purpose is
merely to fight the diffusive process leading to thermal
equilibrium.
Based on this procedure, we can define the memory

loss probability PE at time t, i.e. after N = t/tR cycles,
as:

PE = 1−
[

1− P0 (tR)
]

t
tR (1)

It indicates the probability to find the wrong value of the
bit when the memory is interrogated at any time during
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the interval
[

0− t
]

since its first writing, with a refresh
interval tR. In any practical application it is interest-
ing to a priori set both PE and t, and then deduce the
optimal tR to meet these targets. Assumed that the re-
fresh operation has an energetic cost Q, what we want to
address here is the fundamental minimum energetic cost
Qm to preserve a given bit for a time t, with a probability
of failure not larger than PE , while executing the refresh
procedure with periodicity tR. To this end we proceed
as follows: we first investigate the maximum value of tR
for a given set of PE and t; secondly we perform an ex-
periment to measure the minimum energetic cost for a
single refresh operation; finally we estimate the physical
fundamental limits associated with the overall procedure.
We start with the study of the maximum allowed value

for tR. Let us assume that the dynamics of the memory
is characterised by a bistable Duffing potential:

U(x) = 4

(

−x2

2
+

x4

4

)

(2)

The probability density function p(x, t) thus evolves
according to the following dimensionless Fokker-Plank
equation [14, 15]:

∂

∂t
p(x, t) =

∂

∂x

(

∂U

∂x
p(x, t)

)

+ T
∂2

∂x2
p(x, t), (3)

where T is the temperature of the thermal bath. Solv-
ing numerically eq.(3) and using eq.(1), we obtain the
maximum refreshing interval tR that satisfies the a pri-

ori requirements for t and PE (see Appendix A). Fig. 2
shows the results of this study. We can see that large
time t and small probability of error PE yield short re-
fresh time tR, as expected.
We now proceed to the second step of our program

aimed at determining the minimum energetic cost for a
single refresh operation. Within the formalism defined
above, the refresh operation consist in shrinking p(x, tR)
inside one of the wells of U(x). Thus, the energetic cost
becomes a function of tR identified above. If we assume
that tR ≪ τk, the system dynamics is practically confined
within one well. Here it can be approximately described
by the dynamics of an harmonic oscillator, characterised
by a Gaussian probability density function [18].
To estimate the energy cost associated with a real re-

fresh procedure we decided to perform an experiment em-
ploying a micro electro-mechanical oscillator composed
by a 200µm long V-shaped structure with a nominal
stiffness k = 0.08Nm−1, and a resonance frequency of
17 kHz. A tiny NdFeB (neodymium) magnet is attached
to the cantilever tip with bi-component epoxy resin re-
ducing its resonance frequency to 5.3 kHz. An external
electromagnet is placed in front of the cantilever as de-
picted in Fig. 3.a. The deflection of the cantilever, x, is
measured with an AFM-like optical lever: a laser beam
is focused on the cantilever tip with an optical lens (focal
length f = 50mm), and a small bend of the cantilever
provokes the deflection of a laser beam that can be de-
tected with a two quadrants photo detector. For small
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FIG. 2. Plot of tR as function of t and PE for a memory
modeled with a bistable Duffing potentials. Here tR is given
as a multiple of τw, i.e. the relaxation time of the harmonic
approximation within one well.

cantilever deflections the response of the photo detector
remains linear, thus x = rx∆VPD, where ∆VPD is the
voltage difference generated by the two quadrants of the
photo detector, and rx is a calibration factor obtained
through the frequency response of the system under the
action of thermal fluctuations. In the small oscillation ap-
proximation the system dynamics can be modelled as a
single degree-of-freedom subjected to a harmonic poten-
tial due to two forces: the cantilever restoring force and
the magnetic force between the NdFeB magnet and the
electromagnet. The measurement has been performed in
vacuum, at pressure of 1× 10−3mbar. In this condition
the quality factor of the system is Qf = 300, resulting in
a relaxation time tRelax = 20ms. The experiment is con-
ducted at room temperature and the system is subjected
to thermal fluctuations and frictional forces as well. The
magnetic force can be altered over time by varying the
voltage on the electromagnet. In our experiment the volt-
age applied to the coil results in a repulsive force with
the effect of softening the potential energy of the system.
The protocol used to perform the refresh operation is the
following: at time t = 0 the voltage is linearly changed
from the initial value V = 0.5V to V = 0V . During this
operation the effective harmonic potential changes from
the one represented by the red (light gray) dots in Fig.
3.b to the blue (dark gray) ones. The equilibrium prob-
ability density function of the tip position changes ac-
cordingly as depicted in Fig. 3.c, from right to left. The
entire procedure takes a time tp, after which the voltage
on the coil is suddenly changed back to V = 0.5V and
kept in this condition for a time tR.
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FIG. 3. Experimental setup. (a) Lateral view: a magnet
on the cantilever tip and an electromagnetic coil are used to
change the effective stiffness of the cantilever. (b) Potential
energy of the cantilever tip, for two different voltages at the
coil, reconstructed from the equilibrium probability density
function. Solid gray lines represent the fitted harmonic po-
tential. (c) Equilibrium probability density function of the
cantilever tip position as a function of the voltage applied at
the coil. The greater is the voltage, the greater is the repul-
sive force, resulting in a flattening of the potential and in a
broadening of the equilibrium probability density function.

The total work W performed by the external force on
the memory system during the refresh operation can be
estimated as[19, 20]:

W =

〈∫ τp

0

∂H(x, V )

∂V
V̇ dt

〉

(4)

were H(x, V ) is the total energy of the system, x(t) the
measured trajectory of the cantilever tip, V (t) is the volt-
age applied on the electromagnet, and 〈·〉 denotes the
average over an ensemble of realizations. In particular
we used here ∼ 500 experimental trajectories for each
selected time protocol τp under study. Since there is no
variation on the internal energy of the system, the en-
ergetic cost Q of a refresh operation coincides with the
work performed on the system (Q = W ). This quantity
has to be compared with the thermodynamic minimum
−T∆S where (see Appendix B)

∆S = kB ln

(

σi

σf

)

(5)

is the entropy change associated with the refresh opera-
tion, σi is the target standard deviation of the Gaussian
peak to be achieved with the refresh and σf is the stan-
dard deviation of the Gaussian peak before the refresh.
While σi can be arbitrary chosen, σf depends on tR as
(see Appendix B)

σf =

√

σ2
w + exp

(

− tR
τw

)

(σ2
i − σ2

w) (6)

−T ∆S

−T∆S
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FIG. 4. Experimental results of produced heat. (a) Produced
heat for a single refresh as function tp. By increasing tp the
produced heat tends to the lower bound Q = −T∆S. Squares
represent the heat from the experiment, while the solid line is
the fit with the Zener dissipative model. (b) Produced heat
in the quasi-static regime during a single refresh operation for
different entropy variations. Squares represent the estimated
heat from experiments while the solid line is given by eq.(5).

where σw is the equilibrium standard deviation of the
harmonic oscillator and τw is the relaxation time of the
harmonic oscillator.
In Fig.4.a we show the measured values of Q required

to perform a single refresh operation as a function of the
protocol time tp, for fixed σi and σf . We can see that
Q approaches the minimum value given by eq.(5) when
tp increases towards the quasi-static protocol condition.
This observation is confirmed for different values of ∆S,
as we can see from Fig. 4.b. There we show the mea-
sured values of Q for a quasi-static protocol as a function
of − ln(σi/σf ). Experimental points are given as black
squares while the black solid line is the theoretical predic-
tion from eq.(5). As it is well apparent, the minimum en-
ergetic cost, represented by the thermodynamics bound
−T∆S can be reached in the quasi-static condition. The
dissipative model behind the power law fit in Fig.4.a is
obtained by the Zener theory[13, 21–24], assuming that
the dissipative processes can be expressed as the result of
frictional forces that represent the imaginary component
of a complex elastic force k(1 + iφ). In general, φ is a
function of the frequency and for small damping it can
be expressed as the sum over all the dissipative contribu-
tions. In our case φ(ν) = φstr + φth−el + φvis + φclamp.
Here φstr is the structural damping (φ is independent of
the frequency ν), φth−el and φvis are the thermo-elastic
and viscous damping that can be assumed to be pro-
portional to the frequency for frequencies much smaller
than the cantilever characteristic frequency, and φclamp

represents the clamp recoil losses (φ(ν) ∝ ν3).
Based on this result we are now in position to ex-

press the minimum fundamental cost Qm for preserving
a memory over a time t with a failure probability equal
to PE as

Qm = −NT∆S =
t

tR
kBT ln





√

σ2
w+e

−

tR
τw (σ2

i
−σ2

w)

σi



 (7)

In Fig. 5.a we show the minimum energyQm as a func-
tion of tR for a given choice of PE and t. It is interesting
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FIG. 5. Plots of Qm to preserve the memory for t = 1× 103τk
as a function of tR (a) and σi (b). Blue (dotted) lines are
obtained with PE = 1× 10−6, red (dashed) lines with PE =
1× 10−4, and yellow (solid) lines with PE = 1× 10−2. Inset
in panel (a) shows the values for Qm vs tp/τw, when t =
1× 103τk, PE = 1× 10−6 and tR = τw. A finite protocol time
tp, which is typical of experiments, adds an excess dissipated
heat to the blue line that marks the minimum value given
eq.(7).

to observe that this is an increasing function of tR. In
particular Qm approaches the value 0 when tR goes to
0. This indicates that it is possible, at least in principle,
to preserve the memory for a time t with failure prob-
ability PE while spending zero energy. This is obtained
when tR approaches 0 but it also implies that the mem-
ory is always under refresh and never available for use.
Moreover Qm diverges when tR approaches a limit value
tRMax that depends on PE . In fact when tR ≥ tRMax

the imposed conditions on PE and t cannot be satisfied.
On approaching such a value, σi has to become smaller
and smaller, thus requiring a larger and larger energy.
This is apparent in Fig. 5.b where we show the mini-
mum energy Qm as function of σi for a given choice of
PE and t. There, Qm goes to 0 when σi goes to σw. This
implies that it is indeed possible to preserve the memory
for a time t with probability PE by spending zero energy
and this is realised when we operate extremely close to
the equilibrium configuration inside one well (σi → σw).
On the contrary, as we anticipated, Qm grows toward in-
finity when σi → 0. Nonetheless, this last condition is
limited by the Heisenberg uncertainty relation. By tak-
ing σi to coincide the uncertainty on the position, we
have σi ≥ ~/(2σp), where σp is the uncertainty on the
momentum. This latter quantity, for a system at ther-
mal equilibrium, can be estimated with the equipartition
theorem if we have that kBT is much greater than the
energy separation between the system quantum levels.
This is what happens in macroscopic devices that works
at room temperature. Since the equipartition gives a
finite value for σp, the uncertainty principle then sets a
maximum accuracy on the position. This means that, for
a given system, the probability distribution of the rele-
vant degree of freedom cannot be shrunk arbitrary (see
Appendix C). Since Qm in Fig. 5.b is a monotone func-
tion we have that Qm reaches a finite maximum value for
the minimum allowed σi.

The existence of a minimum σi has a more important

consequence: it sets a limit on our capability to preserve
a given memory forever. This is apparent when we use
eq.(1) to explicitly write

t = tR ln(1− PE)/ ln(1− P0). (8)

Once we set PE and select a finite tR, we can make t as
large as we want by properly selecting P0 small enough.
However, the existence of a finite minimum σi implies
that P0 can never be smaller than a nonzero minimum
value, thus t reaches a finite maximum at best. To esti-
mate such a maximum t in practical memories, we con-
sider a micromechanical memory device like the one in
Ref. 12. If we assume the distance between the two wells
xm = 1× 10−9m and a refresh period tR = 6.6× 10−3 s,
we have that the minimum σi = 9.6× 10−20m. If we
set PE = 1× 10−6 then the maximum value for t is
approximately 2 years. On the other hand, if we set
PE = 1× 10−4 then the maximum time t is approxi-
mately 200 years.

Finally we briefly discuss the role of the protocol time
tp. As we have seen above from the experiment, the
minimum fundamental bound Qm can be reached only in
the quasi-static regime where tp is non negligible. This
condition sets a minimum value for tR, such that tR ≥ tp
and prevents the possibility to perform the experiment
at zero energy expenditure. Moreover for any finite tp
frictional losses add to the minimum refresh cost Qm, as
it is clearly visible from the experimental data in Fig.
4.a.

In order to identify a general estimate of the overall
energy cost with a finite tp, for a given choice of PE , t
and tR, we use the formal tools developed in Refs. 26,
11, 27 to obtain a final condition of the protocol with the
desired value of σi. The results are shown in the inset of
Fig. 5.a. There we see that the dissipated energy Qm is
an inverse function of tp, and that finite protocol times
increase the energetic cost to refresh one bit by orders
of magnitude respect to the minimum cost prescribed by
eq.(7).

In conclusion we studied the energy cost associated
with memory preservation. We have introduced a physi-
cal model for the refresh procedure and realised an exper-
iment in order to measure the amount of work performed
during the refresh operation. Our study indicates that,
in principle, we can preserve a digital memory for a given
finite time with a given error probability while spending
an arbitrarily little amount of energy. This is accom-
plished with refresh procedures that are performed arbi-
trarily often (Fig. 5.a) and/or arbitrarily close to thermal
equilibrium (Fig. 5.b). In practical cases however the ex-
istence of frictional forces introduces a lower limit on the
refresh interval tR ≥ tp and this imply a non-zero mini-
mum energy expenditure (Fig. 5.a inset). We have also
shown that, by the moment that the Heisenberg uncer-
tainty principle implies the existence of a minimum width
for the initial probability density of the memory device,
any refresh strategy will inevitably fail after a finite time.
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Appendix A: Computation of Fig.2

To compute Fig.2, we take

p(x, 0) =
exp

(

− (x−1)2

2σ2
i

)

√
2πσi

(A1)

as initial condition for eq.(3). In particular, σi is such
that p(x, t) broadens inside the right well of U(x) before
developing a clean-cut second peak in the left well of the
potential. We then solve eq.(3) with the Matlab pdepe

function. With the solution we compute

P0(tR) =

∫ 0

−∞
p(x, tR) (A2)

for different refresh times tR, and then we evaluate the
failure probability

PE = 1− (1− P0(tR))
t

tR (A3)

for different values of tR and t ≫ tR. As a last step, we
use a spline fit of PE to sample tR for different values of
PE and t. The results obtained in this way are plotted in
Figure 2. These results are obtained with T = 1/8 which
corresponds to τk = 5.3× 104τw.

Appendix B: Derivation of eq.(5) and eq.(6)

We derive here two important equations given in the
main text, namely eq.(5) and eq.(6). We start with
eq.(6). To derive it we assume that T ≪ 1. This sim-
plifies the mathematical description of the system as it
implies that the intra-well relaxation mechanisms of the
system are faster than the inter-well ones. If we are in-
terested in intra-well mechanism only, then a satisfactory
form for the dimensionless p(x, t) is

p(x, t) =p0(x, t) + p1(x, t) (B1a)

p0(x, t) =P0

exp
(

− (x+1)2

2σ(t)2

)

√
2πσ(t)

(B1b)

p1(x, t) =(1− P0)
exp

(

− (x−1)2

2σ(t)2

)

√
2πσ(t)

(B1c)

(B1d)

where P0 is, to all effects, constant over time. We sub-
stitute eq.(B1) in eq.(3) and then we approximate eq.(2)

http://dx.doi.org/10.1103/PhysRevLett.115.130501
https://arxiv.org/abs/1705.09598
https://arxiv.org/abs/1111.2937
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with an harmonic potential by Taylor-expanding around
x = ±1. This yields two distinct equations

∂p0
∂t

− 8

(

p0 + (x+ 1)
∂p0
∂x

)

− T
∂2p0
∂x2

= 0 (B2a)

∂p1
∂t

− 8

(

p1 + (x− 1)
∂p1
∂x

)

− T
∂2p1
∂x2

= 0 (B2b)

(B2c)

where used the fact that p1(x, t) (p0(x, t)) can’t affect the
dynamics of the system in the left (right) well of U(x) if
∆U ≪ kBT . Eq.(B2) can be combined into

∫ ∞

−∞

(

∂p0
∂t

− 8

(

p0 + (x+ 1)
∂p0
∂x

)

− T
∂2p0
∂x2

)

(x+ 1)2dx

+

∫ ∞

−∞

(

∂p1
∂t

− 8

(

p1 + (x− 1)
∂p1
∂x

)

− T
∂2p1
∂x2

)

(x− 1)2dx

= 0,
(B3)

which reduces to

∂σ(t)2

∂t
+ 16σ(t)2 − 2T = 0. (B4)

Eq.(B4) describes the time evolution of σ(t) when intra-
well relaxation mechanisms occurs. Its analytic solution
for an initial condition σ(0) = σi is

σ(t) =

√

T

8
+ exp (−16t)

(

σ2
i −

T

8

)

(B5)

which is the dimensionless version of the eq.(6) given the
main text.

To compute eq.(5) we recollect that we defined the “re-
fresh operation restores a non-equilibrium condition by
shrinking the width of each peak of p(x, t).” without
error corrections. If we assume that the refresh protocol
preserves the symmetry of U(x), then p(x, t) can be writ-
ten as eq.(B1) during the whole refresh procedure. As a
consequence, the sole effect of a refresh operation with
duration tp is to transform

p(x, t) = P0(t)
exp

(

− (x+1)2

2σ(t)2

)

√
2πσ(t)

+(1−P0(t))
exp

(

− (x−1)2

2σ(t)2

)

√
2πσ(t)

(B6)
into

p(x, t+tp) = P0(t)
exp

(

− (x+1)2

2σ2
i

)

√
2πσi

+(1−P0(t))
exp

(

− (x−1)2

2σ2
i

)

√
2πσi

(B7)

where σ(t) is given by eq.(B5), P0(t) is fitted from the
numerical solution of eq.(3) with eq.(2), and σi = σ(0).
We now use the Gibbs entropy definition

S(t) = −kB

∫ ∞

−∞
p(x, t) ln p(x, t)dx (B8)

to compute the entropy variation ∆S = S(t+ tp)− S(t)
of the refresh protocol. Because of the ∆U ≫ kBT as-
sumption, we have that

∆S ≈ −kB

(

∫ ∞

−∞

e
− x2

2σ2
i√

2πσi

ln
( e

− x2

2σ2
i√

2πσi

)

dx

−
∫ ∞

−∞

e
− x2

2σ(t)2

√
2πσ(t)

ln
( e

− x2

2σ(t)2

√
2πσ(t)

)

dx
)

,

(B9)

which reduces to

∆S ≈ kB ln

(

σi

σ(t)

)

. (B10)

By using eq.(B10) with t = tR we obtain the eq.(5) pre-
sented in the main text.

Appendix C: Minimum value for σi

We discuss here the existence of the minimum possible
value for σi. First of all, we observe that σi → 0 is
a singular limit in eq.(B10). This is inconsistent with
the third law of thermodynamics, so there must be a
minimum value for σi. This is given by the Heisenberg
uncertainty principle. In the best case scenario this reads

σxσp =
~

2
. (C1)

where σx (σp) is the uncertainty on the position x (mo-
mentum p). According to the equipartition theorem,

σp = m
√

〈v2〉 − 〈v〉2 =
√

mkBT , (C2)

so we have that

σx =
~

2
√
mkBT

(C3)

Eq.(C3) sets the minimum possible uncertainty for σx.
Since σi describes the uncertainty of the initial x value,
we therefore have that σi ≥ σiMin = ~

2
√
mkBT

. The exis-

tence of a σiMin implies that, even at t = 0, the proba-
bility of error P0 is greater than zero. Clearly, this does
not exclude that one can have a smaller σi by accepting
a larger σp. This would imply to operate the memory
out of the thermal equilibrium, growing the dissipated
energy well above the fundamental minimum.


