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Robust high-fidelity parity measurment is an important operation in many applications of quan-
tum computing. In this work we show how in a circuit-QED architecture, one can measure parity
in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly
driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime
treated in an exact dispersive transformation. We show that appropriate tuning of experimental
parameters leads to very high contrast in the cavity and therefore to a high efficiency parity readout
with a microwave photon counter or another amplitude detector. These tuning conditions are based
on nonlinearity and are hence more robust than previously described linear tuning schemes. In the
first part of the paper we show in detail how to achieve this for two qubit parity measurements and
extend this to N qubits in the second part of the paper. We also study the QNDness of the protocol.

I. INTRODUCTION

The platform of circuit quantum electrodynamics
(cQED) is a promising candidate for realizing quantum
computing in circuits in a scalable architecture [1–7].
In this field, superconducting circuits are used to real-
ize qubits. The two lowest levels of the energy spec-
trum play the role of the two qubit states. Waveguides
and microwave cavities allow for control and coupling of
superconducting qubits [5, 8]. Another crucial point is
readout. For the realization of general multi-qubit cir-
cuit QED experiments [13–16] as well as the implemen-
tation of quantum error correction [9–12], high fidelity
multi-qubit state readout is essential.

Currently, readout in superconducting circuits is
mostly realized using homodyne field amplitude detec-
tion [4, 8, 17–19]. This scheme requires additional de-
vices such as parametric amplifiers to measure the field
amplitudes [18, 20]. While amplifiers are readily avail-
able, they require space-consuming microwave peripher-
als such as circulators [21]. In [22] we presented a scheme
to readout the state of a qubit by coupling it dispersively
to a driven microwave cavity and measure if the cavity
is bright or dark using a microwave photon counter. It
is also possible to measure multi-qubit parity states with
this setup [23]. A challenge lies in the limited sensitivity
of these detectors. Effects like back reflection of incom-
ing photons and wrong rate calibration lead to photon
loss in the counter, such that one needs a relatively high
number of photons to actually get a count [24]. This
can be in conflict with the applicability of the dispersive
approximation [25].

A way out to increase contrast at limited sensitivity
is to boost the signal and use the nonlinear response of
the driven cavity [26], similar to how it has been done in
the single qubit case. In [27] Boissenault et al. studied a
M -level system dispersively coupled to a microwave cav-
ity. They showed numerically that going to higher drive
strengths where n > ncrit leads to a nonlinear behavior of
the system dynamics resulting in a huge enhancement of
the cavity occupation that can be used to distinguish the
two logical qubit states. At the same time Bishop et al.

[28] studied the same system with just two energy levels
included. This amounts to a binary pre-measurement of
the qubit state. They used the exact dispersive trans-
formation [29] in a semi-classical regime to describe this
phenomenon mathematically. The nonlinear effects were
also demonstrated in experiment for readout of a two
level system [28, 30]. Recently Royer et al. presented a
scheme to use these nonlinear effects for multi qubit par-
ity readout [31]. They use a nonlinear cavity in contrast
to our scheme, which works with a linear cavity.

Here we study this transition to a nonlinear response
of the cavity using the exact dispersive transformation
and extend it to multiple qubits coupled to the trans-
mission line while taking into account M energy levels
of the system representing the qubit. We show how the
exact dispersive transformation is performed for the gen-
eral case of M energy levels and N qubits and derive an
analytical expression for the steady state photon occupa-
tion of the cavity depending on the N -qubit state. Our
results match, in the one-qubit case. Analogous to the re-
sults of [27] the equations lead to a strong enhancement
in the cavity occupation depending on the qubit state.
This state dependence can only be seen when we include
higher energy levels than the two qubit states, since they
lead to asymmetric frequency shifts of the effective cavity
frequency.

We furthermore use stability analysis to derive an ex-
pression for the critical drive strength at which one can
observe the strong enhancement in the cavity occupation.
An important observation is that besides the qubit state,
the position of this transition also depends on the detun-
ing of the drive frequency and the bare cavity frequency.
We show that with this dependency one can tune the sys-
tem such that it is possible to perform any arbitrary two
qubit measurement in the logical basis, including parity
readout. While one drive frequency is enough to per-
form parity measurements for two qubits, we show that
one needs ⌊N/2⌋ different drive frequencies to extend the
parity readout scheme to N qubits.

The advantage of the strongly driven regime is the
high contrast of about 105 photons between the different
states, such that even a photon detector with very low
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efficiency can be used to perform the scheme we present
in this paper. While it seems possible to use homodyne
detection at first, here the problem is that an arbitrary
detuning between drive and cavity frequency is not pos-
sible, because the drive is at the same time used for read-
out, which also causes a phase sensitivity of the readout
we do not have when we use a microwave photon counter
instead.

Another point which is crucial in this strong driven
regime is the back action of the high cavity occupation
on the qubit state. Since we want to perform quantum
non demolition measurements (QND) to use the scheme
for instance for quantum error correction [32, 33], the
post-measurement qubit state should be the correspond-
ing parity eigenstate. We look at the effect of decoherence
and relaxation of the qubit in this regime and show that
all the appearing rates of the decoherence channels in the
new frame (general dispersive frame) are of the order of
the incoherent rates in the lab frame. This is important,
to show that incoherent processes are not orders of mag-
nitude larger in the frame we work in. Additionally we
have to study the effect of photon leakage of the cavity
on the decoherence of the qubits.

This paper is organized as follows. In Sec. II we look at
the two qubit case including three energy levels per qubit.
We present the system of interest, perform the transfor-
mation and calculate the photon amplitude as well as
the corresponding jump positions. With these results we
present a two qubit parity measurement scheme. In Sec.
3 we expand the approach of Sec. II to the general case of
N qubits with M energy levels. We give the general form
of the exact dispersive transformation and solve it in the
same manner as for the two qubit case. Additionally we
present different possible applications for readout, espe-
cially multi-qubit parity measurement. In Sec. IV we
take a look at the ONDness of the protocol. In Sec. V
we present our conclusion.

II. TWO QUBIT CASE

A. System and Hamiltonian

Here we look at two qubits coupled to a strongly, classi-
cally driven microwave cavity. Since most of the current
experiments use Transmon qubits, which have a weak
anharmonicity, we will take into account 3 energy lev-
els instead of only the two lowest qubit states. In Sec.
III where we generalize the whole calculation, we expand
this to the case of a general M level system. The cavity
is additionally coupled to a microwave photon detector,
which is used to distinguish between a bright and dark
cavity without detecting the phase [22, 23]. The setup
is shown in Fig 1, where the photon detection is per-
formed by the Josephson photomultiplier [34, 35], but in
principle there are no restrictions on the type of photon
detector. The bare qubit and cavity Hamiltonian Ĥ0 is
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FIG. 1. System schematic. 2 Qubits are coupled to a driven
microwave cavity. The existence of photons in the cavity is
read out by a microwave photon counter.

given by

Ĥ0 = ωcâ
†â+

2∑

i=0

ω
(1)
i Π̂

(1)
i +

2∑

i=0

ω
(2)
i Π̂

(2)
i . (1)

In this expression â and â† denote the bosonic anhilation
and creation operator for a cavity mode of frequency ωc,

respectively and ω
(j)
i is the corresponding frequency of

the energy level |i〉(j), where the upper index stands for

the j-th qubit (here j = 1, 2). The operators Π̂
(j)
i =

(|i〉 〈i|)(j) are the projection operators on the i-th qubit
energy level of the j-th qubit. To simplify the calculation
we set ~ = 1.
For later applying the exact dispersive transformation,

we want to rewrite the Hamiltonian using the σ̂z opera-
tors of the two dimensional subspaces

σ
(j)
z,i = −Π̂

(j)
i−1 + Π̂

(j)
i . (2)

The result is a Hamiltonian that highlights transitions

Ĥ0 = ωcâ
†â+

2∑

i=1

ω̃
(1)
i

σ̂
(1)
z,i

2
+

2∑

i=1

ω̃
(2)
i

σ̂
(2)
z,i

2
, (3)

where ω̃
(j)
i are the transformed frequencies

ω̃
(j)
1 =

4ω
(j)
10 + 2ω

(j)
21

3
(4)

ω̃
(j)
2 =

2ω
(j)
10 + 4ω

(j)
21

3
, (5)

with ω
(k)
ij = ω

(k)
i − ω

(k)
j . How to perform this transfor-

mation in general is shown in App. A. Note that for two

different qubits it is ω̃
(1)
i 6= ω̃

(2)
i .

The interaction between the cavity and the two qubits
in the RWA is given by a Jaynes-Cummings term [36] for
every allowed transition

Ĥint = Ĥint,QB1 + Ĥint,QB2 (6)

=

2∑

i=1

g
(1)
i Î

(1)
+,i +

2∑

i=1

g
(2)
i Î

(2)
+,i, (7)
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with coupling strength g
(j)
i of the particular transition,

interaction operator

Î
(j)
±,i = â†σ̂

(j)
i ± âσ

†(j)
i (8)

and the creation and annihilation operator of the respec-
tive qubit transition

σ̂
(j)
i = (|i− 1〉 〈i|)(j) (9)

σ̂
†(j)
i = (|i〉 〈i− 1|)(j). (10)

In the case of a Transmon qubit, the coupling matrix ele-

ments g
(j)
i between the corresponding energy levels only

depend on that of the 0 ↔ 1 transition [37]

g
(j)
i =

√
ig

(j)
1 . (11)

To get a full description of the system, we also have
to take into account the classical cavity drive which is
represented by the Hamiltonian [38]

Ĥd = ǫ
(
âeiωdt + â†e−iωdt

)
, (12)

with drive strength ǫ and drive frequency ωd.
Combining all terms we end up with the full Hamilto-

nian

Ĥ = Ĥ0 + Ĥint
︸ ︷︷ ︸

≡Ĥsys

+Ĥd. (13)

To use the setup shown in Fig. 1 for readout we work
in the strong dispersive regime. The dispersive regime
allows to reach a QND measurement by avoiding Rabi
oscillations; the strong-dispersive regime allows to resolve
all spectral lines. Additionally we assume the bad cavity
regime, such that we get a hierarchy of system parameter
constraints, which can be satisfied in most experiments

γ1, γΦ ≪ κ ≪ (g
(j)
i )2

ω
(j)
i,i−1 − ωc

≪ g
(j)
i ≪ ωc, (14)

where κ denotes the cavity decay rate and γ1, γΦ the
qubit decay and dephasing rate, respectively. As usual,
these incoherent rates need to be smaller than those in-
duced by the measurement in order to faithfully detect
the qubit, else it would decay before the qubit is detected.

B. Exact dispersive transformation

In the low photon number regime n < ncrit with
ncrit = (ω10 −ωc)

2/4g21, one can use the linear dispersive
approximation to diagonalize (13). However, we want to
go to regimes where n ≫ ncrit and a perturbative approx-
imation in n/ncrit fails to converge. Therefore we use a
different approach, the exact dispersive transformation,
which was introduced in [29] and has been applied in
circuit QED multiple times [25, 28, 37].

The exact dispersive transformation for two qubits has
the parametric form

D̂ = exp

(

−
2∑

i=1

Λ
(1)
i (N̂

(1)
i )Î

(1)
−,i −

2∑

i=1

Λ
(2)
i (N̂

(2)
i )Î

(2)
−,i

)

,

(15)

where the Λi(N̂
(j)
i )’s are scalar functions of N̂

(j)
i = â†â+

Π̂
(j)
i . This operator denotes the excitation number of

the cavity plus the i-th energy level. Since we are in

the strong dispersive regime the N̂
(j)
i s are approximately

good quantum numbers , hence Λ can be seen as a scalar
when performing the transformation.
Before we apply the transformation we calculate some

important commutators. It is easy to show that

[

Î
(j)
−,1, Ĥ0

]

=
(

ω
(j)
10 − ωc

)

︸ ︷︷ ︸

∆
(j)
1

Î
(j)
+,1 (16)

[

Î
(j)
−,2, Ĥ0

]

=
(

ω
(j)
20 − ωc

)

︸ ︷︷ ︸

∆
(j)
2

Î
(j)
+,2. (17)

To simplify the notation we introduce the following
nested commutator [39]

adA(B) ≡ [A,B] ad
n
A(B) ≡ adA(ad

n−1
A (B)) (18)

With these commutators, we can apply the transforma-
tion on Ĥsys, using Baker Campbell Hausdorffs formula

ĤD
sys = D̂†ĤsysD̂

= Ĥ0 +

2∑

j=1

∞∑

k=0

(k + 1)g +∆
(j)
1 Λ

(j)
1

(k + 1)!
ad

k

ΛiÎ
(j)
−,1

(

Î+,1

)

+

2∑

j=1

∞∑

k=0

(k + 1)g +∆
(j)
2 Λ

(j)
2

(k + 1)!
ad

k

Λi Î
(j)
−,2

(

Î+,2

)

.

(19)

The functions Λ
(j)
i will always depend on Ni, so we just

write Λ
(j)
i ≡ Λ

(j)
i (Ni) in the following. To get expression

(19) we used some properties and relations of the ap-
pearing nested commutators that we prove in Appendix
D. A more detailed version of this calculation is shown in
Appendix C. Here we disregarded direct two photon tran-

sition terms (for instance terms proportional to â2σ†
1σ

†
2),

since the probabilities for such transitions are much less
than the one photon processes due to the weak anhar-
monicity of the Transmon potential (selection rules). It
is possible to calculate a closed form of the appearing
commutators which reads

adΛiÎ2k
−,i

(

Î+,i

)

= (−4)k(Λi)
2kNk

i Î+,i

adΛi Î
2k+1
−,i

(

Î+,i

)

= −2(−4)k(Λi)
2k+1Nk+1

i σ̂z,i.
(20)
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We put (20) into (19) and end up with the following
expression for the transformed system Hamiltonian

ĤD
sys = Ĥ0 +

2∑

k=1

2∑

i=1

[

f
(j)
1

(

∆
(j)
i , g

(j)
i ,Λ

(j)
i , N

(j)
i

)

Î+,1

−2Nqf
(j)
2

(

∆
(j)
i , g

(j)
i ,Λ

(j)
i , N

(j)
i

)

σ̂
(j)
z,i

]

,

(21)

with

f1 ≡ ∆i sin
(
2Λi

√
Ni

)

2
√
Ni

+ gi cos

(

2Λi

√

N
(j)
i

)

(22)

f2 ≡ gi sin
(
2Λi

√
Ni

)

2
√
Ni

+
∆i

{
1− cos

(
2Λi

√
Nq

)}

4Ni
. (23)

To obtain a diagonal system Hamiltonian we have to

choose Λ
(j)
i such that the Î

(j)
+,i contribution is zero. Set-

ting (22) equal to zero we find the following choice:

Λ
(j)
i = −

arctan

(

λ
(j)
i

√

N
(j)
i

)

2

√

N
(j)
i

. (24)

with λ
(j)
i = g

(j)
i /∆

(j)
i . Finally we put this expression

for Λ
(j)
i into (19) and end up with the diagonal system

Hamiltonian

ĤD
sys = Ĥ0 −

2∑

j=1

2∑

i=1

∆
(j)
i

2

(

1−
√

1 + 4λ
(j)2
i N

(j)
i

)

σ̂
(j)
z,i ,

(25)

This expression is exact up to the non parity conserv-
ing terms we ignored in (19). At this point we only

moved Ĥsys into the dispersive frame, but to describe the
whole setup we additionally have to transform the drive
Hamiltonian Ĥd. Since we are interested in the regime
n ≫ ncrit, the dive Hamiltonian stays in its original form
by ignoring terms of the order n−1/2 and λ2

i [28]

ĤD
d ≈ Ĥd. (26)

For further calculations it is more convenient to work
with a time independent Hamiltonian. Since Ĥd still in-
cludes a time dependence, we go into the frame rotating
with the drive frequency Û = e−in̂ωdt. In this frame
the drive is time independent Ĥd = ǫ(â† + â) and the
system Hamiltonian just incorporates an additional fre-
quency shift in the bare cavity part

Ĥ0 = δcâ
†â+

2∑

j=1

2∑

i=1

ω̃
(j)
i

σ̂
(j)
z,i

2
. (27)

with δc = ωc − ωd.

C. Photon amplitude and instability

The interesting value which is crucial for the usage of
the setup in Fig. 1 for readout is the cavity occupation,
which depends on the corresponding state of the qubit.
Since (25) is diagonal, it is relatively easy to obtain the
steady state solution of the photon amplitude. As men-
tioned in II B, we assume that the qubit occupation num-
ber is constant during the dynamics of the system, which
is satisfied because of the diagonal structure of (25) and
the strong detuning between cavity and qubit. There-

fore the σ̂
(j)
z,i s are constant, which simplifies the following

calculation significantly.
As a starting point we use the Liouvillian equation

to obtain an equation of motion for the annihilation op-
erator of the cavity mode. Additionally we include an
incoherent channel described by the Lindblad operator
L̂κ =

√
κâ [38], which represents photon loss in the cav-

ity with rate κ. The adjoint master equation [40] leads
to an equation of motion for the field operator â in the
Heisenberg picture

˙̂a = i
[

ĤD
sys + Ĥd, â

]

− κ

2
â. (28)

Putting in the expressions for ĤD
sys and Ĥd, we get

˙̂a = −i



δc −
2∑

j=1

2∑

i=1

g
(j)
i λ

(j)
i

√

1 + 4λ
(j)2
i N

(j)
i

σ̂
(j)
z,i − i

κ

2



 â− iǫ.

(29)

Conjugation of (29) leads to the equation of motion for
â†. We are interested in the cavity occupation in the
post ringup state. Usually the steady state describes the
state reached at t −→ ∞, but for t with γ1t, γΦt ≫ 1 the
qubit state would be completely destroyed. However, for
κt ≫ 1 the system is in a pseudo steady state, where the
behavior is well described by the steady state solutions.
This is the reason why we work in the bad cavity limit,
such that for this time tpseudo we still meet the condition
γ1t, γΦt ≪ 1.
Setting ˙̂a = ˙̂a† = 0 and solving both equations for

â and â† we end up with an expression for the photon
occupation in the steady state

n =
〈
â†â
〉
=

ǫ2

[δc − χ (Nq)]
2 + κ2

4

. (30)

with nonlinear cavity frequency shift

χ (Nq) =

2∑

j=1

2∑

j=1

g
(j)
i λ

(j)
i

√

1 + 4λ
(j)2
i N

(j)
i

σ
(j)
z,i . (31)

Note that the frequency shift itself depends on the qubit

state, since it includes σ
(j)
z,i such that the photon ampli-

tude depends on the qubit state as well. Another cru-
cial point is that the Nis include the photon number n
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in the cavity, such that (30) represents a transcendental
equation. We can solve the equation iteratively and the
results for some specific parameters are shown in Fig. 2.
There are three regimes which can be distinguished.

For low drive strengths we see a linear response of the
cavity up to a critical drive strength ǫ1 and photon num-
ber n1. This corresponds to the region where the system
is described by the linear dispersive approximation. After
that the amplitude shows a nonlinear behavior (bistable
region) resulting in a strong enhancement of the photon
occupation. Going to even higher drive strengths yields
another critical point (ǫ2, n2), where the response of the
cavity returns back to a linear behavior. The specific
values of ǫ1 and ǫ2 depend heavily on the state of the
qubit.
The effective cavity frequency on the other hand starts

at a specific value which corresponds to the usual Stark
shift and rapidly goes over to the bare cavity frequency
in between the region ǫ1 < ǫ < ǫ2. In the next chapter
we will see that this nonlinear behavior results from a
bifurcation of the transcendental equation (30) [41].
In the limit n → 0, the expression for the frequency

shift is

lim
n→0

χ(Nq) =

2∑

j=1

2∑

i=1

g
(j)
i λ

(j)
i σ

(j)
z,i . (32)

If we couple one qubit to the cavity and only take the two
qubit states into account, we observe the linear χ-shift:
χ = ±g21/∆1 (see [4]). Thus even though the whole calcu-
lation was performed under the assumption n ≫ ncrit we
still get the correct expressions for small values of n, such
that we can assume that our equations also give good re-
sults in this regime. Another point worth to mention here
is that in the case where only two levels are included the
frequency shift is completely symmetric, such that the re-
sponse when driving at the bare cavity frequency would
be independent of the state of the qubit. This shows that
the pure existence of higher levels influence the system
dynamics, they do not have to be occupied at all.

D. Stability anlaysis

As mentioned before, the observed strong nonlinear be-
havior of the photon amplitude is caused by a bifurcation
of (30). In between the two linear regimes (see Fig. 2)
equation (30) posses a bistable area with two attractors.
Tuning the drive strength through the first bifurcation
point, which appears at ǫ1, leads to a decision of the
cavity dynamics between the two attractors. Which of
both attractors actually describe the cavity state depends
on the history of the system. In principle, small fluc-
tuations induced by environment-assisted processes can
drive transitions between the two attractors. However,
as we see in Fig. 2 the difference in amplitude between
these is about 106 photons and these environmental fluc-
tuations are assumed to be rather small. Therefore the
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FIG. 2. Photon amplitude (top) and effective cav-
ity frequency (bottom) depending on the drive strength
ǫ for the four different qubit states. The parameters
here are (ω10, ω21, g1)

(1)/2π = (4.297, 4.071, 0.12) GHz,

(ω10, ω21, g1)
(2)/2π = (4.094, 3.868, 0.12) GHz, ωc = 5.005

GHz and δc = 0. For every state exists a specific drive
strength ǫcrit, where the frequency rapidly jumps back to the
bare cavity frequency and one observes a strong enhancement
in the cavity occupation.

system tends to stay in the attractor it chooses when its
driven through the first bifurcation point, i.e. the tran-
sition time is exponentially long.

In this section we want to calculate the two critical
points that restrict the bistable area using stability anal-
ysis similar to Drummond et al. [42]. It is difficult to use
the full expression (30) for stability analysis since n ap-
pears in a square root in the denominator. As we see in
Fig. 2 the transition happens around a cavity occupation
of about 10 photons. Therefore it is a good approxima-
tion to only keep terms up to g4i /∆

3
i , since for n ≈ 10 we

still meet the condition n · g4i /∆3
i ≪ 1. Expanding the

square root appearing in (25) up to that order we can
derive an equation of motion for the field amplitudes in
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the same manner as in the previous section

∂

∂t

[
α
α∗

]

=

[
−iǫ−

[
κ
2 + ih(n)

]
α

iǫ−
[
κ
2 − ih(n)

]
α∗

]

, (33)

with 〈â〉 = α,
〈
â†
〉
= α∗ and photon number n = α∗α.

The function h depends on the photon number n and is
given by

h(n) = δc +

2∑

j=1

2∑

i=1

∆
(j)
i

(

λ
(j)2
i − 2λ

(j)4
i N

(j)
i

)

σ
(j)
z,i (34)

With h(n) the steady state condition ṅ = 0 can be writ-
ten as

|ǫ|2 = n

(
κ2

4
+ h2(n)

)

. (35)

Now we assume small fluctuations ∆α(t) around the
steady state solution

α(t) = α0 +∆α(t) (36)

and get a linearized equation for the fluctuation

∂

∂t

[
∆α
∆α∗

]

= A

[
∆α
∆α∗

]

, (37)

with

A =




i
(

n∂h(n)
∂n + h(n)

)

+ κ
2 iα2

0
∂h(n)
∂n

−iα∗2
0

∂h(n)
∂n −i

(

n∂h(n)
∂n + h(n)

)

+ κ
2



 .

(38)

The stability of equation (30) is then controlled by the
Hurwitz criteria

Tr(A) > 0 (39)

Det(A) > 0. (40)

If these two criteria are fulfilled, the eigenvalues of the
equation are stable. Therefore the bistability can only
occur if one of the two equations (40) changes sign. Since
Tr(A) = κ and we assume to have a cavity decay (κ > 0)
only the second Hurwitz criterion indicates an instability.
The bistable region is restricted by the two critical points
that fulfill the condition Det(A) = 0, which leads to the
following expression for the photon number at the critical
points:

n1/2 =
−2∆ωi ∓

√

∆ω2 − 3
4κ

2

6χ
, (41)

where we adopted the notation of [42] by defining the
parameters

∆ω ≡ δc +

2∑

j=1

2∑

i=1

∆
(j)
i

(

λ
(j)2
i − 2λ

(j)4
i N

(j)
QB,i

)

σ
(j)
z,i (42)

χ ≡ −
2∑

j=1

2∑

i=1

2∆
(j)
i λ

(j)4
i σ

(j)
z,i (43)

00 01 10 11
20 log10(ǫ2,an/MHz) 41.4 38.7 37.6 33.4

20 log10(ǫcrit,plot/MHz) 41.6 38.6 37.9 33.2

TABLE I. Comparison between the analytical value of ǫ2 cal-
culated with (44) and the actual vlaue of ǫcrit in FIG. 2. We
see an almost perfect agreement.

with N
(j)
QB,i =

〈

Π̂
(j)
i

〉

. To get the drive strengths ǫ1 and

ǫ2 corresponding to the two bifurcation points, we have
to put the expression (41) into the equation for ǫ (35)

ǫ1/2 =

√

n1/2

(
κ2

4
+ h2(n)

)

. (44)

It is obvious that the photon numbers resulting from
equation (41) has to be positive, such that a bifurca-
tion only occurs if ∆ω2 > 3κ2/4 and χ∆ω < 0. The
first of these inequalities shows that we do not observe
a nonlinear behavior if the leakage rate of the cavity is
to high. On the other hand the second inequality leads
to the fact that the cavity has to be in the blue detuned
regime with respect to the qubit frequencies. The sec-
ond condition also indicates the borders (dotted vertical
lines) in Fig. 3. Note that ∆ω as well as χ depend on the
state of the two qubit subset, such that ǫ1 and ǫ2 depend
on it as well, which explains the different position of the
transition in Fig 2.
What we know up to now is that the transition between

the two attractors (which we call low and high ampli-
tude attractor in the following) occurs at some value in
the bistable area ǫcrit ∈ (ǫ1, ǫ2). The dynamics of the
amplitude depend on the history of the system. Start-
ing at a drive strength smaller than the first bifurcation
point ǫ1 and slowly tune it up to higher drive strengths
aims the system to stay in low amplitude attractor un-
til it reaches the second bifurcation point ǫ2, where this
attractor no longer exists and it rapidly jumps into the
high amplitude attractor. On the other hand starting at
higher drive strengths than the second bifurcation point
ǫ2 leads to a behavior the other way round. The system
stays in the high amplitude attractor until it reaches the
bifurcation point ǫ1 and then rapidly ”jumps” into the
low amplitude attractor, since the high amplitude attrac-
tor does not exist for ǫ < ǫ1. Therefore the dynamics of
the system depend on how the tuning of the parameter ǫ
is performed.
The values for ǫ2 for the parameters in Fig. 2 are given

in Tab. I. Comparing them to the actual values values
of ǫcrit in Fig. 2 we see an almost perfect coincidence of
ǫ2 with ǫcrit for all states, which is due to the fact that
we started with a small photon number when we solved
equation (30) iteratively. In a real experiment where one
starts with small drive strength and slowly tunes up the
drive strength the system tends to stay in the low ampli-
tude solution for every state as long as possible, hence the
transition in this case can be assumed to be very closed
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FIG. 3. Critical point ǫcrit = ǫ2 depending on the cavity drive
detuning δc for the same parameters as in Fig. 2. The dotted
vertical lines indicate the value of δc, where the condition
∆ωχ < 0 is no longer fulfilled such that no bifurcation occurs
if we increase δc to higher negative values and the system
stays in the low amplitude attractor for all drive strengths.
For a parity measurement we have to choose δc such that we
are in the area where the transition to the high amplitude
attractor occurs first for |01〉 and |10〉 (here δc ≈ −0.02).
In this region |11〉 does not show a bifurcation and stays in
the low amplitude attractor, such that for the corresponding
critical drive strength ǫcrit the photon number for |11〉 is about
0.5 (see inset plot). Additionally we have to drive with ǫ012 <
ǫ < ǫ002 , such that we do not reach the bifurcation point for
|00〉 which assures that we also have a small photon amplitude
if the system is in |00〉.

to ǫ2. Therefore we will assume ǫ2 to be the actual tran-
sition point of the amplitude in the following, since this
is the more reasonable method in experiment.

E. Application to qubit readout and 2 Qubit parity

measurement

In the previous sections we assumed that we drive the
cavity on resonance δc = 0. Therefore it is not possible to
detune drive and cavity frequency arbitrarily. Since the
bifurcation points are fixed by the qubit parameters in
this case, the ordering of the transition depending on the
qubit states is also fixed, e.g. ǫcrit for the |00〉 state will
always be larger than the other ones. Because of this,
the usage for readout is limited. If we are interested in
parity readout, there is no possibility to distinguish even
from odd parity states in the case δc = 0, since the ǫcrits
of the odd parity states lie in between the ǫcrits of the
even parity states.
Currently readout of superconducting qubits is in

most cases performed by homodyne detection schemes
[4, 8, 17–19] where the drive and cavity frequency are in
resonance or slightly detuned δc ≈ 0 [4, 43] (heterodyne

detection). Therefore the detuning between the drive
and the cavity frequency is somehow fixed. However, it
is also possible to use a microwave photon counter (e.g.
the JPM) for readout. Using a microwave photon counter
for the readout process of the cavity gives the possibil-
ity to arbitrarily detune the drive from the bare cavity
frequency δc 6= 0. The dependence of the critical drive
strength ǫcrit on the detuning δc is shown in Fig. 3. We
see that ǫcrit decreases if we go to higher negative values
of δc up to a point, where the condition ∆ωχ < 0 is no
longer satisfied and we no longer have a bifurcation of
(30), hence the system stays in the low amplitude attrac-
tor (linear regime) over the full range of ǫ (see dotted
vertical lines in Fig. 3).
To perform two qubit parity measurements with this

set up, one has to drive the system with a detuning δc
in between the point where |11〉 goes over to a stable be-
havior and the point where this happens for |10〉 (circled
area in Fig. 3). In this region ǫcrit for the odd parity
states is smaller than for the |00〉 state. The |11〉 state
on the other hand stays in the low amplitude solution.
Hence the photon number in the cavity if the system is
in the |11〉 state is about 0.5 (see Fig. 3) for the corre-
sponding ǫ. All in all with this tuning, the cavity is in a
low amplitude state if the qubit is in an even parity state
and vice versa.
When we take a closer look and compare the frequency

shifts in Fig. 2 and Fig. 3, we see that the value of the
detuning that gives the border between stable and unsta-
ble behavior in Fig. 3 for the respective state, matches
almost perfectly with the corresponding bare χ-shift (at
ǫ = 0). We will see in Sec III that this behavior can also
be observed for more than two qubits. Therefore we can
give an analytic expression for the optimal driving point,
if one wants to perform parity measurements. A possi-
bly physical explanation for this is, that as soon as the
drive frequency is higher than the χ-shifted cavity one
switches from a red detuned to a blue detuned drive and
the drive is no longer forcing the frequencies closer to ωc.
The bare χ-shift is given by (32). The optimal driving
point lies in between the stability border of |11〉 and the
one of |10〉 hence is given by:

ωd,opt = ωc +
χ10 + χ11

2
, (45)

where χij denotes the bare chi shift if the qubits are in the
state |ij〉. The regime that can be used for parity readout
is therefore bounded by (area between two dotted vertical
lines 11 and 10 in Fig. 3)

ωc + χ11 < ωd < ωc + χ10. (46)

Choosing a detuning in this regime, which is about 7
MHz broad for the parameters in Fig. 3, leads to the
right positions of the bifurcation points to perform two
qubit parity measurements.
There is another crucial point one has to take care of

when performing the measurement. We have to drive
with the right frequency and the right intensity ǫ at the
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same time. In a real experiment, one would start with
a low drive strength and tune the drive strength up into
the regime ǫ01crit < ǫ < ǫ00crit, hold the drive strength in this
regime for κt ≫ 1 and then bring the JPM in resonance
with the cavity to read out if the cavity is bright or dark,
which corresponds to odd or even parity respectively. If
we tune the system in this way we have a photon occu-
pation of about 106 photons if the qubits are in an odd
parity state and about 1−10 if they are in an even parity
state. Note that there can be a small difference in pho-
ton number between |11〉 and |00〉 but compared to the
huge contrast between the odd and even states, this does
not significantly influence the measurement. However,
to distinguish between the two parity states we need a
photodetector which only clicks if the photon number is
above the even parity threshold which can be realized
by a lossy photodetector or back reflection in the photon
transfer from cavity to detector (see [24]).
By tuning δc right one can perform any possible two

qubit measurement in the logical basis, so this scheme
is not restricted to parity measurement. Performing e.g.
projective state measurement just needs to drive the sys-
tem such that the corresponding ǫcrit is the lowest one.
For some of the states we are in the region where the
dynamics do not show a bifurcation, but this again is
no problem because of the same reason as in the parity
measurement scheme; the dynamics stay in the low am-
plitude attractor, hence the photon number is low for the
corresponding ǫ.
Note that in the case of two identical qubits the two

odd parity states would show exactly the same behavior,
which means ǫ01crit = ǫ10crit. However, in real experiments
it is often the case that the qubits have different param-
eters, since it is hard to produce two completely identi-
cal qubits. Therefore we assumed slightly different qubit
parameters in Fig 3, and we see that if the parameters
do not vary too much, parity measurement can still be
performed even if the qubits are not completely indistin-
guishable. For two qubit parity measurements we only
need one drive frequency. We will see in Sec III, that
this scheme can be expanded to N qubit parity measure-
ments but with a need of ⌊N/2⌋ drive frequencies, where
⌊x⌋ denotes the floor function that maps x to the next
smaller integer.

III. N QUBIT CASE

A. General formulation and photon amplitude

In this section we expand our result of Sec. II to N
qubits coupled to the readout cavity and we take into ac-
count M energy levels. The bare qubit and cavity Hamil-
tonian Ĥ0 of this general case has the form

Ĥ0 = ωcâ
†â+

N∑

j=1

M−1∑

i=1

ω
(j)
i Π̂

(j)
i , (47)

where we used the same notation as in the previous sec-
tion, but the upper limits of the two appearing sums
are given by the number of qubits N and the M energy
levels taken into account. Again we set ~ = 1 for sim-
plicity. For the two qubit case it was not difficult to

rewrite the Hamiltonian using the σ
(j)
z,i operators defined

in Eq. (2), since we just had to solve an equation system
with two variables. Here we need a general transforma-
tion rule to get the corresponding Hamiltonian including

only σ
(j)
z,i operators in the bare qubit part. How to obtain

this transformation is shown in Appendix A. After this
transformation we can write the bare Hamiltonian as

Ĥ0 = ωcâ
†â+

N∑

j=1

M−1∑

i=1

ω̃
(j)
i

σ̂
(j)
z,i

2
, (48)

with the transformation rule

ω̃
(j)
i =

M−1∑

k=1

A−1
i,kωk,k−1, (49)

where the matrix elements of A−1 are given by (see Ap-
pendix A)

A−1
i,k =

{

− i(k−M−2)
M 1 ≤ i ≤ k

−k(i−M−2)
M k ≤ i ≤ M − 1.

(50)

The interaction under the RWA leads to a Jaynes-
Cummings term for every possible qubit transition
summed up over all qubits

Ĥint =

N∑

j=1

M−1∑

i=1

g
(j)
i Î

(j)
+,i, (51)

where the definition of Î
(j)
−,i is similar to (8). Since we

are still assuming Transmon qubits, the coupling matrix
elements of the respective qubit depends on the coupling
rate of the corresponding |0〉 to |1〉 transition in the same
manner as before (see Eq. (11)).

The drive Hamiltonian Ĥd does not change in the N
qubit case and is therefore still(12). The exact dispersive
transformation in the general case is given by

D̂ = exp





N∑

j=1

M−1∑

i=1

Λ
(j)
i (N̂

(j)
i )Î

(j)
−,i



 , (52)

with Λ
(j)
i (N̂i) defined in (24). Since [σ̂z,i, σ̂z,i+1] 6= 0, the

definition of the ∆̃
(j)
i is different for higher levels

∆̃
(j)
i =







∆
(j)
1 − ω̃

(j)
2

2 , i = 1

∆
(j)
M−1 −

ω̃
(j)
M−2

2 , i = M − 1

∆
(j)
i −

(
ω̃

(j)
i−1+ω̃

(j)
i+1

2

)

, else.

(53)
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Microwave Cavity
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Q1 QN

|0>

|1>
. . .

|M-1> .
. .

FIG. 4. System schematic of the general case. N Qubits are
coupled to a driven microwave cavity. We take into account
M levels.

Applying this transformation on the system Hamilto-
nian is a little more difficult than in the previous section
and is done in Appendix B. However, the resulting Hamil-
tonian has a similar form, except that the appearing sums
go to N and M − 1 respectively

ĤD
sys = Ĥ0 −

N∑

j=1

M−1∑

i=1

∆̃
(j)
i

2

(

1−
√

1 + 4λ
(j)
i N

(j)
i

)

σ̂
(j)
z,i .

(54)

We again moved to the frame rotating with the drive
frequency ωd, such that δc instead of ωc appears in Ĥ0.
Like before we ignored non parity conserving transitions.

With this Hamiltonian we can again derive equations
of motion for the field amplitudes and solve the equation
for the photon occupation in the cavity for the steady
state resulting in

〈n〉 = ǫ2

[δc − χ (Nq)]
2 + κ2

4

(55)

which is the same expression as in section two (see Eq.
(30)) but the appearing χ shift has more contributing
terms

χ (Nq) =

N∑

j=1

M−1∑

i=1

g
(j)
i λ

(j)
i

√

1 + 4λ
(j)2
i N

(j)
i

σ
(j)
z,i . (56)

The analogy of the expression we found here and the
ones in the previous section indicate that it is very likely
that we also observe a nonlinear behavior comparable to
the two qubit case. To see that this is indeed the case,
we can perform a stability analysis in the same manner
as before. Doing so we get the same expression for the
photon numbers at the two bifurcation points.

n1/2 =
−2∆ω ∓

√

∆ω2 − 3
4κ

2

6χ
, (57)

with the parameters

∆ω ≡ δc +

N∑

j=1

M−1∑

i=1

∆̃
(j)
i

(

λ
(j)2
i − 2λ

(j)4
i N

(j)
QB,i

)

σ
(j)
z,i

(58)

χ ≡ −
N∑

j=1

M−1∑

i=1

2∆̃
(j)
i λ

(j)4
i σ

(j)
z,i . (59)

The conditions that the amplitude shows a instable be-
havior are the same as for the two qubit case, but with
the changed parameters (58) and (59).
Since we have more qubits and energy levels here, we

get a different position for the bifurcation points for ev-
ery qubit state (assuming that we have slightly different
parameters for every single qubit). However, we are only
interested in the occupation of the two lowest energy lev-
els of the qubits, since they realize the two mathematical
qubit states needed for quantum computation. Again it
is the existence of higher levels that influence the whole
system, they do not have to be occupied.
The results for the four qubit case is shown in Fig. 5.

We see that the system behaves the similar to the two
qubit case. The photon amplitude shows a huge enhance-
ment at the second bifurcation point ǫcrit (44). Analytical
expressions for the two bifurcation drive strengths can be
obtained by putting the general expression for the bifur-
cation photon numbers (57) into the expression for the
drive strength (35). In Fig. 5 we included 10 energy lev-
els, which is usually more than the number of levels that
are relevant in practice [27]. However, we show in App.
C that in our case only the next lowest level which is not
occupied matters, hence here M = 3 yields the correct
results.

B. Multi-qubit parity Measurements

In Sec. II E we have shown how to perform two qubit
parity measurements in the nonlinear regime using our
setup. Now we want to show that the same can be
done for N qubits, we just need more than one drive
frequency. To perform an N qubit parity measurement
we need ⌊N/2⌋ different drive frequencies. In the N qubit
case the bifurcation drive strength ǫcrit depends on the
detuning between the drive and the bare cavity frequency
as well. Therefore we can again take this as an advantage
to tune ǫcrit of the different states such that they fit for
parity readout.
The values of ǫcrit depending on δc are shown in Fig.

6, for the case of four identical qubits. Hence only qubits
with different excitation number can be distinguished.
We see that in the four qubit case in between the bor-
ders that restrict the instability condition of |0001〉 and
|0111〉 lies the border of the even parity state |0011〉.
Therefore it would not be possible to get ǫcrit for the
two odd states smaller than for |0011〉 at the same time,
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FIG. 5. Photon amplitude (a) and effective cavity frequency (b) depending on the drive strength ǫ. The plot is for four identical

qubits including 10 energy levels. The parameters here are (ω10, ω21, g1)
(j)/2π = (4.297, 4.071, 0.12) GHz, ωc = 5.005 GHz and

δc = 0. For every set of states with the same number of excitations there exists a specific drive strength, where the frequency
rapidly jumps back to the bare cavity frequency and one observes a strong enhancement in the cavity occupation.

which gives rise to the need of two different drive fre-
quencies. One between the instability borders of |0111〉
and |1111〉, which means ωc + χ1111 < ω

(1)
D < ωc + χ0111

and the other one in between the instability borders of

|0001〉 and |0011〉: ωc + χ0011 < ω
(2)
D < ωc + χ0001 as

shown in Fig. 6. By comparing the frequency shifts in
Fig. 5 and Fig. 6 we again see a coincidence with the
instability borders and the bare χ-shifts of the respective
states. The optimal drive frequencies lie in the middle of
the respective regime

ω
(1)
D,opt = ωc −

χ0111 + χ1111

2
(60)

ω
(2)
D,opt = ωc −

χ0001 + χ0011

2
, (61)

where χijkl denotes the bare χ-shift of |ijkl〉 and can be
calculated with (56). When we drive the system with
these two frequencies, there exists a region of the drive
strength

max[ǫ0111crit (ω
(1)
D ), ǫ0111crit (ω

(2)
D )] < ǫ

min[ǫ0001crit (ω
(1)
D ), ǫ0000crit (ω

(2)
D )] > ǫ

(62)

where the dynamics of the two odd parity states are de-
scribed by the high amplitude attractor and the dynamics
of the even states by the low amplitude attractor (either
since ǫ is smaller then the corresponding ǫcrit, or the state
no longer fulfills the condition of instability, which means
ǫcrit → ∞).
The calibration of the experiment can be performed in

the same manner as in the one drive frequency case. First
tune the two drives of the system to the right frequencies
and then turn up the drive strength into the regime (62),

hold the drive strengths constant for t ≫ 1/κ and after
that bring the JPM into resonance to read out the state
of the cavity.
We can expand this measurement scheme to N qubits.

In this case we need ⌊N/2⌋ different drive frequencies.
Since we could show that the instability borders and the
bare cavity shifts are identical for the two as well as for
the four qubit case, we can follow that this also holds for
the N qubit case. The respective drive frequencies have
to be in between all instability borders of odd and even
states (as in the two and four qubit case). Let {|Ψ〉i} be
the subset of odd parity states and {|Φ〉j} the subset of
even parity states of a N qubit system, where i and j
denote the number of excitations respectively. With this
notation the optimal drive strengths are given by

ω
(i)
D,opt = ωc −

χ|Ψ〉
i
+ χ|Φ〉

i+1

2
, (63)

where the appearing χ-shifts are again the bare χ-shifts
of the corresponding states. Note that in the case of
an even number of qubits, it is i = 1, . . . , N/2 and j =
1, . . . , N/2+1 and in the case of an odd number of qubits
i = 1, . . . , (N + 1)/2 and j = 1, . . . , (N + 1)/2.

IV. IS THE MEASUREMENT PROTOCOL

QND?

In this section we want to take a closer look at the
QNDness of our measurement protocol. One crucial
point here is to calculate the transformed incoherent rates
in the new exact dispersive frame and show that they do
not increase in a much faster way than the original rates,
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FIG. 6. Value of ǫcrit = ǫ depending on the detuning between
drive and cavity frequency for four identical qbuits with the
same parameters as in Fig. 5. The dotted vertical lines in-
dicate the border, where the instable behavior disappears for
larger detunings and the dynamics are just described by the
low amplitude attractor. To measure parity we need to drive
the system with two different frequencies. One such that δc
lies in between the dotted vertical line of |1111〉 and |0111〉
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vertical line corresponding to |0011〉 and |0001〉.

especially do not scale proportional to the photon num-
ber n.
Another important incoherent process is the leakage

of photons out of the cavity (key point for the protocol),
which leads to dephasing between superpositions of equal
parity states. Again it is to check if this dephasing rate is
in the range of the intrinsic incoherent rates of the qubits
or if it destroys the QND character of the measurement.

A. Transformation of incoherent channels for n ≫ 1

In this section we take a look at qubit intrinsic in-
coherent effects, such as dephasing and relaxation and
how the corresponding Lindblad operators behave under
the exact dispersive transformation. The consequence of
such effects in the regime of small photon numbers is well
studied [25, 30, 44–46] using the Polaron transformation,
therefore we want to see how the system behaves in the
regime in which we are interested, i.e. n ≫ 1. Since
we want to perform QND measurements our setup, it is
important that the appearing dephasing and relaxation
rates are not scaling with n or some other parameter that
is huge in our regime of interest.
We want to focus on the case of the first section here,

where we studied two three level systems coupled to a
transmission line, again in the strong dispersive regime.
The general case could also be calculated, but it is not
necessary, since all leading effects that appear in the N
qubit case with M energy levels taken into account will

also appear in this easier system. For example leakage to
the fourth level will be less probable than leakage to the
third one, such that we get an upper bound for all higher
leakage processes. Furthermore possible interactions be-
tween the qubits induced by the high photon number in
the cavity will also appear in this smaller system, if they
are present, which is the reason why we include the sec-
ond qubit and not concentrate on one.
As mentioned, we are in the regime n ≫ 1:

Nq = NQB + n ≈ n, (64)

such that Λ(N̂q) acts like a scalar on qubit operators.
Additionally we assume the semiclassical limit, such that

â → α

â† → α∗.

First we want to study relaxation of the first qubit
with rate γ1. The corresponding Lindblad operator is
L̂D
1 =

√
γ1σ̂

D
z,1. Therefore we have to calculate the trans-

formation of σ̂1:

σ̂1 = D̂†σ̂1D̂ (65)

= eΛ1(n)I1,−+Λ2(n)I2,− σ̂1e
−Λ1(n)I1,−−Λ2(Nq)I2,− (66)

=

∞∑

k=0

1

k!

(

Λk
1(n)ad

k
I−,1

(σ1) + Λk
2(n)ad

k
I−,2

(σ1)
)

.

(67)

The expressions for the first commutator can be calcu-
lated in a closed form

ad
2k−1
I−,1

σ̂1 = 22(k−1)
√
n
2k−1

(−1)kσ̂z,1 (68)

ad
2k
I−,1

σ̂1 =

{

σ̂1 k = 0

22k−1
√
n
2k
(−1)kσ̂x,1 k ≥ 1

. (69)

with σx,i = |i− 1〉 〈i|+ |i〉 〈i− 1|. Putting (68) and (69)
into (67) yields

σ̂D
1 = σ̂1 −

1

2

(

arctan2(2λ1
√
n)

√

1 + 4λ2
1n

σ̂x,1 −
2λ1

√
n

√

1 + 4λ2
1n

σz,1

)

(70)

+

∞∑

k=0

1

k!
Λk
2(n)ad

k
I−,2

σ̂1 (71)

In the same manner we get a closed expression for the
second operator. First we calculate two orders

first order: [I2,−, σ̂1] = −α∗ |0〉 〈2| (72)

second order: − α∗ [I2,−, |0〉 〈2|] = −|α|2σ̂2. (73)

In second order there appears the commutator between
I−,2 and σ̂2, which can be calculated with the formula
(68) and (69), such that we get for k ≥ 1

ad
2k−1
I−,2

= (−1)k
√
n
2k−1

22(k−2)Λ2k−1
2 (n)σ̂z,2 (74)

ad
2k
I−,2

= (−1)k22k−3
√
n
2k
Λ2k
2 (n)σx,2. (75)
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Putting (74) and (75) and the expression for the first and
second order into (71), we get the full expression for σ̂D

1

which yields the following expression for the correspond-
ing Lindblad operator:

LD
1 = γ1σ̂1

+
γ1
2

arctan2(2λ1
√
n)

√

1 + 4λ2
1n

σ̂x,1 +
γ1
8

arctan4(2λ2
√
n)

√

1 + 4λ2
2n

σ̂x,2

+ γ1
λ1

√
n

√

1 + 4λ2
1n

σ̂z,1 +
γ1
4

√
nλ2 arctan

2(2λ2n)
√

1 + 4λ2
1n

σ̂z,2

+
γ1
2

arctan(2λ2n)σ̂1σ̂2 −
γ1
8

arctan2(2λ2n)σ̂2

(76)

We observe as a first term the original relaxation with
rate γ1 and six additional terms. The first one is a de-
phasing in the σ̂x,1 basis, which leads to a mixing of the
ground and first excited state. The corresponding rate
has an arctan in the numerator and a term proportional
to

√
n in the denominator, which leads to a rate much

smaller than γ1 for n ≫ 1. The same argument holds for
the second term, which leads to a dephasing in the σx,2

basis. This term has no crucial effect on the qubit as well.
The third term leads to a dephasing between the ground
and first excited state. The rate here is smaller than the
original relaxation rate γ1 for all values of n. The fourth
term leads to a dephasing between the first excited state
and the second excited state. Here we observe a rate
which will also be in the order of the original γ1, since
we have

√
n in the numerator as well as the denomina-

tor. The fifth and sixth term lead to interactions between
the second excited state and the ground and first excited
state, respectively. Anyways the rates here are again at
the order of the original relaxation rate γ1. All in all we
have shown that relaxation in this system leads to ad-
ditional incoherent effects, but all are happening with a
rate smaller or comparable with γ1. Since we need condi-
tion (14) to perform any quantum mechanical operations
with the system, nothing crucial happens here.

Now we take a look at dephasing between the ground
and first excited state. The corresponding Lindblad op-
erator can be written as LD

ϕ = γϕσ
D
z,1. The calculation

can be performed in the same way as for σ̂D
1 , where we

need the following commutators:

ad
2k−1
I−,1

σ̂z,1 = (−1)k−122k−1
√
n
2k−1

σx,1 (77)

ad
2k
I−,1

σ̂z,2 = (−1)k22k
√
n
2k
σ̂z,1 (78)

ad
2k−1
I−,2

σ̂z,1 = (−1)k22(k−1)
√
n
2k−1

σ̂x,2 (79)

ad
2k
I−,2

σ̂z,1 = (−1)k22k−1
√
n
2k
σ̂z,2, (80)

which yields the following expression for the dephasing

operator in the new frame:

LD
ϕ = γϕσ̂z,1

− γϕ
arctan2(2λ1

√
n)

√

1 + 4λ2
1n

σ̂z,1 −
γϕ
2

arctan2(2λ2
√
n)

√

1 + 4λ2
2n

σ̂z,2

− γϕ
2λ1

√
n

1 + 4λ2
1n

σ̂x,1 − γϕ
λ2

√
n

√

1 + 4λ2
2n

σ̂x,2.

(81)

Again we have the original dephasing term appearing in
the Lindblad operator with rate γ1. The first two addi-
tional terms lead to dephasing between the ground state
and the first excited state and the first excited state and
the second one, respectively. The rates are extremely
small in the regime n ≫ 1 such that we can neglect them.
The last two terms lead to dephasing in the σ̂x,1 and σ̂x,2

basis, but with a rate at least smaller than the original
dephasing rate γϕ.

All in all we have shown that we do not have any
relevant incoherent processes affecting the qubits, with
rates higher than the relaxation and dephasing rate of
the qubit. This gives the possibility to perform QND
measurements in this regime.

B. Dephasing due to photon leakage

In the parity measurement protocol we assumed a cav-
ity decay rate κ, which is greater than the intrinsic inco-
herent rates of the qubits. This assumption is important
to reach the pseudo steady state and measure before the
qubit states decay. Since states with the same parity can
lead to different cavity frequency shifts (see Fig. 2), the
photons leaking out of the cavity carry qubit information.
This leakage leads to an effective dephasing (see e.g. [47])
of superpositions of parity states. We want to study this
process and calculate the respective dephasing rate. Note
that only even parity states cause different shifts in the
cavity, since odd parity states are in the high amplitude
attractor, where the frequency is exactly the bare cavity
frequency for all states (see see Fig. 2). Therefore we
only study the dephasing between even parity states.

In the measurement protocol, the drive strength is cho-
sen such that the system stays in the low amplitude at-
tractor for even parity states. Here the behavior is still
linear (see 2), hence we can approximate the Hamiltonian
(25)

Ĥ ≈ Ĥ0 +

2∑

j=1

2∑

i=1

(

g
(j)
i

)2

∆
(j)
i

â†âσ̂
(j)
z,i + Ĥd, (82)

where we assumed that we are already in the frame rotat-
ing with the drive frequency. The incoherent evolution of
the density matrix is described by the Lindbladian mas-
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ter equation

ρ̇ = −i [H, ρ] + κD[â]ρ

+

2∑

j=1

2∑

i=1

γ1,iD[σ̂
(j)
i ] +

2∑

j=1

2∑

i=1

γΦ,iD[σ̂
(j)
z,i ]

, (83)

which includes three incoherent processes, photon loss
of the cavity with rate κ, relaxation with rate γ1,i and
dephasing with rate γΦ,i. We assume the intrinsic inco-
herent rates to be equal for all qubits. The qubit-cavity
density matrix of an equal superposition of even parity
states can be written down as (for simplicity we label
|00〉 = |0〉 and |11〉 = |1〉)

ρ̂ = ρ̂c00 |0〉 〈0|+ ρ̂c01 |0〉 〈1|+ ρ̂c10 |1〉 〈0|+ ρ̂c11 |1〉 〈1| ,
(84)

where ρ̂cij describe the field part of the density matrix.
Putting this density matrix expression into (83) we get
equations of motion for the density matrix elements ρ̂ij .
These can be solved using the positive-P representation
leading to the time evolution of the density matrix

ρ̂(t) =
1∑

i,j=0

cij(t) |i〉 〈j| ⊗ |αi(t)〉 〈αj(t)| (85)

For the detailed calculation see Appendix D. The induced
qubit dephasing is described by the parameter

c10(t) =
a10(t)

〈α1(t)|α0(t)〉
, (86)

with

a10 = a10(0)e
[−(γ2+iω̃)t]e[−i4(χ1−χ2/2)

∫
t

0
α1(t

′)α∗

0(t
′)dt′]

(87)

and

α1(t) = αs
1 + e[−(κ

2 +i2(χ1−χ2)+iδc)t] (α1(0)− αs
1) (88)

α0(t) = αs
0 + e[−(κ

2 −i2χ1+iδc)] (α0(0)− αs
0) . (89)

The steady state values of the field operators are given
by

αs
1 =

−iǫ

κ/2 + i2(χ1 − χ2) + iδc
(90)

αs
0 =

−iǫ

κ/2− i2χ1 + iδc
. (91)

The results are similar to [47], but get an additional χ2

contribution from the third energy level. This leads to a
no longer symmetric dependence of the dephasing rate on
the detuning δc, which can be explained by the asymmet-
ric frequency shift of the cavity (in the two level case the
shift is ±χ). Note that we assumed identical qubits in
the derivation such that the appearing linear shifts read
χi = g2i /∆i. The measurement should be performed in a

pseudo steady state, when system dynamics are almost
zero. Therefore we assume the limit κt ≫ 1, where the
photon leakage induced dephasing rate can be written as

ΓΦ = −4(χ1 − χ2/2)Im {αs
1α

s
0∗} . (92)

Putting all together we finally get the following expres-
sion for the dephasing rate induced by photon leakage of
the cavity

ΓΦ =
4κǫ2χ2

(κ
2

4 + δ2c + 2δcχ2 + 4χ2
1 − 4χ1χ2)2 + κ2χ2

2

(93)

For the parameters in Fig. 3, for the two qubit parity
measurement protocol the detuning is δc ≈ −20 MHz
and the corresponding drive strength is ǫ ≈ 10 MHz.
These parameters lead to an effective dephasing of the
qbuit with rate ΓΦ ≈ 9 kHz. Since the cavity decay
is assumed to be in the range of a few MHz, we can
assume that a pseudo steady state is reached before the
cavity photon loss has a significant decoherence effect
on the superposition of equal parity states which leaves
the measurement QND. Anyways, ΓΦ and the intrinsic
relaxation and dephasing rates give a limiting factor to
the fidelity of the measurement. For the N qubit case the
result is similar, but since there are more than one drive
strengths needed, we also have more dephasing channels.
However, they are all in the range of a few kHz, hence
even adding all of them up does not lead to a significant
dephasing as long as the number of qubits does not get
too large.
Note that one could as well use the Polaron Transfor-

mation in the manner of [46] to calculate the repsective
dephasing rate

V. CONCLUSION

In conclusion we have derived a mathematical descrip-
tion of N superconducting qubits coupled dispersively
to a microwave cavity by generalizing the exact disper-
sive transformation. We have obtained that our system
of interest shows a nonlinear behavior for a critical drive
strength, that results in a huge enhancement (∼ 105 pho-
tons) of the photon occupation in the microwave cavity.
This critical drive strength depends on the qubit state
and can therefore be used for high efficiency state read-
out.
Furthermore we have shown this the state dependent

critical drive strength can be varied by the detuning be-
tween cavity and drive. Due to this dependence it is
possible to perform various high efficiency measurements
including multi qubit parity readout, using a microwave
photon counter to measure the cavity occupation and we
have shown how to tune the system to realize these mea-
surements. We gave expressions for the drive frequencies
to perform mutli qubit parity measurements, where one
needs ⌊N

2 ⌋ different drive frequencies to measure the par-
ity of N coupled qubits.
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Additionally we studied the effect of relaxation and de-
phasing in the high occupation regime and have shown
that the appearing incoherent rates are smaller or equal
to the original rates. Also the photon leakage rate of the
cavity does not lead to a fast decay of qubit coherence.
There are some other incoherent processes that could be
considered (like broadening due to photon number vari-
ations of equal parity states [22]), but they are all as-
sumed to be not as significant as the studied processes.
This makes the presented protocol a candidate for high
contrast QND parity readout.
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Appendix A: Frequency transformation in the bare

Hamiltonian

We start with the bare qubit and cavity Hamiltonian

Ĥ0 = ωcâ
†â+

N∑

j=1

M−1∑

i=0

ω
(j)
i |i〉 〈i|(j) . (A1)

The goal is to transform the state projection operators

|i〉 〈i|(j) into the operators

σ̂
(j)
z,i = − |i− 1〉 〈i − 1|(j) + |i〉 〈i|(j) , (A2)

such that we end up with a Hamiltonian of the form

Ĥ0 = δcâ
†â+

N∑

j=1

N∑

i=1

ω̃
(j)
i

σ̂z,i(j)

2
. (A3)

Comparing (A1) and (A3) we get the following transfor-
mation rule for the frequencies:

2ω
(j)
0 = −ω̃

(j)
1 +

M−1∑

k=1

β
(j)
j ω̃

(j)
j

2ω
(j)
1 = ω̃

(j)
1 − ω̃

(j)
2 +

M−1∑

k=1

β
(j)
j ω̃

(j)
j

2ω
(j)
2 = ω̃

(j)
2 − ω̃

(j)
3 +

M−1∑

k=1

β
(j)
j ω̃

(j)
j

...

2ω
(j)
M−2 = ω̃

(j)
M−2 − ω̃

(j)
M−1 +

M−1∑

k=1

β
(j)
j ω̃

(j)
j

2ω
(j)
M−1 = ω̃

(j)
M−1 +

M−1∑

k=1

β
(j)
j ω̃

(j)
j ,

where β
(j)
j is an arbitrary complex number. The last

term in the equations comes from the fact that we can
add an arbitrary vacuum contribution to the Hamiltonian
in every qubit subspace without changing the system dy-
namics. Subtracting the second equation from the first
and so on for every pair of neighboring equations leads
to

2ω
(j)
10 = ω

(j)
1 − ω

(j)
0 = 2ω̃

(j)
1 − ω̃

(j)
2

2ω
(j)
21 = −ω̃

(j)
1 + 2ω̃

(j)
2 − ω̃

(j)
3

2ω
(j)
32 = −ω̃

(j)
2 + 2ω̃

(j)
3 − ω̃

(j)
4

...

2ω
(j)
M−2,M−3 = −ω̃

(j)
M−3 + 2ω̃

(j)
M−2 − ω̃

(j)
M−1

2ω
(j)
M−1,M−2 = −ω̃

(j)
M−2 + 2ω̃

(j)
M−1.

This can be written down in a matrix representation

2ω
(j)
i,i−1 =

M−1∑

k=1

Ai,kω̃
(j)
k , (A6)

with the transformation matrix

A =











2 −1 0 0 0 0 · · · 0
−1 2 −1 0 0 0 · · · 0
0 −1 2 −1 0 0 · · · 0

. . .
. . .

. . .
...

0 · · · · · · −1 2 −1
0 · · · · · · −1 2











. (A7)

This is a Töplitz matrix with c = b = −1 and a = 2.
The inverse of this kind of Töplitz matrix can be found
in literature and is given by

A−1 =

{

Pij 1 ≤ i ≤ j

Qij j ≤ i ≤ n
, (A8)

with

Pij = − i(j − n− 1)

(n+ 1)

Qij = − j(i− n− 1)

(n+ 1)
.

Combining all these results the frequencies ω̃
(j)
i can be

calculated as

ω̃
(j)
i =

M−1∑

k=1

2A−1
i,k

(

ω
(j)
k − ω

(j)
k−1

)

. (A9)

Appendix B: Exact dispersive transformation

In this section of the appendix we show how to diago-
nalize the Hamiltonian

Ĥsys = H0 +Hint. (B1)
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To do so we apply the unitary transformation

D̂ = exp



−
N∑

j=1

M−1∑

i=1

Λ
(j)
i (N̂i)Î

(j)
−,i



 , (B2)

where Λ
(j)
i (Ni) is a scalar function of N̂i. The excitation

number of every subspace (N̂i) is assumed to be constant,
such that Λ acts like a scalar on the system Hamiltonian.
We use the Baker Campbell Hausdorff formula

eABe−A =

∞∑

m=0

1

m!
ad

n
AB. (B3)

Before we transform Ĥsys we calculate some important
commutators. It is easy to show that

[

Î
(j)
−,i, Ĥ0

]

= ∆̃
(j)
i I+,i, (B4)

where

∆̃
(j)
i =







δ
(j)
1 − ω̃

(j)
2

2 , i = 1

∆
(j)
M−1 −

ω̃
(j)
M−2

2 , i = M − 1

∆j
i −

(
ω̃

(j)
i−1+ω̃

(j)
i+1

2

)

, else.

(B5)

and the definitions of Sec. II A. With this commutator
relation, we can calculate the transformation

D̂†HsysD̂ = Ĥ0 +

N∑

j=1

M−1∑

i=1

g
(j)
i Î−,i (B6)

+

∞∑

k=1

1

k!

N∑

j=1

M−1∑

i=1

ad
k

Λ
(j)
i

I−,i

(

Ĥ0 +

M−1∑

l=1

g
(j)
l Î−,l

)

(B7)

= Ĥ0 +

∞∑

k=0

g
(j)
i

k + 1

(k + 1)!
ad

k

Λ
(j)
i

I−,i

(

Î
(j)
+,i

)

(B8)

+
∞∑

k=0

N∑

j=1

M−1∑

i=1

ad
k

Λ
(j)
i

I−,i

(

Î+,i

)

(B9)

= Ĥ0 +
∑

N,M

∞∑

k=1

(k + 1)g
(j)
i + ∆̃

(j)
i Λ

(j)
i

(k + 1)!
ad

Λ
(j)
i

I−,i

(

Î+,i

)

.

(B10)

Here we made two steps, where we take use of the two
relations we proof in Sec. C. The firs one is, that we
splitted the two parts of the Hamiltonian on the right
entry of the nested commutators, so we assumed

ad
k∑M−1

i=1 ΛiÎ−,i
Ĥ0 =

M−1∑

i=1

adΛi Î−,i
Ĥ0 (B11)

which is true due to the fact that
[

Î−,i, Î−,j

]

= 0 for

i 6= j, if we ignore non parity conserving terms and[

Î−,i

[

Ĥ0, Î−,j

]]

= 0. The last relations is true since
[

Ĥ0, I−,j

]

∝ Î−,j . Using this relations and the proof in

Appendix. C , (B11) is true.
On the other hand, we used that

ad
k∑M−1

i=1 Λi Î−,i





M−1∑

j=1

Î+,j



 =

M−1∑

i=1

ad
k
ΛiÎ−,i

Î+,i, (B12)

which is true due to the proof in Appendix C and with

the relation
[

I−,i, Î+,j

]

= 0 for i 6= j again up to non

parity conserving terms.

There only appears one commutator in the expression
and it can easily be calculated to be

ad
2n

Λ
(j)
i

I−,i

(

Î
(j)
+,i

)

= (−4)nΛ
(j)2n
i Nn

i I+,i (B13)

ad
2n+1

Λ
(j)
i

I−,i

(

Î
(j)
+,i

)

= −2(−4)Λ
(j)2n+1
i Nn+1

i σz,i. (B14)

Putting (B14) into (B10) we end up with:

ĤD
sys = Ĥ0 (B15)

+

N∑

j=1

M−1∑

i=1








∆̃

(j)
i sin

(

2Λ
(j)
i

√
Ni

)

2
√
Ni

+ g
(j)
i cos

(

2Λ
(j)
i

√

Ni

)



 I+,1 (B16)

−2Niσz,i




g
(j)
i sin

(

2Λ
(j)
i

√
Ni

)

2
√
Ni

+
∆̃

(j)
i

{

1− cos
(

2Λ
(j)
i

√
Ni

)}

4Ni







 . (B17)
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FIG. 7. Comparison between the results of the effective cavity
frequency when including three or ten energy levels. We see
that the results are absolutely identical, such that it seems
to be reasonable to only include the lowest non occupied en-
ergy level into the calculations to get correct results. The
parameters are the same as in Fig. 2.

To get a diagonal Hamiltonian we have to define the

scalar functions Λ
(j)
i as follows:

Λ
(j)
i (Ni) = −

arctan
(

2λ
(j)
i

√
Ni

)

2
√
Ni

. (B18)

With this choice for Λ
(j)
i we end up with a diagonal sys-

tem Hamiltonian

ĤD
sys = δcâ

†â+ Ĥ0 −
N∑

j=1

M−1∑

i=1

∆̃
(j)
i

2



1−

√
√
√
√1 +

g
(j)
i

∆̃
(j)
i

Ni





(B19)

Appendix C: The effect of higher energy levels

In this section of the appendix we want to show that
only the lowest non occupied energy level (in our case
|2〉) of the qubits has an effect on the results. Including
even higher levels does not change either the frequency
shifts nor the behavior of the photon amplitude. This can
be seen in Fig. 7 where we show the effective frequency
shift and compare the results when we include the lowest
three energy levels with the results when we include the
lowest ten. One sees that the results of the two cases are
completely identical, such that we can claim that only
the three lowest levels affect the results. More precisely
it seems reasonable that the lowest non occupied energy
level is the last one that has an effect on the system.

Appendix D: Proof for exact dispersive

transformation

In this section of the appendix we will prove two re-
lations for nested commutators that we need to split up
terms when we perform the exact dispersive transforma-
tion including more than two energy levels.

1. First proof

Given four operators A, B, C, and D, we want to show
that

ad
n
A+B (B + C) = ad

n
A(C) + ad

n
B(D), (D1)

if the following relation is fulfilled:

[A,B] = [A,D] = [B,C] = [C,D] = 0. (D2)

We use induction to show that (D1) is valid for all n.
Let’s start with the case n = 1 which is trivial:

[A+B,C +D] =
︸︷︷︸

(D2)

[A,C] + [B,D]. (D3)

So we now that for n = 1 the relation holds. Lets assume
that for n = k (D3) holds, that is

ad
k
A+B(C +D) = ad

k
A(C) + ad

k
B(D). (D4)

Let n = k + 1:

ad
k+1
A+B(C +D) =

[

A+B, adk
A+B(C +D)

]

=
[

A+B, adk
A(C) + ad

k
B(D)

]

=
[

A, adk
A(C)

]

+
[

B, adk
B(D)

]

+
[

A, adk
B(D)

]

+
[

B, adk
A(C)

]

.

(D5)

To get the relation we want, we have to show that
[

A, adk
B(D)

]

=
[

B, adk
A(C)

]

= 0. (D6)

For this we again use induction and only show it for one of
the terms, since the second calculation is analog. Again
the case n = 1 is fulfilled:

[A, [B,D]] = − [B, [D,A]]− [D, [A,B]] =
︸︷︷︸

(D2)

0, (D7)

where we used the Jacobi-identity for operators. So lets
assume the statement is true for n = k. Let n = k + 1
[

A, adk+1
B (D)

]

=
[

A,
[

B, adk
B(D)

]]

(D8)

= −
[

B,
[

ad
k
B(D), A

]]

−
[

ad
k
B(D), [A,B]

]

= 0 (D9)

where we again used the Jacobi-identity and the induc-
tion hypothesis. In the same manner we can show that
[

B, adk
A(C)

]

= 0, such that we finally proofed (D3) un-

der the condition (D2) for all n ∈ N.
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2. Second Proof

Here want to prove a second identity we need to per-
form the exact dispersive transformation in our case. We
show that

ad
k
A+B(C) = ad

k
A(C) + ad

k
B(C), (D10)

if the following relations are satisfied:

[A,B] = 0 (D11)

[B, [C,A]] = [A, [C,B]] = 0. (D12)

Again we use induction. The identity is trivial to show
for n = 1. So we assume (D10) holds for n = k. Let
n = k + 1:

ad
k+1
A+B(C) =

[

A+B, adk
A+B(C)

]

(D13)

=
[

A+B, adk
A(C) + ad

k
B(C)

]

(D14)

= ad
k+1
A (C) + ad

k+1
B (C) (D15)

+
[

A, adk
B(C)

]

+
[

B, adk
A(C)

]

. (D16)

To prove (D10) we therefore have to show that

[

A, adk
B(C)

]

=
[

B, adk
A(C)

]

= 0. (D17)

We start with the first term. For n = 1:

[A, [B,C]] = − [B, [C,A]]− [C, [A,B]] = 0, (D18)

where we used the Jacobi-identity and relations (D11)
and (D12). Let’s assume we have proven the identity for
n = k. Let n = k + 1:

[

A, adk+1
B (C)

]

=
[

A,
[

B, adk
B(C)

]]

(D19)

= −
[

B,
[

ad
k
B(C), A

]]

−
[

ad
k
B(C), [A,B]

]

= 0 (D20)

Likewise one can show that
[

B, adk
A(C)

]

= 0 and there-

fore we have proven the identity (D10) under the condi-
tions (D11) and (D12) for all n ∈ N.

Appendix E: Equation system to determine

dephasing

Here we solve the equation system to get the expression
for the cavity leakage induced dephasing of Sec. IVA.
Putting the density matrix (84) into the Lindblad equa-
tion (83) we get equations of motion for the cavity parts
of the density matrix

˙̂ρ11 = κD[â]ρ̂11 − (γ
(1)
1 + γ

(2)
1 )ρ̂11 − iǫ

[
â† + â, ρ̂11

]
− i(χ

(1)
1 + χ

(2)
1 )

[
â†â, ρ̂11

]
− iδc

[
â†â, ρ̂11

]
(E1)

˙̂ρ00 = κD[â]ρ̂00 + (γ
(1)
1 + γ

(2)
1 )ρ̂11 − iǫ

[
â† + â, ρ̂00

]
+ i(χ

(1)
1 + χ

(2)
1 )

[
â†â, ρ̂00

]
− iδc

[
â†â, ρ̂00

]
(E2)

˙̂ρ10 = κD[â]ρ̂10 − (γ
(1)
2 + γ

(2)
2 )ρ̂10 − iǫ

[
â† + â, ρ̂10

]

− i
[

(χ
(1)
1 + χ

(2)
1 )

{
â†â, ρ̂10

}
− (χ

(1)
2 + χ

(2)
2 )â†âρ̂10

]

− iδc
[
â†â, ρ̂10

]
− i(ω̃1 +

ω̃2

2
)ρ̂10

(E3)

˙̂ρ01 = κD[â]ρ̂01 − (γ
(1)
2 + γ

(2)
2 )ρ̂01 − iǫ

[
â† + â, ρ̂01

]

+ i
[

(χ
(1)
1 + χ

(2)
1 )

{
â†â, ρ̂10

}
− (χ

(1)
2 + χ

(2)
2 )ρ̂10â

†â
]

− iδc
[
â†â, ρ̂01

]
+ i(ω̃1 +

ω̃2

2
)ρ̂01,

(E4)

where γ
(j)
2 = γ

(j)
1 + γ

(j)
Φ /2 and χ

(j)
i = (g

(j)
i )2/∆̃

(j)
i . Now

we assume that both qubits have the same relaxation
and dephasing rate and define ω̃ = ω̃1+ ω̃2/2. In general
there exist no solution for these four equations because
of the coupling term introduced by γ1. In our case we are
only interested in dephasing rate, such that we can set
γ1 = 0 in the equations for the diagonal parts. To solve
the above equation system, we consult the generalized
P representation and express the cavity density matrix

elements as

ρ̂cij =

∫

Λ(α, β)P (α, β)dµ(α, β), (E5)

with probability densities Pij . Here we use the so called
positive-P representation, where

Λ(α, β) =
|α〉 〈β∗|
〈β∗|α〉 (E6)

dµ(α, β) = d2αd2β (E7)

Putting the positive-P representation of the matrix ele-
ments into equations (E1)-(E4) using the relations (see
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e.g. [48])

âΛ(α, β) = αΛ(α, β) (E8)

â†Λ(α, β) = (β + ∂α)Λ(α, β) (E9)

Λ(α, β)â† = βΛ(α, β) (E10)

Λ(α, β)â = (∂β + α)Λ(α, β) (E11)

we get equations of motion for these probability densities

Ṗ11 = ∂α [(iǫ+ 2i(χ1 − χ2)α+ iδcα+ κα/2)P11] + ∂β [(−iǫ− 2i(χ1 − χ2)β − iδcβ + κβ/2)P11] (E12)

Ṗ00 = ∂α [(iǫ− 2iχ1α+ iδcα+ κα/2)P00] + ∂β [(−iǫ+ 2iχ1β − iδcβ + κβ/2)P00] (E13)

Ṗ10 = ∂α [(iǫ+ 2i(χ1 − χ2)α+ iδcα+ κα/2)P10] + ∂β [(−iǫ+ 2iχ1β − iδcβ + κβ/2)P10]

− i4(χ1 − χ2/2)αβP10 − 2γ2P10 − iω̃P10

(E14)

Ṗ01 = ∂α [(iǫ− 2iχ1α+ iδcα+ κα/2)P01] + ∂β [(−iǫ− 2i(χ1 − χ2)β − iδcβ + κβ/2)P01]

+ i4(χ1 − χ2/2)αβP01 − 2γ2P10 + iω̃P01

(E15)

Here we assumed identical qbuits, hence χ
(j)
i = χ

(k)
i = χi

and γ
(j)
i = γ

(k)
i = γi. These equations can be solved with

the Ansatz

P11 = δ(2) [α− α1(t)] δ
(2) [β − α∗

1(t)] (E16)

P00 = δ(2) [α− α0(t)] δ
(2) [β − α∗

0(t)] (E17)

P10 = a10(t)δ
(2) [α− α1(t)] δ

(2) [β − α∗
0(t)] (E18)

P01 = a01(t)δ
(2) [α− α0(t)] δ

(2) [β − α∗
1(t)] (E19)

which yields the following differential equations:

α̇1 = −iǫ− i (δc + χ1 − χ2 − iκ/2)α1 (E20)

α̇0 = −iǫ− i (δc − χ1 − iκ/2)α0 (E21)

ȧ10 = −i(ω̃ − i2γ2)a10 − i4(χ1 − χ2/2)α1α
∗
0a10 (E22)

ȧ01 = i(ω̃ + i2γ2)a01 + i4(χ1 − χ2/2)α0α
∗
1a01. (E23)

In this equation system we see the phase difference with
which the two states |α0〉 and α1 oscillate, which leads to
an effective dephasing. The differential equations for αi

and aij can easily be solved and lead to the time evolution
of the density matrix (85) we used in Sec IVB to calculate
the respective dephasing rate
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