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Reflective limiters based on (self-)induced violation of 
𝒞𝒯 −symmetry	

Eleana Makri, Roney Thomas and Tsampikos Kottos 
Department of Physics, Wesleyan University, Middletown, CT-06459, USA  

	
Non-Hermitian bipartite photonic lattices with charge-conjugation 𝒞𝒯  symmetry can support 
resonant defect modes which are resilient to bipartite losses and structural imperfections. When, 
however, a (self-)induced violation of the 𝒞𝒯-symmetry occurs via tiny permittivity variations, 
the resonant mode is exposed to the bipartite losses and it is destroyed. Consequently, the 
transmission peak is suppressed while the reflectance becomes (almost) unity. We propose the 
use of such photonic systems as power switches, limiters, and sensors. 

	
I. INTRODUCTION 

 
 Symmetries and their violations 
constitute an important theme of investigation, 
both for their own fundamental interest [1] and 
for their potential technological use in 
managing wave transport [2,3]. For example, 
the violation of time-reversal 𝒯  symmetry is 
a necessary condition for the realization of 
isolators and circulators [4,5,6]. Similarly, 
chiral 𝒞  [7,8] and charge-conjugation 𝒞𝒯  
symmetries [7] have been proven important for 
the realization of defect modes which are 
topologically protected against disorder and 
which potentially enable robust unidirectional 
transport, mode selectivity, etc. [10-21]. 
Originally these topologically protected defect 
states attracted attention due to their possible 
realizations in condensed matter systems [23-
27]. Recently, classical wave physics set-ups – 
like photonics, acoustics and microwaves – 
have been proven fertile platforms for the 
implementation of topological defect modes. In 
all of these cases the topological protection 
invokes a combination of judicious band-
structure designs and symmetry 
implementations [10-21]. Among the well-
studied set-ups are coupled resonator optical 
(or microwave/acoustic) waveguide (CROW) 
arrays [20-26]. Extensions to non-Hermitian 
CROWs have also been considered and were 
shown to support non-trivial topologically 
protected defect modes [31,32]. Nevertheless, 
very few studies address the transport 
properties of these defect states once the 
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Figure 1(a): A 𝓒𝓣-symmetric microwave CROW 
array consisting of identical resonators separated 
with alternating distances 𝒅𝟏  and 𝒅𝟐 . A central 
defect (blue), which contains a permittivity 
modulated material, is introduced by repeating 𝒅𝟐. 
The two nearby resonators (red) have enhanced 
Ohmic losses. (a). For weak signals the incident 
radiation is transmitted via a midgap resonant defect 
mode with a staggered profile. (b). When 𝓒𝓣 -
violation is (self-)induced via permittivity variations 
of the central resonator, the structure operates as a 
broadband reflector. (c) The eigenfrequencies vs. 
their respective indices for various disorder 
realizations of 𝒅𝟏  and 𝒅𝟐 . The defect eigenmode 
(middle of the gap) is spectrally protected against 
disorder. The other modes are sensitive to 𝒅𝟏and 
𝒅𝟐variations (shadowed area). (d) Transmittance for 
different positional realizations. The resonant peak 
is insensitive and spectrally protected. 

 



system is coupled to leads [20,21,35]. 
 Here, we design a family of 𝒞𝒯-symmetric non-Hermitian bipartite CROW arrays with 

(self-)regulated transport characteristics. These arrays consist of resonators with the same 
resonant frequencies but different linewidths. In the presence of a topological defect [18], the 
associated 𝒞𝒯-symmetric defect mode is strongly localized around the defect resonator and has 
nodal points at alternating resonators. This symmetry-induced staggered profile shields the defect 
mode from structural imperfections and from losses associated with the “nodal-point” resonators. 
We show that the symmetry protection pertains also to the case of scattering set-ups where the 
associated resonant defect mode has a similar staggered form -- thus minimizing the interaction 
with the lossy “nodal-point” resonators and enforcing a high resonant transmission peak. We refer 
to this phenomenon as symmetry-enforced transmittivity. When, however the defect resonator is 
made of a material with a permittivity that is sensitive to either self-induced heating due to high 
fluence of the incoming electromagnetic radiation, or to high intensity fields values, the resonant 
defect mode experiences a 𝒞𝒯-symmetry violation. This self-induced explicit symmetry violation 
exposes the defect mode to the lossy “nodal-point” resonators, leading to its destruction together 
with the dramatic suppression of the associated resonant transmission. As a result, the entire 
structure becomes highly reflective at the resonant frequency. We propose to utilize the fragile 
nature of the resonant transport to 𝒞𝒯-symmetry violations in order to realize a new family of 
photonic limiters and switches [36,37].  

The structure of the paper is as follows. In the next section II, we present the proposed 
CROW microwave photonic limiter and its symmetries. We also discuss the consequences of 
these symmetries in the structure of the defect mode and its resulting robustness against structural 
imperfections. In section III, we analyze the scattering set-up and demonstrate the hypersensitive 
nature of the defect resonant transmission against self-induced (explicit) symmetry violations. In 
section IV we analyze an on-chip version of the photonic limiter and demonstrate its efficiency 
against previous proposals. Finally, in section V we present our conclusions. 

 
II. DESIGN AND MODELING OF CT-SYMMETRIC MICROWAVE CROWs 

A design of our set-up is shown in Fig. 1. It consists of a one-dimensional array of 𝑁 
resonators, which are arranged with alternating short 𝑑!  and long 𝑑!  distances from one 
another. We assume, without any loss of generality, that 𝑁 = 21. A central dimerization defect at 
𝑛! = 11, assumed to consist of a thermally (or intensity) modulated material, is introduced by 
repeating the spacing 𝑑! from the adjacent resonators on the left and right, respectively. The 
permittivity variation in the material making up the defect resonator (𝑛! = 11) is assumed to be 
self-induced (e.g. via heating by the incident radiation or via the local field intensity). 
Representatives of such materials includes germanium-antimony-tellurium alloys [38], oxides of 
vanadium etc. [39,40]. The resonant frequency 𝛽!!  of the defect resonator matches the 
frequencies of the other resonators 𝛽! = 𝛽!. The two resonators on the left (𝑛 = 10) and right 
(𝑛 = 12) of the central defect (see Fig. 1), involve large Ohmic losses. The losses are optimally 
managed in a way that these resonators maintain the same resonant mode as the other cavities — 
a condition that is necessary for 𝒞𝒯 symmetry — and at the same time overcome restrictions 
from the Kramers-Kronig relations. This can be achieved through deposition of thin layers of a 
metal on top of the resonators or by using an absorbing paint like graphite powder. The losses due 
to the coating will be reflected in the resonant frequencies of these resonators which acquire an 
imaginary part, i.e. 𝛽!" = 𝛽!" = 𝛽! + 𝑖𝛾 . In our numerics, we have assumed that 
𝛽! = 6.55𝐺𝐻𝑧, 𝛾 = 50𝑀𝐻𝑧, 𝑡! = 50𝑀𝐻𝑧, and 𝑡! = 10𝑀𝐻𝑧.  

The array of Fig. 1 is described, in the resonant mode representation of the isolated 
resonators, by the following tight-binding Hamiltonian: 

 
 𝑯 = 𝜷𝒏𝒏 𝒏 𝒏 + 𝒕𝒏 𝒏 𝒏 + 𝟏 + 𝒏 + 𝟏 𝒏 ,𝒏  ( 1 ) 



where 𝑛 = 1,⋯ ,𝑁  denotes the resonator index and 𝑡! = 𝑡!  or 𝑡!  indicates the evanescent 
coupling strengths between the two nearby resonators (with their corresponding short 𝑑!  and 
long 𝑑!  distances respectively). When 𝛾 = 0, the Hamiltonian (1) is chiral symmetric, i.e. 
𝒞,𝐻 = 0 [41] where ⋯  indicates an anti-commutation, and 𝐶 = 𝑃!"!# − 𝑃!"" is the chiral 

operator with 𝑃!"!#/!"" = 𝑃!!∈!"!#/!""  and 𝑃! ≡ |𝑛 𝑛| being the projection to a specific site 
𝑛. The eigenfrequencies 𝜈! of Hamiltonian (1) are real and occupy two bands 𝛽! − 𝑡! − 𝑡! < 𝜈 <
𝛽! − 𝑡! − 𝑡!  and 𝛽! + 𝑡! − 𝑡! < 𝜈 < 𝛽! + 𝑡! + 𝑡! separated by a gap of width Δ ≡ 2 𝑡! − 𝑡! . 
The central unpaired eigenfrequency 𝜈!=𝛽! corresponds to a 𝒞 –symmetric defect eigenmode 𝜓! 
which is localized at 𝑛! = 11. At the infinite-
chain limit, the field amplitude 𝜓!!  at the 𝑛 th 
resonator takes the form: 
 

 𝝍𝒏
𝑫~

𝟏
𝝃
𝒆!

𝒏!𝒏𝟎
𝝃 ,      𝒏 odd

𝟎,                      𝒏 even
,        (2) 

where 𝜉 = 1/ ln(𝑡!/𝑡!) . Importantly, Eq. (2) 
indicates that this state is supported only by the 
odd 𝑛  sublattice. Therefore, it is also an 
eigenstate of any diagonal operator 𝐷 !∈!"!# =

𝑐!𝑃!!∈!"!#  (where 𝑐! is a complex number), 
with associated zero eigenvalue.  

When 𝛾 ≠ 0 , the Hamiltonian (1) 
becomes non-Hermitian and 𝒞,𝐻 ≠ 0, thus the 
system is no longer chiral-symmetric. We find 
that 𝐻  anti-commutes with the charge-
conjugation operator 𝒞𝒯, i.e. 𝒞𝒯,𝐻 = 0, where 
𝒞  is the unitary chiral symmetry operator (as 
defined above) and 𝒯  is the time reversal 
operator associated with complex conjugation 
operations. 𝒞𝒯 − symmetry, also known as particle-hole symmetry, has recently been explored in 
the context of photonic systems [32,42] and has profound consequences on the spectrum of Eq. 
(1). The latter now consists of pairs of complex eigenfrequencies  𝛽! + 𝛿𝜈!,  𝛽! − 𝛿𝜈!∗ , where 
𝛿𝜈!  is a complex number. The (unpaired) defect mode 𝜓!(see Eq. (2)) is an eigenstate of 
𝐷 !!!",!" = 𝑖𝛾 𝑃!" + 𝑃!" , with corresponding zero eigenvalue, and thus it is also an eigenstate 
of the non-Hermitian Hamiltonian (1) 𝐻 𝛾 = 𝐻 0 + 𝐷 !!!",!"  with an eigenfrequency 𝜈!=𝛽!.  

In order to verify the robustness of the defect state (i.e. both the position of the 
eigenfrequency 𝜈! = 𝛽! and the shape of the mode, see Eq. (2)) against structural disorder, we 
introduced random variations of the coupling strengths 𝑡! and 𝑡!, while preserving the dimer 
structure of the lattice, see Fig. 1c. To this end, we have replaced each of the values of 𝑡! in Eq. 
(1) with a random statistically independent coupling given by 𝑡!/! → 𝑡!/! = 𝑡!/! +

!
!
𝜉!𝑡, where 

𝑊 is the disorder strength, and 𝜉! is a random number drawn from a uniform distribution in the 
interval [−1,1]. Finally,  𝑡 = !!!!!

!
. We note that a detailed experimental study of the robustness 

of the topologically protected defect mode has been performed in [21]. It turns out (see next 
section) that the resilience of the topologically protected mode carries over also in the case when 
the system is coupled to two leads. In this case, the defect mode becomes a topologically 
protected resonant mode, giving rise to a robust (against structural disorder) resonant 
transmittance, see Fig. 1d.  
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Figure 2: (a) Defect mode profiles of the 𝒞𝒯 
-symmetric CROW of Eq. (1) for various 
detuning strengths 𝛿 . As 𝛿  increases, the 
staggered form of the field is destroyed. (b) 
Scattering field distribution at resonant 
frequency for the same systems described in 
(a). Note the non-monotonic field intensity 
vs. 𝛿 at the position of the lossy resonators. 
Eventually the destruction of the resonant 
localized defect mode occurs.  



 Let us now assume that the central resonator is 
made by a non-linear material (say with a Kerr-like 

or thermal nonlinearity), thus making it more 
susceptible (with respect to the other resonators) to 
incident light radiation. In this case its permittivity, 
and consequently its resonant frequency 𝛽!, will be 
modified as 𝛽!! = 𝛽! → 𝛽! + 𝛿  whenever the 
power/fluence of the incident radiation is above 
some critical value. We find that the small 
detuning 𝛿  will formally induce a violation of 
𝒞 −symmetry for 𝐻 0  as well as a violation of 
𝒞𝒯 −  symmetry for 𝐻 𝛾 . Furthermore, at 
some critical value of 𝛿 the staggered form Eq. 
(2) of the defect mode  𝜓!  is destroyed, 
acquiring a non-zero field amplitude at the lossy 

resonators at 𝑛 = 10 and 𝑛 = 12, see Fig. 2a. At the same time the associated eigenfrequency 𝜈! 
acquires an imaginary part – a signature of a low Q-factor due to the local losses at resonators 
𝑛 = 10 and 𝑛 = 12.  Using second order perturbation theory with respect to 𝑃 !!!!  we estimate 
that for 𝛿 < 4𝑡!/𝑁 (4𝑡!/𝑁 is the spacing between nearby levels for 𝛿 = 0) the imaginary part of 
𝜈! of the perturbed system 𝐻 𝛾 + 𝛿 ∙ 𝑃 !!!!  scales as ℑ𝑚 𝜈! ∝ 𝛿!.   

 
III.  HYPERSENSITIVE TRANSPORT 

Next, we couple the system of Eq. (1) with two antennas, at the first and last resonators. 
The antennas are modeled as one-dimensional semi-infinite periodic tight-binding lattices with 
coupling constants 𝑡! = (𝑡! + 𝑡!)/2  and on-site eigenfrequencies 𝛽! =  𝛽! . These antennas 
support propagating waves with an eigenfrequency 𝜈 = 𝜈! − 2𝑡! cos 𝑘 where 𝑘 is the associated 
wavevector. The coupling between the antennas and the first and last resonator is assumed to be 
𝑡!. 

Within the scattering framework, the defect mode becomes a resonant localized mode 
with small but finite line-width. Its shape and transport properties are studied using the transfer 
matrix 𝑀!: 

 𝝍𝒏!𝟏
𝝍𝒏

= 𝑴𝒏
𝝍𝒏
𝝍𝒏!𝟏

;  𝑴𝒏 ≡
𝝂!𝜷𝒏
𝒕𝒏!𝟏

− 𝒕𝒏
𝒕𝒏!𝟏

𝟏 𝟎
, (3) 

Eq. (3), together with appropriate boundary conditions, allows us to obtain the resonant mode 
profile at any resonator within the CROW. Without loss of generality we shall use the scattering 
boundary conditions 𝜓! = 𝑡𝑒!"# for 𝑛 ≥ 𝑁 and 𝜓! = 𝑒!"# + 𝑟𝑒!!"# for 𝑛 ≤ 1 describing a left 
incident propagating wave with unit amplitude and reflection coefficient 𝑟 . The associated 
transmittance 𝑇 = 𝑡 ! and reflectance 𝑅 = 𝑟 ! are evaluated via iteration of Eq. (3). 

The scattering field intensities of the resonant defect mode for different values of the 
detuning 𝛿 are shown in Fig. 2b.  When 𝛿 = 0, the scattering field profile resembles the staggered 
form Eq. (2) of the associated localized defect mode. Importantly, the position of the lossy 
resonators at 𝑛 = 10, 12 coincides with the position of the (quasi-)nodal points of the resonant 
defect mode. Thus, the interaction of the field with these cavities is negligible and the structure 
demonstrates the phenomenon of “symmetry-enforced transmittivity” i.e. we have a high resonant 
transmission peak at 𝜈 = 𝜈!, see Fig. 3a. The spectral position of the resonant transmission peak 
is robust against positional disorder, as it is demonstrated in Fig. 1 (d). 
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Figure 3: (a) Transmittance (T), and (b) 
absorbance (A) vs. frequency for various 
detuning strengths 𝛿. The system is shown in 
Fig. 1a. 



When a small detuning 𝛿 is introduced, the 
𝒞𝒯 − symmetry is violated and the field amplitudes 
at the lossy resonators at sites 10 and 12 are 
different than zero, see Fig. 2b. At the same time 
the resonant transmission peak decreases, see Fig. 
3a. Interestingly enough, also the absorbance shows 
the same decreasing trend, see Fig. 3b and 
discussion below. For even larger values of 𝛿, the 
resonant localized mode is suppressed and for 
𝛿 = 𝛿!"#$  it is eventually destroyed, see Fig. 2b. 
One can estimate this critical detuning by realizing 
that the destruction of the resonant mode is 
associated with the competition between two 
physical mechanisms: the deterioration of the 
resonant Q-factor because of the radiative losses 
from the boundary which lead to broadening of the 
linewidth by Γ!"# ∝ 𝑒𝑥𝑝 −𝑁/𝜉  and the bulk 
(Ohmic) losses which are triggered by the interaction of the field with the lossy resonators at sites 
10 and 12. The latter contributes to a linewidth ℑ𝑚 𝜈! ∝ 𝛿!(see previous discussion). Equating 
these two expressions we obtain 𝛿!"#$ ∝ 𝑒𝑥𝑝 −𝑁/2𝜉 . In other words, even an exponentially 
small detuning results in the destruction of the resonant defect mode and a dramatic suppression 
of the associated resonant transmittance, see Fig. 4a. The underlying physical mechanism 
associated with this abrupt change in the transport characteristics of the photonic structure relies 
on an underdamping-to-overdamping transition. In the former regime, the (small) radiative losses 
are the dominant mechanism that spoils the Q-factor of the structure, while in the latter case the 
Q-factor is dominated by the (strong) Ohmic losses. In this case, there is a strong impendence 
mismatch between the incoming wave and the resonant defect mode which, in turn, leads to the 
high reflection and consequently suppressed transmittance observed in our simulations. 

In Fig. 4 (b) and (c), we report the reflectance and absorbance at the associated resonant 
frequency, versus the detuning 𝛿. We find that, for 𝛿 ≈ 𝛿!"#$, the incoming photons do not couple 
at all with the resonant mode (strong impedance mismatch), but rather are reflected immediately. 
A quantitative understanding of this behavior requires the analysis of the absorbance 𝐴 𝜈  of the 
resonance mode. Using Eqs. (3) we obtain: 

            𝛾! 𝜓!!
!!

!!! + 𝑡!ℑ𝑚 𝜓!!
∗
𝜓!! + 𝜓!!

∗
𝜓!!!! = 0,                         (4) 

where 𝜓!!  is the 𝑛 − 𝑡ℎ component of the scattering field associated with a detuning 𝛿 and we 
have used the fact that the frequency 𝜈(𝑘) of the incident wave is real. Substituting in Eq. (4) the 
expressions of the field 𝜓! = 𝑡𝑒!"# for 𝑛 ≥ 𝑁 and 𝜓! = 𝑒!"# + 𝑟𝑒!!"# for 𝑛 ≤ 1 and taking into 
consideration that 𝛾! = 𝛾 for 𝑛 = 10,12 and zero otherwise we obtain 

                                                    𝐴 ≡ 1 − 𝑇 − 𝑅 = 2𝛾 !!"!
!
! !!"!

!

!!
,                                       (5) 

where 𝑣! = 𝜕𝜈(𝑘)/𝜕𝑘 is the group velocity. From Eq. (5) one concludes that the absorbance 
depends on the (Ohmic) dissipation 𝛾, the value(s) of the scattering field intensities at the position 
of the dissipative resonators and is inversely proportional to the group velocity 𝑣!(𝑘). In our case, 
𝛾 is constant. At the same time, 𝑣!(𝑘) at the resonant mode can also be considered constant, to a 
good approximation (a small shift of the resonant position ~𝛿 is irrelevant for our discussion).  

On the other hand, the change of the scattering field intensities 𝜓!"!
!
, 𝜓!"!

!
can vary by 

orders of magnitude as 𝛿 increases, see Fig. 2b. Specifically, for 𝛿 = 0 we have 𝜓!"!
!
, 𝜓!"!

!
≈

0  and thus 𝐴 = 0 . For small detuning strengths 𝛿 < 𝛿!"#$ , the scattering field intensities 
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Figure 4. (a) The resonant transmittance T, (b) 
reflectance 𝑹  and (c) absorbance 𝑨  vs. the 
detuning strength 𝜹. 



𝜓!"!
!
, 𝜓!"!

!
 increases (see 𝛿 = 2% in Fig. 2b) and as a result the absorbance 𝐴 also increases 

(see Fig. 4c). However, when 𝛿 > 𝛿!"#$ the field intensities at 𝑛 = 10,12 begin to decrease (see 
𝛿 = 4% in Fig. 2b) due to the destruction of the resonant defect mode (see previous discussion). 
As a result, we expect from Eq. (5) that the absorbance 𝐴 will decrease to zero (see Fig. 4c).  
Consequently, the reflectance 𝑅 ≡ 1 − 𝑇 − 𝐴 reaches values close to unity.   

 
IV. ON-CHIP OPTICAL CROWS WITH SELF-INDUCED 

VIOLATION OF CT-SYMMETRY 
 
We have also considered a 𝒞𝒯 −symmetric CROW array consisting of 𝑁 = 9 coupled 

optical rings, placed at alternate distances 𝑑! = 35.54𝜇𝑚,𝑑! = 36.4𝜇𝑚.  The defect ring 
resonator is located at the center of the chain at a distance 𝑑! from the adjacent resonators, see 
Fig. 5. Each ring resonator supports a clockwise (CW) and a counterclockwise (CCW) degenerate 
modes. The array can be theoretically investigated using a coupled mode theory. The associated 
Hamiltonian is given by Eq. (1) with  

 

𝛽! → 𝛽! =
𝛽!!" 0
0 𝛽!!!"

;   𝑡! →  𝑡! = 𝑡!
0 1
1 0 ; (6)	

where 𝛽!
!!/!!" = 28.3 𝑇𝐻𝑧  are the degenerate 

eigenfrequencies of the CW/CCW modes of the 
𝑛 −th ring. Hamiltonian (1) with Eqs. (6) satisfy the 
𝒞𝒯 − symmetry and has two quasi-degenerate 
topologically protected defect modes.  

In our simulations below we have assumed 
that the rings are made of Si (𝜖!" = 10.89) while the 
cladding is made of SiO2 (𝜖!"!! = 4). The defect 
resonator consists of a material with a temperature-
dependent permittivity. In our numerical example, we 
have assumed that 
𝜖! 𝜃 = 𝜖!(1 + 3/ 𝑒! !!!! /!!! + 1 , where 
𝜃! = 342!𝐾  and 𝜖! = 𝜖!" . We note that this 
temperature-dependent permittivity has been extracted 

from experimental measurements and it is associated, with a 
VO2 material in the MIR regime [43]. Finally, the 
lossy rings at the left and right of the central resonator 
have complex permittivity 𝜖!"##$ = 10.89 +
0.16285𝑖. Using COMSOL’s eigenmode routine we 
evaluate the CROW’s frequency spectrum associated 
with the fundamental mode of the individual 
resonators. The degenerate defect modes at the middle 
of the band-gap (see Fig. 5) have the typical staggered 

form imposed by the 𝒞𝒯 −symmetry (see inset of Fig. 5) and they are spectrally protected against 
positional disorder (i.e. random 𝑑!,𝑑!) as long as the bipartite nature of the CROW is preserved. 
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Figure 5. Frequency spectrum for various 
realizations of random distances 𝒅𝟏, 𝒅𝟐of a 
𝓒𝓣 − symmetric CROW consisting of nine 
rings. The two (quasi-degenerate) defect 
modes in the middle of the gap remain 
unaffected by the disorder and preserve the 
staggered form of Eq. (2) (see inset for a 
density plot- even rings are not visible).  



Next, we evanescently couple the first and last ring with a Si bus waveguide and study 
the transmittance 𝑇 ≡ 𝑆!" ! + 𝑆!" !,  and 
reflectance 𝑅 = 𝑆!! !+ 𝑆!" !  of an incident 
wave from port 1 (associated with the left bus 
waveguide). The scattering parameters 𝑆!", 𝑆!" 
describe transmission amplitudes from port 1 to 
ports 3 and 4 of the right waveguide, while 
𝑆!!, 𝑆!" describe transmission amplitudes from 
port 1 to port 2 and back to port 1 of the left 
waveguide (see top/bottom inset of Fig 6). Since 
there are intrinsic radiative losses we evaluate 
the Ohmic absorption (due to the metallic rings) 
directly via the expression 
𝐴 = !

!
𝑑!𝑟 𝐸 𝑟 !𝜖!!(𝑟)  [44]. The scattering 

parameters and the steady-state scattering field 
𝐸 𝑟  associated with an incident 
monochromatic wave at frequency 𝜈 , are 
calculated using the Maxwell’s equations coupled with the heat transport equations that dictates 
the steady-state temperature 𝜃(𝑟) within the CROW array:  

 
∇!𝐸 + 𝜇!𝜖 𝑟, 𝜃 𝜈!𝐸 = 0,     𝛻 . 𝜅 𝑟 𝛻𝜃 𝑟 =  𝑄,  (7) 

 
where 𝜖 𝑟, 𝜃 = 𝜖! 𝑟, 𝜃 + 𝑖𝜖!! 𝑟  is the permittivity of the CROW array at position 𝑧 and steady 
state temperature 𝜃 and 𝜖!! 𝑟 = 𝜎(𝑟)/𝜔. The portion of the incident radiation which is absorbed 
by the defect resonator leads to a gradual heating of this resonator. This temperature increase, in 
turn, leads to a variation of the permittivity as we discussed above. Therefore, one needs to solve 
simultaneously Maxwell’s and heat-transfer equations in a self-consistent manner in order to 
achieve steady-state transmittance, reflectance and absorbance of the CROW array. Furthermore, 
we have assumed a fixed ambient temperature (293!𝐾) at the boundaries surrounding the SiO2 
cladding. The parameter Q = 0.5×𝑅𝑒 𝐽 .𝐸 , where 𝐽 = 𝜎𝐸, describes the electromagnetic energy 
deposited at the lossy metal-coated rings adjacent to the defect ring resonator which leads to an 
increase in temperature 𝜃. Finally, 𝜅(𝑟) denotes the thermal conductivity of the rings making up 
the CROW array structure. 

The upper (lower) panel of Fig. 6 shows the density plot of the scattering electric field 
intensity for incident signals with small (large) fluence. In the former case, the profile of the 
resonant defect mode respects the staggered form imposed by 𝒞𝒯 −symmetry. In contrast, in the 
latter case (lower panel of Fig. 6), the staggered profile is completely destroyed, thus leaving the 
defect mode exposed to the metallic resonators. In this case, the resonant transmission is 
completely suppressed. In Fig. 7a,b, we report 𝑇,𝑅,𝐴, and 𝜖! 𝜃  vs. incident fluences for the 
CROW array (empty symbols). We observe that when the fluence of the incident light increases 
by an order of magnitude (i.e. from 10!𝑊/𝑐𝑚! to 10!𝑊/𝑐𝑚! −see vertical orange lines in Fig. 
7a) the resonant transmission is also suppressed by an order. In Fig. 7b, we also report the tiny 
relative permittivity variations (~0.1%) which are associated with the increase of fluence of the 
incident light (see dashed vertical orange lines in Fig. 7b), due to the self-induced heating at the 
defect resonator caused by the incident radiation. Similarly, the Ohmic absorption 𝐴 decays as the 
fluence increases, thus protecting the CROW from self-damaging due to overheating. At the same 
time the reflectance, 𝑅 increases as high as ~0.55. Note that 𝑅 does not reach unity because there 
is a strong residual radiative absorption in the bus waveguide (𝐴~0.4).  
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Figure 6. The density plot of the scattering electric 
field intensity profiles displayed for the case when 
the CROW photonic structure with CT-symmetry 
is irradiated with a low (high) fluence incident 
wave. 

 



For comparison purposes, we also show in 
the same figure the transmittance 𝑇  and the 
permittivity variation 𝜖! 𝜃  vs. incident fluences for 
the case of a stand-alone (SA) ring resonator (filled 
circles) made by the same material (VO2) as the 
defect resonator of the CROW arrangement. The 
resonator is now directly coupled to the bus-
waveguides. A similar SA resonator set-up has been 
already investigated in Ref. [45] where it was shown 
experimentally that it can act as an on-chip limiter. 
The limiting action mechanism in this case, relies on 
a resonant red-shift – thus leaving the sensitive 
photonic elements exposed to damages in case of 
high-power broadband signal attacks. For extremely 
high fluencies the on-resonant transmittance is also 
suppressed due to an excessive heating which can 
lead to a damage of the resonator (see Fig. 7a). 
Conversely our design, relies on complete 
suppression of the resonant mode at moderate 
fluences, thus protecting sensitive elements from any 
broadband (up to the size of the band-gap) incident 
signal. In comparison, a complete resonant 
suppression in the case of SA resonator requires a 
relative permittivity variation which is more than 1% 
(see the transmittance drop between the two black 
dashed lines in Fig. 7), which has to be compared 
with the 0.1% permittivity variation needed in the 
case of the CROW structure. Finally, we mark that 
our design demonstrates a limiting threshold (i.e. 
fluence value for which the transmittance drops to 
small values), which is smaller by an order of 
magnitude as compared to the SA ring-resonator 
structure, see Fig. 7a. For completeness, we also 
compare the limiting performance of our photonic 
limiter with a CROW array consisting of the same 
number of VO2-based resonators (dashed-star line in 
Fig. 7a). The behavior of the latter is qualitatively 
similar to the one associated with the SA resonator. 
We find again that our CROW limiter has a lower (at 
least by an order) damage threshold. 

 
 

V. CONCLUSION 
 

We have investigated topologically protected 
defect modes and the transport properties of the 

associated resonant modes emerging in the frame of non-Hermitian bipartite CROW arrays. We 
show that an underlying 𝒞𝒯 −symmetry enforces high resonant transmission and protects the 
resonant mode from positional disorder or local Ohmic losses that can potentially degrade the 
transport. When, however, a (self-)induced violation of 𝒞𝒯 −symmetry occurs due to tiny 
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Figure 7 (a). The transmittance, T, 
reflectance, R, and absorbance, A, evaluated 
for the proposed CROW photonic structure 
with CT-symmetry (empty symbols), 
obtained using Comsol Multiphysics 
software. The transmittance T is compared 
with that of a stand-alone (SA) ring 
resonator made of the same highly thermal 
nonlinear material (VO2) (filled circles) and 
with an array of VO2-based non-linear 
resonators (dashed line with stars). In our 
case, the limiting threshold is achieved at 
incident fluences which are at least one 
order smaller than that required for the SA 
ring-resonator (compare leftmost black and 
orange vertical dashed lines). Similarly, the 
limiting threshold for the VO2 CROW is 
achieved for fluencies which are at least one 
order higher than the ones of our proposed 
CROW array (not marked in the figure). The 
two vertical orange (black) lines indicate the 
borders for which transmittance at the 
CROW (SA ring-resonator) drops by an 
order, for an order (almost two orders) 
increase in incident fluence. (b) Thermally 
induced change in real permittivity of the 
defect ring resonator in the case of the 
CROW photonic structure (empty symbols) 
and SA ring resonator structure (solid 
symbols).  



variations of the permittivity of the defect, the resonant mode is destroyed and the transmission is 
completely suppressed. The fragile nature of resonant transport has been demonstrated for on-
chip photonic and microwave CROW set-ups. Furthermore, it can be utilized in a variety of other 
frameworks including RF and acoustics for the realization of a new class of power limiters, 
switches, sensors and modulators as well as for matter waves circuitry. 

Finally, we want to stress that the underlying physical mechanism invoked in this study is 
completely different from the one utilized in Ref. [20] for suppressing high power signals. In the 
latter case, for low incident field intensities/fluences, the system was chiral-symmetric (not 𝒞𝒯-
symmetric), and for high incident intensities/fluences one needed to utilize the presence of a 
strong non-linear lossy mechanism in order to spoil the resonant Q-factor. Such strong nonlinear 
mechanisms are typically hard to realize in the microwave domain and require high incident field 
intensities/fluences in order to be activated. Here, instead, the structure is initially respecting a 
𝒞𝒯 -symmetry which guarantees the existence of high transmittivity for low incident field 
intensities/fluences via the phenomenon of symmetry-enforced transmittivity. In the opposite 
limit of high incident field intensities/fluences, the abrupt drop of transmittance is triggered by 
the self-induced violation of 𝒞𝒯-symmetry which is achieved via (weak) nonlinear effects that 
changes the value of the permittivity (for very small incident field powers) of the defect resonator 
by one-two percentage points — or even less.  
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