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We study the power of dephasing-covariant operations in the resource theories of coherence and en-
tanglement. These are quantum operations whose actions commute with a projective measurement.
In the resource theory of coherence, we find that any two states are asymptotically interconvertible
under dephasing-covariant operations. This provides a rare example of a resource theory in which
asymptotic reversibility can be attained without needing the maximal set of resource non-generating
operations. When extended to the resource theory of entanglement, the resultant operations share
similarities with LOCC, such as prohibiting the increase of all Rényi α-entropies of entanglement un-
der pure state transformations. However, we show these operations are still strong enough to enable
asymptotic reversibility between any two maximally correlated mixed states, even in the multipartite
setting.

A quantum resource theory (QRT) studies the dynam-
ics of physical systems under a restricted class of oper-
ations. The defining components in any QRT are a set
of allowable or “free” operations O and a collection of
“free” states F . To capture the notion of resource, the
free operations are required to act invariantly on the set
of free states, and any state not belonging to F is said to
possess resource and called a resource state. For exam-
ple, in entanglement theory the set O typically consists
of local quantum operations and classical communica-
tion (LOCC), and the free states F are non-entangled or
separable states [1].

A fundamental question considered in any QRT is
whether one state can be converted to another using the
free operations. If it is possible to transform ρ → σ

with the allowed operations of the QRT, then one is
well-justified in concluding that ρ contains no smaller
amount of resource than σ. Unfortunately, most pairs of
states will lack such a convertibility relationship within
a given QRT, including entanglement and coherence
theories. One alternative is to consider asymptotic trans-

formations in which one allows for multiple copies of the
source/target states and relaxes the condition of perfect
transformation.

For a QRT (F ,O) with free states and free operations
defined on any finite-dimensional system, we say a state
ρ is asymptotically convertible to another state σ at rate

R if for every ǫ > 0, there exists a ratio m
n

ǫ≈ R and map

E ∈ O such that E (ρ⊗n)
ǫ≈ σ⊗m, where “

ǫ≈” indicates
an ǫ approximation with respect to the the trace norm
[2]. The supremum of all such rates will be denoted by
RO(ρ → σ). In terms of multi-copy processing under
the allowed operations, roughly one copy of ρ can be
used to simulate RO(ρ → σ) copies of σ in any quantum
information task. Thus one can argue that ρ possesses at
least a fraction RO(ρ → σ) of the resource contained in
σ.

Two states ρ and σ are said to be asymptotically inter-
vconvertible or asymptotically reversible if

RO(ρ → σ) · RO(σ → ρ) = 1. (1)

A physical interpretation of Eq. (1) is that ρ contains pre-
cisely a fraction RO(ρ → σ) of the resource contained in
σ and vice versa. In any QRT, one can partition the set
of resource states into different reversibility classes such
that two states belong to the same class if and only if
they are asymptotically interconvertible [3] [4, 5]. Fur-
thermore, in most QRTs, the asymptotic rate of convert-
ibility between states in the same reversibility class is
given by the relative entropy of resource (for example,
see the relative entropy of coherence below) [5, 6]. For
a family of free operations O, we let RO(ρ) denote the
asymptotic reversibility class containing ρ. A resource
theory is called fully reversible if all resource states be-
long to the same reversibility class. Recently, Brandão
and Gour have shown that for free states F having suffi-
cient structure, a fully reversible theory always emerges
if one allows for operations that can generate an asymp-
totically vanishing amount of resource [7]. However,
full reversibility is typically not the case for QRTs whose
free operations are strictly smaller than the maximal set,
such as LOCC in entanglement theory. Nevertheless, in
this paper we show that full reversibility indeed holds
for a natural class of non-maximal operations within the
resource theory of quantum coherence. To our knowl-
edge, the only other QRT having this property is the re-
source theory of purity [8].

In terms of coherence manipulation, the physical op-
erations considered in this paper have a desirable exper-
imental characterization as those that commute with a
projective measurement in some a priori specified basis
[9, 10]. The main result establishes coherence as a fun-

gible resource under such operations. Stated differently,
in terms of many-copy processing, the particular state
holding coherence is irrelevant since any two states can
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be interconverted with vanishing loss in their coherence
content.

Asymptotic reversibility of entanglement and maxi-

mally correlated states. In bipartite entanglement the-
ory, the unit resource state is the two-qubit maximally
entangled state |Φ+〉 =

√
1/2(|00〉 + |11〉). With re-

spect to LOCC, a state ρ belongs to the same reversibility
class as Φ+ := |Φ+〉〈Φ+| if its distillable entanglement,
ED

LOCC(ρMC) := RLOCC(ρ → Φ+), equals its entangle-
ment cost, EC

LOCC(ρMC) := 1/RLOCC(Φ
+ → ρ). All pure

states are asymptotically interconvertible and belong to
RLOCC(Φ

+) [11]. Actually this class is even larger and
includes all the so-called LOCC-flagged states, which
are mixtures of pure states with each pure state hav-
ing an LOCC distinguishable “flag” attached to it [12–
14] (see also [15]). It remains a longstanding open prob-
lem to determine whether or not RLOCC(Φ

+) contains
non-LOCC-flagged states, or if other LOCC reversibility
classes exist among the set of bipartite entangled states
[12].

It is well-known that certain entangled mixed states
do not belong to RLOCC(Φ

+), one example being the
class of genuinely mixed “maximally correlated” (MC)
states. A d ⊗ d state ρMC is called maximally corre-
lated if there exists local orthornormal bases {|ai〉}d

i=1
and {|bi〉}d

i=1 such that

ρMC =
d

∑
i,j=1

cij|aibi〉〈ajbj|. (2)

Observe that every bipartite pure state is an MCstate,
a consequence of the Schmidt decomposition. We will
often refer to any locally orthonormal set of the form
B̃ = {|aibi〉}d

i=1 as a maximally correlated basis, noting
that it spans just a d-dimensional subspace of the full
d2-dimensional bipartite state space.

MC states are of particular interest in entanglement
theory since their simple structure allows for relatively
easier analysis. For instance, the LOCC distillable en-
tanglement of ρMC is given by

ED
LOCC(ρMC) = h({cii})− S(ρMC), (3)

where h({xi}) = −∑i xi log xi and S(X) = −tr[X log X]
[16, 17], which coincides with its relative entropy of
entanglement. Furthermore, the entanglement of for-
mation is known to be additive for MC states [4, 18],
and the LOCC entanglement cost EC

LOCC(ρMC) has been
shown to be strictly larger than ED

LOCC(ρMC) for all gen-
uinely mixed ρMC [13, 14], thereby establishing ρMC 6∈
RLOCC(Φ

+).
Given the irreversibility of MC states under LOCC,

it is natural to consider how much operational power

is needed beyond LOCC to recover reversibility. Since
genuinely mixed MC states share structural similarities
with pure states – in terms of having perfect measure-
ment correlation in a particular basis – it is reasonable
to conjecture that reversibility can be recovered by op-
erations that are not too much “more powerful” than
LOCC. We show that this indeed is the case by consider-
ing a new class of multipartite quantum operations that
emerges from the study of dephasing covariant opera-
tions in the QRT of coherence.

Dephasing covariant operations and the QRT of co-

herence. A basic property of quantum measurement
is that any superposition of the observable’s eigen-
states will “collapse” when performing the measure-
ment. Mathematically, this can be described in terms
of a dephasing map, which for an orthonormal basis
B = {|bi〉}d

i=1, is given by ∆B(ρ) = ∑
d
i=1 |bi〉〈bi|ρ|bi〉〈bi|.

We will be interested in maps whose action commutes
with this measurement process. In the following defi-
nition, we let D(H) denote the set of density operators
acting on Hilbert space H.

Definition 1. Let Bi be an orthonormal basis for Hi. Then a

CP map E : D(H1) → D(H2) is called dephasing covariant

under bases (B1,B2) if E (∆B1
(ρ)) = ∆B2

(E (ρ)) for all ρ ∈
D(H1).

When B1 = B2 = B, then the condition of dephasing
covariance can be compactly expressed in terms of the
commutator [E , ∆B] = 0.

In the resource theory of coherence, a specific or-
thonormal basis {|i〉}d

i=1 for a given state space H is
fixed (called the “incoherent” basis), and the free states
F are those diagonal in this basis [19]. When extend-
ing to n copies of the system, the free states are sim-
ply those diagonal in the tensor product basis {|i〉}⊗n,
which can be relabeled as {|i〉}dn

i=1. Similar to the two-
qubit maximally entangled state |Φ+〉, the standard re-
source unit in coherence theory is the maximally coher-
ent state |ϕ+〉 =

√
1/2(|0〉+ |1〉). As for the free oper-

ations, there are a variety of approaches [9, 20–24], each
taken in light of different physical considerations. The
resource non-generating operations (also called “max-
imal” incoherent operations (MIO)) consists of all CP
maps that act invariantly on the set of states diagonal
in the incoherent basis. It was recently shown that MIO
allows for asymptotic reversibility between any two re-
source states [25].

A strictly smaller class of incoherent operations intro-
duced in Refs. [9] and [10] are the dephasing covariant
(incoherent) operations (DIO). These are dephasing co-
variant maps with the dephasing occurring in the inco-
herent basis; i.e B1,B2 ⊂ {|i〉}∞

i=1. One difference be-
tween MIO and DIO can be seen in terms of the Rényi
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α-entropies. For pure states |ψ〉, the Rényi α-entropy of
the dephased state, Sα(∆(ψ)), monotonically decreases
under DIO for α ∈ [0, ∞] but only for α ∈ [ 1

2 , ∞] under
MIO [26]. Nevertheless, we will now show that MIO
and DIO are equally powerful for asymptotic transfor-
mations.

Theorem 2. The QRT of coherence under DIO is fully re-

versible.

Proof. The theorem will follow by showing that for any
ρ, both RDIO(ρ → ϕ+) and 1/RDIO(ϕ+ → ρ) are
given by the relative entropy of coherence Cr(ρ) =
minσ∈F S(ρ||σ) = S(∆(ρ)) − S(ρ) [21]. (Distillation

Protocol.) In Ref. [22], Winter and Yang showed that
RIO(ρ → |ϕ+〉) = Cr(ρ) for a class of operations
simply referred to as Incoherent Operations (IO). For
an arbitrary state ρA, consider a purification |ψ〉AE =

∑x

√
p(x)|x〉A|ζx〉B, where |x〉 is the incoherent basis.

The key tool in Winter and Yang’s protocol is a cover-
ing lemma for the CQ channel |x〉〈x| → |ζx〉〈ζx| on the
set of typical sequences xn, which allows them to relabel
xn → (q, m, s) such that for any ǫ > 0

|ψ〉⊗n ǫ≈
Q

∑
q=1

|q̃〉A1
M

∑
m=1

|m〉A2
S

∑
s=1

Uq,m|s〉A3 |ζqm0s〉B, (4)

where |q̃〉 is a subnormalized vector (i.e. 〈q̃|q̃〉 < 1),
m0 ∈ {1, · · · , M}, and 1

n log M → Cr(ρ) − ǫ. While
Uq,m is a unitary acting exclusively on system A3, its
action can be expressed as a controlled unitary Wq =

∑m |m〉〈m|A2 ⊗ U
A3
q,m acting on systems A2 A3 with sys-

tem A2 being the control. To obtain a DIO distillation
protocol, we observe the following proposition, which
can be easily verified.

Proposition 3. For any controlled unitary W =

∑m |m〉〈m|A2 ⊗ UA3
m , the map EA2 A3→A2(ρA2 A3) =

TrA3(WρW†) is DIO.

Starting from |ψ〉⊗n, the protocol involves first
measuring system A1 in the incoherent ba-
sis thereby collapsing |ψ〉⊗n into the state
ǫ≈ 1√

MS
∑

M
m=1 |m〉A2 ∑

S
s=1 Uq,m|s〉A3 |ζqm0s〉B for some

q. By Proposition 3, the resulting state can then be
transformed into 1√

M
∑

M
m=1 |m〉 by a DIO map. (Sketch

of Formation Protocol.) Similar to Winter and Yang’s
approach, an asymptotic formation protocol of ρA is
obtained by packing channel codes for the CQ channel
|x〉〈x| → |ζx〉〈ζx| on the set of typical sequences xn. As
discussed in the Supplemental Material, there exists a
labeling xn → (l, c) such that for any ǫ > 0

|ψ〉⊗n|0〉B1
O(ǫ)
≈

L

∑
l=1

|l̃〉A1
1√
C

C

∑
c=1

|c〉A2 |χlc〉BB1 , (5)

where |l̃〉 is a subnormalized vector, |χlc〉BB1 =
W†

l

(|ζlc〉B|c〉B1
)
, and 1

n log L → Cr(ρ) + ǫ. Based on Eq.
(5), we consider the isometry

VA1→A1A2B =
L

∑
l=1

1√
C

C

∑
c=1

|l〉〈l|A1 ⊗ |c〉A2 |χlc〉B (6)

and the associated channel VA1→A1 A2(ρA1) =
TrB(VρV†). From the orthonormality 〈χlc|χlc′〉 = δcc′ ,
it is straightforward to verify that VA1→A1 A2 is DIO,
similar to Proposition 3. Since |ψ〉⊗n is a purification
of ρ⊗n, Eq. (5) implies that the action of EA1→A1 A2

on ∑
L
l=1 |l̃〉 generates an O(ǫ) approximation of ρ⊗n.

Hence, a DIO formation protocol consists of first con-
verting the maximally coherent state 1√

L
∑

L
l=1 |l〉 into

the weakly coherent state ∑
L
l=1 |l̃〉, which can always be

accomplished by a DIO map [22, 27], and then applying
the channel VA1→A1 A2 .

Maximally correlated dephasing covariant maps. Let
us now move to the bipartite setting and the resource
theory of entanglement. The basic idea is based on a
simple one-to-one association between density matrices
in D(H1) and MC states in D(H⊗2

1 ),

ρ =
d

∑
i,j=1

cij|i〉〈j| ⇔ ρ̃ =
d

∑
i,j=1

cij|ii〉〈jj|. (7)

The coherence of ρ, as quantified by different coher-
ence measures, is equivalent to the entanglement of ρ̃,
as given by analogous entanglement measures [28–30].

Our goal is to construct an operational analog to Eq.
(7). Let B̃1 = {|aibi〉}d1

i=1 and B̃2 = {|a′ib′i〉}
d2
i=1 be

any pair of maximally correlated bases for subspaces
in H⊗2

1 and H⊗2
2 respectively. Then for any DIO map

E : D(H1) → D(H2), let EMC : D(B̃1) → D(B̃2) be the
map defined by the action

EMC(|aibi〉〈ajbj|) =
d2

∑
k,l=1

cij,kl|a′kb′k〉〈a′lb
′
l | (8)

where cij,kl = 〈k|E (|i〉〈j|)|l〉. By construction, EMC is

dephasing covariant under (B̃1, B̃2), i.e.

∆
B̃2
(EMC(ρ)) = EMC(∆B̃1

(ρ)) (9)

for all ρMC = ∑
d1
i,j=1 βij|aibi〉〈ajbj|, and it can be ex-

tended to a map on the full bipartite space H⊗2
1 as fol-

lows. Let N be the group of d1 × d1 unitary matrices
that are diagonal in some a priori fixed orthonormal ba-

sis {|i〉}d1
i=1 [26]. For any maximally correlated basis

B̃1 = {|a1b1〉}d1
i=1, there exists unitary operators U and V
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such that U|i〉 = |ai〉 and V|i〉 = |bi〉. Then with respect
to MC basis B̃1, we define the bipartite group twirling
map τ(ρAB) =

∫
g∈N dg(Ug ⊗V∗

g )ρ
AB(Ug ⊗V∗

g )
†, where

Ug = UgU† and Vg = VgV† for g ∈ N . It is not difficult
to see that τ transforms an arbitrary state ρAB into block
form

Ω =
d1

∑
i 6=j=1

αij|aibj〉〈aibj|+
d1

∑
i,j=1

βij|aibi〉〈ajbj|. (10)

Note the second term in Ω is an MC state in the
basis B̃1. Finally, let F : D(B̃⊥

1 ) → D(B̃⊥
2 ) be

any CPTP map that is dephasing covariant under(
{|aibj〉}d1

i 6=j=1, {|a′ib′j〉}
d2
i 6=j=1

)
. Then putting EMC, F ,

and τ together, we define

Ẽ = (F ⊕ EMC) ◦ τ, (11)

where F ⊕EMC indicates a map that preserves the block
form of τ(ρAB). We will refer to the map Ẽ as an
MC extension of the original DIO map, and it is de-
phasing covariant under the complete product bases(
{|aibj〉}d1

i,j=1, {|a′ib′j〉}
d2
i,j=1

)
. All maps Ẽ constructed in

this way constitute our operational class.

Definition 4. A CPTP map E : D(H⊗2
1 ) → D(H⊗2

2 ) is

called maximally correlated dephasing covariant (MCDC) if

is an MC extension of any DIO map; i.e. it has the form of

Eq. (11).

Unlike the class DIO in coherence theory, MCDC does
not depend on the choice of some particular basis. This
is because the dephasing bases B̃1 and B̃2 in Eq. (9) can
be any pair of maximally correlated bases. By apply-
ing local unitaries, an arbitrary MC state can be trans-
formed into the form ρ̃ = ∑i,j βij|ii〉〈jj| for some fixed

basis {|i〉}d
i=1. From Eq. (8) and the invariance of all MC

states under τ, it is easy to see that if Ẽ is an MC exten-
sion of some DIO map E , then E (ρ) ⇔ Ẽ(ρ̃) whenever
ρ ⇔ ρ̃. Theorem 2 then immediately yields the follow-
ing.

Corollary 5. Every MC state ρMC belongs to the reversibil-

ity class RMCDC(Φ
+).

How strong is the class MCDC? One way to answer
this question is in terms of monotones. A function f

is an O-monotone for operational class O if f (ρ) ≥
f (E (ρ)) for all ρ and all E ∈ O. A weaker form of mono-
tonicity is that f remains non-increasing under pure-
state transformations; i.e. when both ρ and E (ρ) are
pure. The strength of an operational class can then be
assessed in terms of which monotones it violates. For ex-
ample, for every α ∈ [0, ∞] the Rényi α-entropy of entan-
glement is an LOCC monotone under pure-state trans-
formations [31]. Recall that for a bipartite pure state |ψ̃〉

with nonzero squared Schmidt coefficients {λi}d
i=1, its

Rényi α-entropies of entanglement are given by Eα(ψ̃) =
1

1−α log
[
∑

d
i=1 λα

i

]
for α ∈ (0, 1)∪ (1, α), with the limiting

cases E0(ψ̃) = log d, E1(ψ̃) = H({λi}), and E∞(ψ̃) =
maxi(− log λi).

Lemma 6. For α ∈ [0, ∞], the Rényi α-entropy is an MCDC

monotone under pure-state transformations.

Proof. Suppose that Ẽ(|ψ̃〉〈ψ̃|) = |φ̃〉〈φ̃| for an MCDC
map Ẽ = (F ⊕ EMC) ◦ τ. By the structure of MCDC
maps, |φ̃〉〈φ̃| must have the form of Ω in Eq. (10). It
is easy to see that the only entangled pure state in this
family is the MC state ∑

d1
i,j=1 βiβ

∗
j |aibi〉〈bjbj|. Since τ acts

invariantly on MC states, it follows that if |φ̃〉 is entan-
gled and |ψ̃〉 → |φ̃〉 by MCDC, then there must exist a
map EMC : D(B̃1) → D(B̃2) such that EMC(|ψ̃〉〈ψ̃|) =
|φ̃〉〈φ̃|. But up to a local change in basis, such maps
are in a one-to-one correspondance with DIO maps E :
D(H1) → D(H2). However, as noted above, all Rényi
α-entropies Sα({∆(ψ)}) are monotones under DIO [26].
Since Sα(∆(ψ)) = Eα(|ψ̃〉), the lemma follows.

It is interesting to note that Lemma 6 does not hold for
PPT operations [16], which is a close cousin to LOCC.
In particular, the so-called Schmidt rank, i.e. 2E0(ψ̃), is
not a monotone under PPT operations [32, 33]. Based
on this, one might speculate that MCDC operations
are generally weaker than PPT operations. However,
this is not the case as MCDC can increase the nega-
tivity of a state [34], a result that follows from recent
work in coherence theory. The partial transpose of the
MC state ρ̃ = ∑i,j βij|ii〉〈jj| can easily be computed as
ρ̃ΓB = ∑i βii|ii〉〈ii|+ ∑i<j βij[Ψ

+
ij − Ψ−

ij ], where |Ψ±
ij 〉 =√

1/2(|ij〉 − |ji〉). From this, its negativity is imme-
diately seen, EN(ρ̃) = 1

2

(∣∣∣∣ρ̃ΓB
∣∣∣∣

1 − 1
)
= ∑

d
i<j=1 |βij|.

However, the RHS is precisely the ℓ1 norm of coherence
of the state ρ = ∑

d
i,j=1 βij|i〉〈j| [21]. It has recently been

shown that the ℓ1 norm is not a DIO monotone [35], from
which it follows that the negativity is likewise not an
MCDC monotone.

Multipartite MC reversibility. We close the paper by
observing that Corollary 5 can easily be extended to N-
party MC states. Such states have the same form as a
bipartite MC state except with the maximally correlated
basis being N-partite, i.e. B̃ = {|aibici · · ·〉}d

i=1. An N-
partite MCDC operation is defined as before except the
map τ(N) is the composition of bipartite group twirlings
for every pair of parties. For an arbitrary ρ(N), it is not

difficult to see that τ(N)(ρ(N)) = σ(N)+ ρ
(N)
MC, where ρ

(N)
MC

is an MC state in the maximally correlated basis B̃, and
σ(N) is some state diagonal in the basis {|ai1 bi2ci3 · · ·〉 :
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∃j,k∈[N] such that ij 6= ik}. Using the same reasoning as
before, one obtains the following.

Corollary 7. Every N-party MC state ρ
(N)
MC belongs to

the reversibility class RMCDC(Φ
+
N), where |Φ+

N〉 =√
1/2(|000 · · ·〉+ |111 . . .〉).

We remark that the LOCC convertibility between pure
states in the class RLOCC(Φ

+
N) has previously been stud-

ied [36].
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