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Laboratory optics, typically dealing with monochromatic light beams in a single reference frame,
exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital
degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles.
Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin
and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We
show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital
AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse
shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts
all point in different directions, such complex behavior is necessary for the proper Lorentz trans-
formation of the total AM of the particle. Relativistic spin-orbit interactions can be important in
scattering processes involving photons, electrons, and other relativistic spinning particles, as well as

when studying light emitted by fast-moving bodies.

I. INTRODUCTION

In the past decade, the spin-orbit interactions (SOIs)
of light — including spin Hall effects, spin-to-orbital an-
gular momentum (AM) conversions, etc. — have be-
come an inherent part of modern optics, see [IH5] for
reviews. The vast majority of known SOI effects origi-
nate from the fundamental polarization and AM prop-
erties of monochromatic Maxwell fields in a single lab-
oratory reference frame [Il [6]. Similar phenomena have
also been described for relativistic electrons and other
spinning particles [THI2]. Electron SOIs play an impor-
tant role in atomic physics, condensed matter, and could
also affect the dynamics of relatvistic free-electron states
carrying intrinsic AM [I3HI5].

At the same time, there is considerable recent interest
on relativistic transformations of photons and other par-
ticles carrying intrinsic AM [I6H20]. Transverse Lorentz
boosts of wave beams break down their monochromatic-
ity and induce a number of nontrivial relativistic AM-
dependent phenomena. In particular, the Lorentz trans-
formations of the intrinsic and extrinsic AM differ sig-
nificantly from each other. Requiring their consistency
brings about the relativistic Hall effect (i.e., the boost-
induced transverse position shift) related to the delocal-
ized nature of the wave AM [16H20].

Relativistic properties and transformations of AM-
carrying waves are important from both the fundamen-
tal and practical viewpoints. These are involved in the
“proton spin puzzle” in QCD [21, 22], studies of “chi-
ral fermions” [I7, [I8], and collisions of spinning parti-
cles [I7, M9]. Moreover, there is a rapidly growing in-
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terest in scattering of photons, electrons, and other high-
energy particles carrying intrinsic orbital AM [14] 23H25].
Naturally, the Lorentz transformations of wavepackets or
beams carrying spin and orbital AM are of great impor-
tance for these topics.

Importantly, most of the recent studies of Lorentz
transformations of the wave AM considered the intrin-
sic spin (polarization) and orbital (vortex) AM on equal
footing. For example, the Hall-effect shift of the energy
centroid is largely independent of the spin or orbital na-
ture of the intrinsic AM [I6, [I7, 19, 20, 26]. However,
in this paper, we show that the spin and orbital AM of
photons and relativistic electrons are transformed quite
differently under Lorentz boosts. To illustrate this crucial
difference, we put forward the following paradox about
the transformation of the spin of a photon.

The spin AM of a paraxial photon can be well approx-
imated by the plane-wave expression S = hoP /P [27-
29], where o € (—1,1) is the polarization helicity and
P is the photon momentum. Assuming P = Pz (over-
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Figure 1. Transverse Lorentz transformation of the photon
spin. The spin of an electromagnetic wave, S, is rotated by
the angle § = sin~'u (a), which is in contrast to the Lorentz
transformation of a relativistic AM J (provided the boost
momentum N = 0): J' =~J (b) [16, 30].



bars denote the unit vectors of the corresponding axes),
we perform the transverse Lorentz boost characterized
by the velocity v = vx and the corresponding Lorentz
factor v = 1/v/1—u?, u = v/e. This transformation
preserves the helicity ¢ (which is Lorentz-invariant for
massless particles) and rotates the propagation direction
by the angle § = sin"!u = cos~ 'y . As a result, the
photon spin in the boosted reference frame (indicated by
primes) becomes S’ = ho[y~'z’ — ux'], Fig. 1(a). How-
ever, this contradicts the Lorentz transformations of the
relativistic AM tensor, which consists of the AM J and
the “boost momentum” N [30]. Indeed, assuming that
the photon is represented by a large paraxial wavepacket
(close enough to the plane wave) with energy W = hw
(w = kc is the frequency, k is the wavevector), momen-
tum P = hkz, and position of the centroid R = ctz,
the boost momentum vanishes in the original reference
frame: N = ¢tP — RW/c = 0. Then, the Lorentz trans-
formations of the AM J = J z yields J' = ~ J [16, 30, [31],
Fig. 1(b). Obviously, the photon spin AM S cannot fol-
low this rule because v > 1, while the spin is restricted
to the (—#,A) range. In a more fundamental context,
the difference between the spin and AM transformations
come from the fact that the spin of a relativistic particle
follows the Pauli-Lubanski four-vector rather than the
rank-2 AM tensor [32H34].

In this paper, we resolve the above controversy by con-
sidering trasversely-localized optical beams carrying both
spin and orbital AM. We derive quite nontrivial Lorentz
transformations of the spin and orbital AM carryied by
paraxial photons, as well as the relativistic Hall-effect
shifts caused by photon’s spin and orbital AM. We find
that Lorentz boosts inevitably produce spin-to-orbital
AM conversion as well as nontrivial spin and orbital Hall-
effect shifts, i.e., relativistic SOIs. We also perform anal-
ogous Lorentz-boost calculations for the Dirac-electron
beams, and show that most of their AM transformation
features are similar to the photon case, albeit modified
by the finite electron mass.

II. RELATIVISTIC TRANSFORMATIONS OF
OPTICAL BEAMS

A. General formalism

We first introduce the general formalism for calcula-
tions of dynamical properties (energy, momentum, AM,
etc.) of generic free-space Maxwell fields. This is mosty
based on the results of works [6, [35], [36].

The real electric and magnetic fields €(¢,r) and H (¢, r)
are represented via their complex Fourier (plane-wave)
components:

(85 - (B

where w(k) = kc. Due to Maxwell’s equations, the
Fourier components are orthogonal to the wavevector:

E-k = H-k = 0, and it is instructive to make a transfor-
mation to the local k-space coordinates with the longi-
tudinal axis attached to the wavevector. The fields have
only two transverse components in these coordinates, and
using the basis of circular polarizations corresponds to
the helicity representation of Maxwell fields.

The transition to this basis is realized by the unitary
transformation [6]

{B.HI0 | = VIMW{EK). HK)} . (2)

Here
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is the rotational matrix superimposing the longitudinal
axis with the wavevector ((¢, ) are the spherical angles
of the k-vector and 7A€y,z are the corresponding rotational
matrices), whereas

o, (1-io0
V=—|1 141 0
V2\ o 0 v2

is the constant matrix of the transition to the circular-
polarization basis.

Omitting the vanishing longitudinal component of the
fields , we end up with the two-component electric field

. _ _\T
E = (E*,E*) and the corresponding magnetic field

H = —i6E following from Maxwell’s equations. Here
6 = diag(1,—1) is the helicity operator and throughout
the paper we use Gaussian-like units with ¢g = pg = 1.

We now define the “photon wavefunction” [35], [36] in
the helicity representation as

(k) = ﬁ B(k) + io (k)| = \/E Bk, ()

where the normalization factor N is the number of pho-
tons defined below. Then, the expectation value of an
operator O can be calculated as [35] [36]

d*k

0= o) = [ —v'K)-(0)pk) .  (4)

Note that the factor w=!(k) in Eq. is crucial for non-
monochromatic fields. Assuming the one-photon normal-

ization (tp|1p) = 1, the number of photons in Eq. is
N =2 [ Lk |E (k)

For fur‘?ﬁer calculations, we need operators of the en-
ergy W, momentum P, position R, spin AM S, orbital
AM L, and boost momentum N (see [106] [30, B7H39] for
the latter quantity). According to the works [6] [35] [36], in

the helicity representation, projected on the 2D subspace



of Maxwell fields E(k), these operators read

W=hw, P=hk, R=iVy—Apk),

S =ho .
Here Ap(k) = 6k~ [(1 —cos?)/sind] @ (@ is the unit
vector of the azimuthal coordinate ) is the Berry con-
nection, which determines the covariant derivative and
parallel transport of E(k) L k on the sphere S? = {k/k}
(the electric field E(k) belongs to the vector fiber bundle
over this sphere) [T}, 3] 6, 36, 40]. The operators W, P,
the total AM J = S + I:, and N provide 10 generators
of the Poincaré group, and their expectation values are
conserved in free space [35] [36] B8] [39].

Note that the expectation value of the position op-
erator , R, describes the “photon centroid’, while
the energy centroid of the field is determined as Rg =
c(ctP —N)/W. These two positions can differ from each
other in non-monochromatic fields; they play a crucial
role in the Lorentz transformations of the AM and rela-
tivistic Hall effects [16], 17, [19] 26, 30].

We also note that the same expectation values can
be obtained without transition to the helicity represen-
tation . In the canonical momentum representation,
the 6-component “photon wavefunction” is given by the
Fourier components :

L=RxP, N=cP-RW/c. (5

1
VN
where N = [ &k (|E(k)|? + |H(k)[?*). In this represen-

Thw
tation, the operators have canonical form without the

Berry connection:
Rcan = ivkv f‘can = Rcan X ]-57
Nean = ctP — ReanW /e, (7)

’lpcan(k) = {E(k)7H(k)} ) (6)

whereas the spin operator Scan s given by the
momentum-independent spin-1 3 x 3 matrices [6] 29, B5].
Although the canonical operators have simpler form, the
canonical photon wavefunction @ is considerably com-
plicated, having six components instead of two. There-
fore, below we employ the helicity representation 7
for photonic calculations, but use the canonical represen-
tation analogous to Egs. for the Dirac-electron calcu-
lations in Section III.

In addition to the expectation values of operators
in the momentum representation, we will use the spatial
energy and Poynting-momentum densities in the coordi-
nate representation of real fields [30]:

w=(E+H*) /2, p=cH(ExH). (8)

The integral energy, momentum, total AM, and boost
momentum of a localized field are then determined as
W= [wd, P=[pd’, J= [(rxp)d®r, and N =
J(ctp — rw/c) dr. For a one-photon field, these values
are equivalent to the corresponding expectation values

calculated using Eqgs. 7.

We finally describe the Lorentz boosts of a generic elec-
tromagnetic field. The real fields {E(¢t,r), H(t,r)} are
transformed as components of the antisymmetric rank-
2 field tensor, together with the Lorentz transformation
of the four-coordinates (ct,r) [30]. The Fourier com-
ponents {E(k), H(k)} acquire the extra factor y~!, be-
cause the differential in the integrals is transformed
as d°k’ = v d®k due to the Lorentz contraction. Consid-
ering the boost with the velocity v = v X, this yields:

Ex = '7_1E:1:7 Hz = '7_1Hz7

E, =B, —uH,, H,=H,+uE.,

E,=FE,+uH, H,=H,—uE,. (9)

This field transformation is accompanied by the Lorentz
boost of the four-wavevector (w/c, k):

r_ _ r_ _w
W = w—vke), K= (k-5 )
K, =ky, K=k, (10)

The boosted fields in the helicity representation,
{E’ k'), H' (K’ )}, are obtained from the fields via

the unitary transformation involving the boosted
wavevectors k' and the corresponding spherical an-
gles (v, ¢").

B. The Lorentz boost of a Bessel beam

We are now in the position to consider a photon state
carrying spin and orbital AM, the simplest model of
which being provided by monochromatic Bessel beams
[0, 14, [41]. The Fourier spectrum of the z-propagating
Bessel beam is a circle lying on the sphere of radius
k = kg = wp/c at the polar angle ¥ = 9, see Fig. 2(a).
Assuming well-defined helicity o = +1 (i.e., the same
right-hand or left-hand circular polarizations of all plane
waves in the beam spectrum), the electric field of the
Bessel beam can be written as [6]:

_ A1+
B3 (177

) st koo —vu)et, )
where A is the field amplitude, § is the delta-function,
and exp(if¢) indicates a vortex with the integer topolog-
ical charge ¢, which is responsible for the intrinsic orbital
AM carried by the beam [27H29].

Using Eq. (2)), we obtain the Bessel-beam field compo-
nents in the Cartesian coordinates:

A a— bezi".“’ .
””:75 io(a+be*7¢) | §(k — ko)d(9 — do)e'?,
—2V/ab e7®

(12)
where a = cos¥(g/2) and b = sin(¥y/2). Since we are
dealing with the helicity eigenstate, 6E = oE, the corre-
sponding magnetic field is H(k) = —icE(k).
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Figure 2. Monochromatic z-propagating Bessel beam
and (a,b) and the same beam in the reference frame
moving with velocity v = vx (c¢,d). The Fourier spectra (i.e.,
the wavevector distributions with color-coded vortex phases
exp(ily)) (a,c) and the real-space distributions of the energy
and Poynting-momentum densities (b,d) are shown. One
can see the non-monochromatic character (w’ = k’c # const)
of the boosted beam, its elliptic Lorentz-contraction deforma-
tion, and the relativistic Hall-effect shift of the energy cen-
troid: Yj = (v/wo)(¢ + o). For better visibility, we used
nonparaxial beams with the following parameters: o = 1,
£ =2 sinYy = 0.4 (a,c), sindg = 0.7 (b,d), u = 0.8 (c,d), and
KR = ko sin 190 (b,d)

Evaluating the Fourier integrals , we find the
real Bessel-beam fields £(t,r) and #(t,r), and plot
the trasverse real-space distributions of the energy and
Poynting-momentum densities in Fig. 2(b). Parax-
iality implies ¥y < 1, but the Bessel beams are exact
solutions of Maxwell’s equations for any values of 9.

Calculating the expectation values f of the en-
ergy, momentum, spin and orbital AM, etc., for the
Bessel-beam field (11]), we obtain [6]:

W = hwg, P = hkgcosdoz >~ hkoz,
L=nh[l+0(1 —costy)]z ~ Wz, S = hocostz~ hoz,
J:h(a—i—ﬁ)i R, =N, =0, (13)

where we used the paraxial approximation ¥y < 1, and
the subscript L indicates the transverse (z,y) compo-
nents. Note that the Bessel beams are delocalized in
the longitudinal z-direction and are not square-integrable
in the transverse plane. Therefore all the integrals of
squared fields and the normalization factor N diverge
but their ratios are finite [0, [16]. The longitudinal
photon and energy centroid coordinates Z and Zg are
ill-defined in the beam, but if we were to consider a long
z-localized wavepacket, we would approximately obtain
7 = Zg = (c®P/W)t = ct. This corresponds to the van-
ishing boost momentum N, = 0. Equations present

the expected picture of a paraxial photon carrying intrin-
sic spin (o) and orbital (¢) AM [29].

We now perform the Lorentz boost and @ of
the Bessel beam . This brings about cumbersome
but exact expressions for the boosted Bessel-beam fields
{E'(K),H'(K)}, {€,r'),H (',r)}, and the corre-
sponding helicity-representation field E/(k’). Figures
2(c,d) show the Fourier spectrum and the real-space
transverse distributions of the energy and Poynting mo-
mentum densities for these fields (cf. [I6] [19] 42]).
One can see that the boosted field is not monochromatic
anymore (w' = k'c # const), it is elliptically deformed
due to the Lorentz contraction, and its energy centroid
is shifted in the transverse direction, Yy, # 0, which is a
manifestation of the relativistic Hall effect [16} 17,191 26].
At the same time, since the helicity is Lorentz-invariant,
the boosted field is still the helicity eigenstate: 6E'(k’) =
oE/'(K'), 0 = +1, and H'(K') = —iocE'(K').

Most importantly, we can now calculate the expecta-
tion values f for the boosted Bessel beam. In the
Y9 < 1 approximation, this yields:

W' =hywy, P’ =hko(z —~yux'),

)

’ L' =hlly +o(y -~ 1))Z + houx'

' =ho[y 7 —ux]|, ¥ =my((+0)7], (14)
R/J_=2L(f+20)}_’/—vt5(/ , ‘N’ =—hyu(l+o0)y |.
wo

These equations contain the central results of this work,
which are also illustrated in Fig. 3. The energy and
momentum present the standard Lorentz trans-
formation of the quantities (I3): W’ = yW, P’ =
P — yWv/c®. The boost momentum also agrees with
the Lorentz transformation of the relativistic AM ten-
sor [16, B0]: N’ = —yJ x v/e. This corresponds to
the transverse Hall-effect shift of the energy centroid

L vt = I xv/W = (v/wy)( + o)y’ [Fig. 2(d)],
in agreement with recent results [I6] (for o = 0) and
[17H19] (for ¢ = 0).

At the same time, the AM parts and the “photon
centroid” in Egs. exhibit several unusual features.
First, the spin AM is indeed transformed as expected
for a polarized plane wave: S’ = hoP’/P’, Fig. 1(a),
and in contrast to the relativistic AM transformation,
Fig. 1(b). Second, this paradox is resolved by the non-
trivial transformation of the orbital AM L’, which ac-
quires unexpected helicity-dependent terms, both longi-
tudinal and transverse. This signals the relativistic spin-
orbit interactions of light, cf. [1]. As a result, the to-
tal AM J' = L' + S’ is transformed exactly as expected
for the relativistic AM with N = 0: J' = ~J. Third,
the photon centroid R/, exhibits the natural drift —v¢
in the moving frame and the transverse Hall-effect shift
YY" = (v/2wy)(¢ + 20). This differs from the previously
analyzed spinless and massive-particle cases [16, 26] by
the factor of 2 before the helicity [43]. This unexpected
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Figure 3. Transformations of the spin and orbital AM in
a paraxial vortex beam under a transverse Lorentz boost
(u = 0.6 here). (a) The original monochromatic beam car-
ries the spin AM S = oP /P due to the circular polarization
(helicity) (o = 1 here), as well as the intrinsic orbital AM
L™ = ¢P/P due to the vortex (¢ = 2 here). (b) The boosted
beam carries spin AM tilted together with the beam momen-
tum: S’ = ¢P’/P’ [Fig. 1(a)], the intrinsic orbital AM L™’
Eq. , due to the elliptically deformed and tilted vortex,
and the extrinsic orbital AM caused by the transverse shift
(Hall effect) of the beam centroid: L™*" = R/ x P’. Although
all these contributions point in different directions, the total
AM is transformed according to the Lorentz transformation:
J' =~J [Fig. 1(b)].

factor plays an important role in the Lorentz transforma-
tions of the photon AM.

Indeed, the photon centroid R’ allows us to sepa-
rate the intrinsic (vortex-related) and extrinsic (shift-
induced) contributions to the orbital AM [11 6] 16 [29]:

-1
LCX“:R’><P'=h(e+20)(7 27 z’—|—;x’>,

—1
Llnt/ :Ll_cht/ :hé <’Y+2’Y i,— gx/) . (15)

Here we used the longitudinal photon position Z' =
~~Lct because of the oblique propagation at the angle
0 = cos~ !y~ !. Remarkably, the form of the intrinsic or-
bital AM Lt/ can be clearly explained by the geometric
deformations of the vortex phase in the beam. Namely,
the vortex is elliptically deformed due to the Lorentz con-
traction with the factor of v and also tilted by the angle
0, as shown in Fig. 3(b) (because the phase fronts in
the boosted beam are near-perpendicular to the momen-
tum P’). It is easy to show that these deformations,
x = /7y, ky = Ykz, and z = x tanf = uyxr — ux, result
in the intrinsic orbital AM for a vortex wavefunc-
tion ¢ o (z + 4y)’. Importantly, the z’-directed term
in L™’ related to the tilt of the vortex, was missed in
previous studies [I6, 42] only focused on the longitudi-
nal z’-component of the AM. The set of equations
and show that both this new term and the factor of
2 before the helicity in the centroid shift R’ ensure the

proper Lorentz transformation of the total AM J.

In addition to the analytical k-space calculations of the
expectation values , we numerical calculated the val-
ues W', P/, J’, and N’ using the r-space integration of
the energy and Poynting-momentum densities in the
transformed Bessel beam. The results were in agreement
with Egs. (14). Here we should make two important re-
marks. First, since Bessel beams are delocalized along
the longitudinal z-axis, the integration should be per-
formed over a 2D cross-section of the beam. In doing so,
the result depends on the choice of the cross-section, sim-
ilar to the “geometric spin Hall effect of light” [45 46].
We found that the proper Lorentz transformation of the
AM is obtained using the integration in the tilted plane
2" = wyz' parallel to the phase fronts (i.e., orthogonal to
the momentum) of the boosted beam, Fig. 3(b). This
is in agreement with the Wigner-translation approach
used in [19]. In the k-space calculations of Eqs. the
tilted-cross-section condition was also used as 9/9k, =
uy 0/0k.. Second, we note that the Berry connection
Ap(K') in the operators played a crucial role in ob-
taining the transformed quantities . In the paraxial
limit ¥ — 0, it is determined by the mean momentum
P’ and equals Ap = —Gky ' [(1—~"1)/(yu)]y. This illu-
minates the geometric SOI origin of the nontrivial trans-

formations [11, [©].

III. RELATIVISTIC TRANSFORMATIONS OF
DIRAC-ELECTRON BEAMS

A. General formalism

It is interesting to check if the nontrivial transforma-
tions and of the spin and orbital AM quantities
are specific to photons (i.e., massless spin-1 particles) or
these have a universal character. For this purpose, we
consider a similar Lorentz-transformation problem for a
Bessel-beam state of the Dirac electron [12], i.e., a mas-
sive spin-1/2 particle.

We first recall the Dirac equation in the standard rep-
resentation [32]:

zhaa—q’tb = (d - Pc+ Bmc2> P, (16)
where 1(r, t) is the four-component bi-spinor wavefunc-
tion, P = —ihV is the momentum operator in the coor-
dinate representation, m is the electron mass, and

(o8) -0h)

are the 4 x 4 Dirac matrices with & being the vector of
the 2 x 2 Pauli matrices.

The wavefunction can be represented as the Fourier
integral, i.e., as a superposition of Dirac plane waves:

3
W0 = [ G



Here, w(k) = \/k2c2 + p2, u = mc?/h, and the Fourier
amplitudes can be factorized as:

090, 00— (VTS ),
(18)

where f(k) is the scalar Fourier amplitude, ®(k) is the
normalized polarization bi-spinor (®f® = 1), k = k/k,

and £ = z ) is the two-component polarization spinor

(€7¢ = 1) describing the spin state of the plane-wave
electron in its rest frame [12, [14] [32].

The Fourier amplitudes %(k) can be regarded as the
(non-normalized) Dirac wavefunction in the canonical
momentum representation. In this representation, the
operators of the energy, momentum, position, spin, or-
bital angular momentum, and boost momentum have a
canonical form similar to Eq. @:

W =hw, P=hk, R=iVy, (19)
A h g A N A A A A a
s(? "), L—RxP, N=cP—RIV/
2\6 0
The normalized (one-electron) expectation values are cal-
culated similar to Eq. :

0 = WO = 1 / ki (k) (O)h(k) . (20)

with the number of electrons N = [ d®k [+(k)|?. Note
that, in contrast to photons, the inner product for elec-
trons does not involve the w~!(k) factor. This is because
the squared wavefunction amplitudes correspond to the
particle and energy densities for electrons and photons,
respectively.

It is worth remarking that one can alternatively use
the Foldy-Wouthuysen momentum representation for the
calculation of the expectation values for Dirac electrons.
This representation, diagonalizing the Dirac Hamilto-
nian, allows one to reduce the wavefunction to the two
components £€(k), but complicates the operators with the
Berry-connection terms, similar to the helicity represen-
tation and for photons [7, 8 12} 34].

We finally introduce the Lorentz transformation (with
the velocity v = vx) of the Dirac wavefunction (k).
Akin to the transformation of the Fourier components of
Maxwell fields, Eq. @, it acquires an extra y~! factor
and reads [32):

1,/3’\/1%(\/7+ *\/7716@1!3. (21)

The Lorentz transformation of the electron four-
wavevector (w/c, k) is still given by Eq. .

B. The Lorentz boost of a Dirac-Bessel beam

The Bessel-beam state of the Dirac electron (i.e., the
Dirac-Bessel beam) is constructed similar to the optical

beam and , Fig. a). The scalar part and the
polarization spinors of the two spin states of the electron

are given by [12] [14]:

FO) = A5(k—ko)8(0—00)e™™®, €+ — < ; ) o ( ; ) .

(22)
These states correspond to the well-defined z-components
of the electron spin, s, = +1/2, in its rest frame. Al-
ternatively, one can choose two states with well-defined
helicity [14} [32], but these states reduce to the same £+
states in the paraxial approximation 6y < 1.

Substsituting the wavefunction and (22) into
Egs. and , we obtain the expectation values of
the energy, momentum, AM, etc. for the Bessel-Dirac
electron in the paraxial limit:

W = fiwo,
L = iilz,

P = hkyz,
S = hs.z,

R, =N, —0,
J ="h(s, +0)z. (23)

This coinsides with Egs. with the only difference that
now wo = /k3c?+ p?, and the spin quantum number
s, = £1/2 substitutes the helicity ¢ = +1. Note that
the longitudinal boost momentum also vanishes, N, = 0,
when we assume the relativistic equation of motion Z =

Now, performing the Lorentz transformation (21 and
of the Dirac-Bessel wavefunction and (22)), we
calculate the expectation values and in the
boosted reference frame. Remarkably, this results in for-
mulae very similar to photonic Egs. (14)):

W' = hywy, P’ =hk (z’ - 'yu;:ofc') ,

k
L' = [ty +s.(y — v 1)]Z + hszuii/ )
wo
I —1=/ kOC—/ / —/
S'=hs, (v 'z fuw—ox , JI=hy(l+s,)Z , (24)
Ri:%(fwsz)y’fvti’, L=—hyu(l+s.)y" .
wo

The main difference from the photonic case is that
wo/koc # 1, and these factors modify the directions of
the boosted momentum, spin, and orbital AM.

One can see that the modified transformations
exactly correspond to the fact that the Pauli-Lubanski
four-pseudovector (£9,%) = (S-P, SW/c) [32], orthog-
onal to the electron four-momentum (W/c, P), is trans-
formed as a four-vector under Lorentz boosts. This has
several consequences. First, the direction of the spin AM
does not follow the momentum of the electron: S’ ) P’.
Second, the absolute value of the spin AM diminishes:
S" = (h/2)\/1—u?p?/wg < S, which can be inter-
preted as partial depolarization of the boosted electron.
Finally, the transformation of the Pauli-Lubaski vector
also describes the transformation of the electron helic-
ity ho = ¥/ P. In the original and boosted frames, the



helicity becomes:

o=s., o =——2 (25)

/ P
which clearly indicates that the helicity is Lorentz-
invariant only for massless particles.
Akin to the photonic case, Egs. , we separate

the intrinsic (vortex-related) and extrinsic (shift-related)
parts of the electron orbital AM:

— 1 k
LEXt/:RIXPI:h(1€+2SZ) YT Z/—FELCXI ’
2 2 wo

. ! k
Llnt/:Ll—LeXt/:hg (Py—i_2’yz/_ ;Lu?oc)_(/>7 (26)

where we used Z/ = (¢?P./W’)t. Thus, the intrinsic
and extrinsic orbital AM of electrons are also analogous
to those of photons (up to modification by the kgc/wo
factors). In particular, as it should be, the vortex-related
intrinsic orbital AM depends only on the vortex quantum
number ¢ and is independent of the spin s,.

Similar to the case of optical beams, the expectation
values of the R-dependent operators for electrons de-
pend on the choice of the beam cross-section used in
the integration. We found that Egs. , consistent
with the Lorentz transformations of the relativistic AM,
are obtained only when choosing the tilted cross sec-
tion 2’ = 2'tanfg, i.e. 9/0k. = tanfgd/0k.,, where
s = tan—!(uy kgc/wo). Notably, this angle corresponds
to the direction of the electron spin AM S’ rather than
momentum P’ (for photons these directions coincide).
Understanding this peculiarity requires further investiga-
tions of properly 3D localized Dirac wavepackets, which
is beyond the scope of this study.

IV. DISCUSSION

We have considered relativistic transformations of the
spin and orbital AM of paraxial photons and Dirac elec-
trons under the transverse Lorentz boost. The main re-
sults are summarized in Egs. , , , , and in
Fig. 3. We have found that the Lorentz transformations
of these quantities, as well as of other beam character-
istics, exhibit quite nontrivial forms, which together en-
sure the proper Lorentz transformation of the total AM
and resolve the paradox with the transformation of the
photon spin, Fig. 1. Most importantly, the transverse
Lorentz boost inevitably produces the spin-to-orbital AM
conversion (i.e., helicity-depend terms in the orbital AM)
and nontrivial redistribution between the intrinsic (vor-
tex) and extrinsic (shift) parts of the orbital AM. These
effects have the geometric origin and evidence the rela-
tivistic SOIs of light.

Although we considered the particular case of Bessel
beams (allowing analytical calculations), the results are
generic for paraxial azimuthally-symmetric beams or

wavepackets. This is because all derived transformations
have very clear geometric/relativistic explanations, inde-
pendent of the particular type of the beam. Note also
that we considered only transverse Lorentz boosts. It is
easy to see that a longitudinal z-boost does not break
the monchromaticity of the beam and can only modify
its parameters . Until this breaks the paraxiality
of the beam (i.e., for v < ¥5'), the spin and orbital
AM remain practically unchanged. We also note
that the general formalism developed in this work alows
one to perform the Lorentz transformations of arbitrary
Maxwell and Dirac fields and to determine their prop-
erties in any reference frame. These results can play an
important role in scattering processes involving relativis-
tic particles carrying intrinsic AM, as well as in studies
of light emitted by fast-moving bodies.

It should be emphasized that the nontrivial transfor-
mations found in this work are actually fixed by funda-
mental reasons. Namely, the transformation of the to-
tal AM J and the boost momentum N are determined
by the Lorentz boost of the rank-2 AM tensor, while
the spin AM S follows the boost of the Pauli-Lubanski
four-vector (this is applied to both electrons and photons
[33, B4]). Hence, the total AM and spin AM inevitably
obey different transformations. The difference between
these two determines the nontrivial form of the orbital
AM L. Moreover, the orbital AM can be split into the
extrinsic part L' (determined by the position of the
particle) and the intrinsic one L™ (related to the vortex
phase structure of the wavefunction). If we adopt the fact
that the intrinsic contribution must depend only on the
vortex quantum number ¢ (but not on the spin state o
or s,), this unambiguously determines the position shift
R’ proportional to (£ 4+ 20) or (¢ + 2s,). Interestingly,
such dependence was previously known only for the mag-
netic moment of the Dirac electron [12], 2] [44], and was
directly associated with the g = 2 gyromagnetic factor
for the electron spin. Our calculations show that this
combination is universal for the relativistic Hall effect,
independently of the spin and mass of the particle.

The difference between relativistic transformations
of the spin and orbital AM can also be compared
with the difference in the commutation relations of the
quantum-mechanical versions of these quantities [6], 34,
47). Neither spin nor orbital AM operators (assuming
their second-quantization or covariant Berry-connection
forms) obey the canonical SO(3) commutation rules,
while the total AM does. In a similar manner, neither
spin nor orbital AM obeys the proper Lorentz transfor-
mation of the total AM. This nicely illuminates the in-
timate links between quantum and relativistic features
inherent in the Maxwell and Dirac equations.
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