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As superconductor quantum technologies are moving towards large-scale integrated circuits, a
robust and flexible approach to routing photons at the quantum level becomes a critical problem.
Active circuits, which contain parametrically driven elements selectively embedded in the circuit offer
a viable solution. Here, we present a general strategy for routing nonreciprocally quantum signals
between two sites of a given lattice of oscillators, implementable with existing superconducting circuit
components. Our approach makes use of a dual lattice of overdamped oscillators linking the nodes
of the main lattice. Solutions for spatially selective driving of the lattice elements can be found,
which optimally balance coherent and dissipative hopping of microwave photons to nonreciprocally
route signals between two given nodes. In certain lattices these optimal solutions are obtained at
the exceptional point of the dynamical matrix of the network. We also demonstrate that signal and
noise transmission characteristics can be separately optimized.

I. INTRODUCTION

The goal to achieve accurate control over propagation
of electromagnetic waves has motivated a great deal of
research in photonics. Experimental progress in photonic
crystals and metamaterials have matured to a degree that
nanofabricated semiconductor and metallic optical struc-
tures provide fabrics for guiding and storing light that
allows highly accurate control over desired metrics. The
recognition that a fundamental limitation is imposed due
to backscattering of light from unavoidable fabrication
imperfections has driven the search for a new genera-
tion of optical materials that benefit from the imposition
of electromagnetic nonreciprocity, without a reliance on
magneto-optical effects. A number of effective strate-
gies have been devised to achieve such nonreciprocity.
One strategy relies on the implementation of a direction-
dependent phase in a lattice of resonators with time-
modulated coupling strength [1]. The idea here is the
generation of a synthetic gauge field that gives rise to
a band-structure eliciting topological protected one-way
edge states [1–6]. Another approach relies on the special
properties of an effective non-Hermitian generator for
light propagation [7–11].

Here we study the quantum transport of electromag-
netic excitations in a lattice that is subject to parametric
driving. We show how control over the flow of light can be
exercised by optimizing the spatial pattern of parametric
driving (amplitude, phase and frequency). The perfor-
mance metrics we choose here relates to nonreciprocal
propagation between two ports connected to the lattice,
see Fig. 1. The nonreciprocal propagation in the active
lattice is generated through a quantum bath engineering
approach. Interferences between coherent and dissipative
hopping between primary nodes of the active lattice is
specifically engineered to destructively cancel all other
propagation paths than the desired one. The physics of
the unit cell of the lattices we consider here was intro-
duced in Refs. [12, 13]. The dissipative component of
hopping is engineered through an auxiliary node (”link
oscillator”) that is deliberately chosen to be lossier than

FIG. 1. Directional propagation in a oscillator lattice with 256
sites. An input signal is injected on the upper left corner and
propagates along a pre-designed path to the output waveguide
attached to the lower right oscillator. Depicted is the averaged
steady-state amplitude of each oscillator.

the primary nodes of the lattice. The lattice of parametri-
cally driven oscillators, in the limit of vanishing coupling
to link oscillators, possess a band structure that has no
topologically non-trivial properties. Nonreciprocal prop-
agation arises here purely due to finite loss, in contrast
to earlier work on nonreciprocal propagation that rely on
the existence of chiral edge-states of an associated bulk
that has a topologically non-trivial band structure [1, 14].

Quantum transport in a parametrically driven lattice in
principle requires the solution of the many-body problem
of an array of driven dissipative non-linear oscillators. We
show that this problem in appropriate operation regimes
can be reduced to a set of linear Heisenberg-Langevin
equations governed by a non-Hermitian matrix below
the parametric instability threshold. The parameters
of this non-Hermitian matrix are the drive amplitudes,
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frequencies and phases, providing a flexible active fabric
for propagation of electromagnetic excitations that is
dynamically tunable. The optimization problem then
is shown to be generally governed by special points in
the parameter space where the dynamical non-Hermitian
matrix becomes singular. Such points are referred to
as ”Exceptional Points” (EPs) and have been discussed
extensively in the context of wave propagation and lasing,
in particular in connection with PT-symmetry breaking
[7–11]. The presented problem and the associated analysis
requires consideration of quantum fluctuations, noise and
quantum non-linearities in the presence of such EPs.

We propose a realization of such an active lattice using
components that are readily available in superconducting
circuits. The unit cell of the active lattice discussed here
(containing three oscillators) has been studied theoreti-
cally [12, 15] and has been already realized experimentally
in superconducting circuits and opto-mechanical systems
with compact and scalable components [16–20]. For these
realizations focusing on circulator-like geometries signal
routing is not a concern (or definable) – such a possibility
emerges in a lattice as discussed in this work.

II. THE ACTIVE LATTICE EFFECTIVE
HAMILTONIAN

We consider a lattice of oscillators (Fig. 2) where the
exchange of excitations between two nodes di and dj takes
place via two processes: a direct exchange (amplitude
Gije

−iφij ) and an indirect exchange via a link-oscillator

d̂ij (amplitudes Gi;ij , Gj;ij). The dynamics of such a
system is governed by the effective Hamiltonian

Ĥ =
∑
<i,j>

Gij d̂
†
i d̂je

−iφij +Gi;ij d̂
†
i d̂ij +Gj;ij d̂

†
j d̂ij +h.c..

(1)
Here, < i, j > denotes nearest neighbor nodes and the
indices i and j run over integers 1, . . . , N2, from left to
right and top to bottom. The hopping elements Gij ,
Gi;ij and Gj;ij are assumed to be real-valued. A crucial
element here is the tunable non-zero phase φij . This
lattice-model with adjustable parameters G and φ can
be realized through parametric processes, which will be
discussed in more detail in the implementation section.

We furthermore specify that each link-oscillator d̂ij is
coupled to a reservoir that gives rise to dissipation at
rate κij and is subject to the associated noise. The goal
is to design the parameters Gij , Gi;ij , Gj;ij , and φij to
nonreciprocally route an excitation injected from the site
i = 1 to the site i = N2, where the signal is to be collected,
as shown in Fig. 2.

We also consider amplification of the injected signal,
which can be implemented by reconfiguring the parametric
interactions on a given link oscillator. This leads to
the following interaction between the link and the node
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FIG. 2. Illustration of the active lattice. Each oscillator of
the N2-lattice is directly coupled to its neighboring oscillators
(solid lines). For simplicity we assume here uniform coupling
strengths Gije

iφij ≡ J . Additionally, each oscillator pair is
indirectly coupled via link-oscillators (black circles), giving rise
to an incoherent indirect exchange at the rate Γ. Oscillator
1 and N2 are coupled to external waveguides with coupling
strength κ. The red circles denote a possible propagation path
through the lattice if a signal is injected on oscillator 1 and
transmitted to oscillator N2.

oscillators:

ĤPA =
∑
<i,j>

Gij d̂
†
i d̂je

−iφij+Gi;ij d̂
†
i d̂
†
ij+Gj;ij d̂

†
j d̂
†
ij+h.c.,

(2)
which can be optimized to yield one-way propagation with
a tunable gain from oscillator j to j + 1.

III. ONE-WAY TRANSPORT BETWEEN TWO
NODES

We first discuss the one of the basic ingredients of the
proposed active lattice, namely the implementation of
one-way transport between two isolated nodes, i→ j. We
assume in what follows that κij , the dissipation acting
on the link oscillator ij, is the dominant loss channel in
the system. Using a Heisenberg-Langevin approach (see
Appendix A), the conditions for one-way propagation can
be extracted by considering the dynamics of expectation

values d̄n ≡ 〈d̂n〉 and adiabatically eliminating the link-
oscillator:

˙̄di =− Γi;ij
2
d̄i −

[
iGije

−iφij +

√
Γi;ijΓj;ij

2

]
d̄j ,

˙̄dj =− Γj;ij
2

d̄j −

[
iGije

+iφij +

√
Γi;ijΓj;ij

2

]
d̄i. (3)

Here Γn;ij = 4G2
n;ij/κij , (n ∈ i, j). We aim for the situa-

tion where the oscillator j is driven by the oscillator i but
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FIG. 3. Transmission properties and eigenvalues for a chain of N = 10 oscillators with fixed coherent hopping strength |J | = κ/2.
(a,b) Forward and backward transmission for various values of Γ/κ. The transmission window is determined by the coherent
hopping strength, i.e., transmission in both directions is possible in the frequency range ∆ω = 4|J |. Once the directionality
condition Γ/κ = 1 is met, the reverse transmission vanishes. (c) Eigenvalues of the dynamical matrix for various values of Γ/κ.
Below the exceptional point, i.e., Γ/κ < 1 the system shows underdamped oscillations. The point of directionality at Γ/κ = 1
coincides with an exceptional point, where all eigenvalues are degenerate and real. For Γ/κ > 1 the eigenvalues are purely real,
implying overdamped dynamics. (d) Forward and backward transmission for fixed directionality condition, as the damping rate
of the link oscillators κij is varied. The bandwidth in which nonreciprocal transmission is possible is on the order of 2κij . It is
seen that the reverse transmission gets suppressed even for modest values of κij .

not vice versa. This can be achieved through balancing
the effective dissipative hopping term generated by the
integration out of the link oscillator, the second term in
the square brackets, with the unitary hopping term, given
by the first term. The balancing conditions become

φij = −π
2

and Gij =

√
Γi;ijΓj;ij

2
. (4)

This condition provides a manifestly directional coupling
for excitations (at the equation of motion level, j is cou-
pled to i but not vice versa).

This mechanism for nonreciprocal transport between
two oscillators through the balancing of dissipative and
coherent hopping has been first proposed in Ref. [12].
Recent experimental work in three-mode systems have
demonstrated superconducting circulators and directional
amplifiers operating close to the standard quantum limit
[16, 18]. These experiments essentially implement condi-
tions similar to the one stated in Eq. (4), as has been also
found in Ref. [15]. Nonreciprocal signal propagation via a
dissipation-based approach was recently implemented in
an optomechancial setup as well [17]. The generalization
of these considerations to an N×N lattice requires the sat-
isfaction of further conditions while providing additional
functionalities, which we discuss below.

IV. NONRECIPROCAL SIGNAL
PROPAGATION

The evaluation of transport characteristics requires
the system to be opened up to the environment. Be-
sides that, we aim to design the finite dissipation on
the link-oscillators to control the transport of excitations.
Therefore the active lattice dynamics has to be addressed
through an open system approach. This regime should

be contrasted to earlier work in lattices subject to artifi-
cial gauge fields [1, 21–26] where dissipation is generally
expected to be minimized and does not play a critical
role. In the latter case, directional propagation is pos-
sible due to topological protected edge states and can
be described through Hamiltonian dynamics. Because
the optimal conditions we find sensitively depend on the
lattice dimensionality and geometry, we first discuss the
case of a one-dimensional chain.

We begin by illustrating the conditions for nonrecipro-
cal transport in a chain of N oscillators. Coupling the
input (d1) and output (dN ) oscillators to external waveg-
uides, while giving rise to an adjustable coupling loss κ
(assumed equal for both ports without loss of generality),
allows us to study signals entering and leaving the chain.
For simplicity, we assume uniform couplings Gije

iφij ≡ J
and Γ ≡ 4Gn;ij/κij , (n ∈ i, j). The condition Eq. (4) is
then J = −iΓ/2, resulting in the decoupling of the jth
oscillator from the j + 1th oscillator. This decoupling
leads to a situation where an oscillator in the chain is
driven by its left neighbor, but never from any higher
element in the chain, i.e., the stationary solution of each
oscillator becomes d̄j = −d̄j−1. By using standard input-

output theory [27], d̂j,out = d̂j,in +
√
κd̂j , the scattering

between the input and output ports is described by a
2× 2 scattering matrix s[ω]:

Dout[ω] = s[ω] Din[ω] +
~̂
ξ[ω], D[ω] =

(
d̂1[ω], d̂N [ω]

)T
.

(5)

Here, ξ̂[ω] accounts for noise incident on the oscillators
from the waveguides and the zero frequency scattering
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matrix is

s[0] =


Γ− κ
κ+ Γ

0

(−1)N4κΓ

(κ+ Γ)2

Γ− κ
κ+ Γ

 Γ≡κ
=

(
0 0

(−1)
N

0

)
. (6)

Thus by applying the impedance matching condition Γ =
κ in the second step, we realize the scattering matrix of a
perfect isolator. No input on oscillatorN will ever show up
at the output of oscillator 1, while any input on oscillator 1
will be perfectly transmitted to oscillator N , i.e., |s21| = 1.
Interestingly, the impedance matching condition requires
that κ, the coupling to input and output waveguides, to
be the same order as the hopping strength |J | (= Γ/2
to satisfy Eq. (4)). We note that this condition is not
necessary for nonreciprocity, but it prevents unwanted
back-reflection of an injected signal.

Next we consider the transmission away from resonance.
In the absence of incoherent hopping via the link oscil-
lators, Γ = 0, forward and reverse transmission display
N resonance peaks and are identical as required by reci-
procity [see Fig. 3 (a,b) for Γ/κ = 0]. We note that the
operation point of choice requires that the chain is in the
low-finesse regime (|J | = κ/2), thus not all resonances
(in particular those near the center of the band) are well-
resolved. As Γ is turned on, forward transmission peaks
in Fig. 3(a) gradually smear out. When the direction-
ality matching condition Γ = 2|J | = κ is satisfied the
entire band originally of width 4J collapses to a single
Lorentzian peak with a bandwidth of the order of κ/2.
Simultaneously reverse transmission [Fig. 3(b)] is seen to
vanish completely within the band.

The analysis of the spectrum of the dynamical matrix

L, defined by ˙̄d = L d̄ where d̄ = [〈d̂1〉〈d̂2〉 · · · 〈d̂N 〉]T,
reveals another interesting aspect of the nonreciprocity
condition found. Due to the coupling to the waveguides
and the dissipative link-oscillators, L is a non-Hermitian
matrix and its eigenvalues Lvn = εnvn are generally
complex-valued. For Γ = 0, the system dynamics is gov-
erned by N complex eigenvalues whose real and imaginary
parts give the damping rates and the associated resonance
frequencies respectively of Bloch modes of an open tight-
binding oscillator chain (for vanishing waveguide cou-
pling κ → 0 the eigenvalues would be purely imaginary
εn = 2i|J | cos[nπ/(N + 1)] implying undamped, coherent
dynamics). As Γ approaches the nonreciprocity condition,
the eigenvalues collapse to an N-fold degenerate purely
real eigenvalue given by εn = −κ [Fig. 3 (c)], implying
overdamped dynamics. The inspection of eigenvectors
reveals that all eigenvectors are degenerate as well, hence
the nonreciprocity condition found coincides with an ex-
ceptional point. The role of such special degeneracies and
their connection to unusual dynamical regimes have re-
cently attracted a lot of interest in coupled optical cavities
operating in the classical regime [9–11, 28–30].

A remaining important parameter is the damping rate
κij of each link-oscillator, it determines the frequency
band over which the transmission can be rendered nonre-

FIG. 4. Parametrization for nonreciprocal propagation along
one edge in a 16 oscillator lattice. We implement two amplifica-

tion stages on the upper and the left edge with Γ23 = Γ812 = Γ̃

and φ̃23 = φ̃812 = π/2. The remaining couplings are uniformly
chosen to be Γ = 2|J | = κ/2. The phases depend on the prop-
agation direction as indicated by the black arrows, we have
φij = −π/2 for →, ↓ and φij = +π/2 for ←, ↑. In principle,
only the phases and couplings of the signal-carrying oscillators
(red circles) and their nearest neighbors have to be fixed. The
remaining oscillators do not affect the transmission properties
of the lattice.

ciprocal. To sufficiently suppress the reverse transmission
requires κij/κ > 1 [Fig. 3(d)]. The directionality band-
width is on the order of ∆d = 2κij , i.e., a detuning of
∆d/2 from resonance corresponds to a 3 dB isolation
between forward and reverse transmission [31].

V. THE 2D SYSTEM

The consideration of nonreciprocal transmission in a
two-dimensional lattice introduces an additional aspect.
There is a large degree of freedom in designing nonrecip-
rocal transmission between two ports attached to such a
lattice, posing in principle a difficult optimization problem.
This large optimization space also harbors a unique op-
portunity to route excitations nonreciprocally through a
path that is dynamically reconfigurable. The optimization
space we consider consists of the choice of link variables
{Γij , φij} for dissipative hopping. Additionally, amplifi-
cation stages via the interaction Eq. (2) will be inserted

between select nodes {Γ̃ij , φ̃ij}. We aim for flexibility
in how we choose to propagate through the lattice while
keeping a simple pattern for the oscillator couplings.

We first analyze a configuration that allows the nonre-
ciprocal routing of the excitation around one edge of the
lattice, as shown in Fig. 1(a). An analytic solution can
be obtained for a configuration with uniform dissipative
coupling strength Γij = Γ on all links (”dissipative links”)
and choosing the pattern of phases φij = ±π/2 as shown
in Fig. 4 for the example of a lattice of 16 oscillators. In
addition we insert an amplifying link at every second link
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FIG. 5. Characteristics for nonreciprocal signal propagation along one edge. a Averaged steady-state amplitude of each oscillator
in a lattice of 256 cavities. The coherent hopping strength is fixed, i.e., |J | = κ/4 and |J | = 0.55× κ/4 for the amplification
links if applicable, while the dissipative coupling strength is increased from the left to right column. Once the directionality
conditions are matched, i.e., graph (vi) and (ix), only the edge cavities have a finite occupation. However, to have a transmission
close to unity, amplification stages have to be implemented. b Eigenvalues for a N = 8 oscillator lattice without and with
amplification. The coherent hopping strength is set to |J | = κ/4 and the dissipative rate Γ is varied. The dynamics at the point
of directionality is described by purely real eigenvalues. Note, this fact is independent of the chosen propagation path and the

lattice size, for details see Appendix C. c Transmission and added noise for propagation over one edge. By increasing Γ̃/κ the

signal gets amplified, while the added noise is suppressed. For Γ̃/κ → 1 the transmission diverges and the noise reaches its
minimal value of 3.5. In Figure c(i) the suppression of the added noise is rather independent of the lattice size. The reason

therefor is, that a larger lattice size involves more amplification stages, thus, a larger coupling strength Γ̃ results in a higher gain
value. Comparing the added noise for various N and fixed transmission value we see, that a larger lattice size requires a larger
amount of gain to come close to the quantum limit, cf. graph c(ii).

along the designated edge of propagation (except at the
corners) and denote the effective coupling strength of two

neighbors at these stages as Γ̃. The latter is a measure
of how strongly we amplify the signal on its way through
that link. Impedance matching and nonreciprocal propa-
gation is ensured for the choice Γ = 2|J | = κ/2. For these
conditions, forward transmission is given by

T1→N2 =
1

4

 2Γ̃κ(
κ− Γ̃

)2


2N−4

, (7)

from which we infer that stability requires Γ̃ < κ. Fig. 5c

(i) depicts the transmission as a function of Γ̃ for various
lattice sizes N , showing that considerable signal ampli-
fication can be attained while staying away from the

instability condition Γ̃ = κ. To transfer a signal suc-
cessfully through the lattice, the implementation of the
amplification stages is crucial. Without the latter, the
propagation is still nonreciprocal and over the edge but
the signal amplitude decays due to induced local damping,
cf. Fig. 5(a) graph (vi) vs (ix).

VI. NOISE CHARACTERISTICS

Noise at the output port can be characterized by
the symmetrized noise spectral density S̄N2,out[ω] =
1
2

∫
dΩ
2π

〈{
d̂N2,out[ω], d̂†N2,out[Ω]

}〉
which can be evaluated

using input-output theory. For example, taking the con-
figuration discussed in the previous section (e.g. Fig. 4),
the added noise referred back to the input yields

n̄add =
S̄N2,out[0]

T1→N2

−
(
n̄Td1 +

1

2

)
' 7

(
n̄Tlink +

1

2

)
, (8)

for large gain, i.e., Γ̃/κ→ 1 and equal bath temperatures
for all link-oscillators, see Appendix C 2 for details of the
derivation. Thus for zero temperature and large gain, the
active lattice adds a minimum noise of 3.5 quanta to the
signal. Inspection of Fig. 5c (i) reveals that this large-
gain limit for noise has an asymptote that is independent
of the size of the lattice N . Crucially, we find that the
noise characteristics at the output largely depend on the
placement of the first amplification stages. This is also the
reason behind the observed insensitivity of the noise to
the lattice size. The noise contribution added to the signal
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FIG. 6. Optimization of the noise properties for propagation along one edge. a Noise contribution and their flow when
the corresponding directionality conditions are met. The red dashed area indicates the propagation of the signal injected
into the node-oscillator 1. Neglecting intrinsic losses in the cavities, the noise contamination originates solely from the lossy
link-oscillators. Crucially, the noise contributions arising from the blue-shaded link-oscillators can deconstructively interfere,
while the noise contributions from the black-shaded link-oscillators cannot be compensated. b Possible interference paths in the
noise flow. Under optimal conditions as given in Eq. (9) the noise contributions from the blue-shaded link-oscillators is canceled.
c Optimizing the added noise for a N = 8 oscillator lattice. The black-dotted line depicts the added noise without optimization,
i.e., parameters setting as in Fig.4. Parameters for the upper left 2 × 2 block of oscillators are Γ2,N+2 = Γ1,N+1 = µκ/2,
ΓN+1,N+2 = ΓN+2,N+3 = ΓN+2,2N+2 = µκ/6 and the optimization conditions in Eq. (9) are met. For stability reasons we choose

as well Γ3,N+3 = κ/2 + Γ1,N+1 + Γ2,N+2. The remaining lattice parameters are chosen as in Fig 5. By increasing the coupling Γ̃
and for small factor µ the added noise drops close to the standard quantum limit (SQL) of a phase-insensitive linear amplifier.

Note, the coupling for the first amplification stage between the node-oscillators 2 and 3 is set to Γ̃opt = Γ̃ + Γ1,N+1 + Γ2,N+2 to
adjust the gain factor to the remaining amplification stages.

before an amplification stage is entered sets the minimum
of the added noise. This is simple to understand: the noise
added before the amplification stage gets amplified in the
same manner as the signal and cannot be suppressed in
any way.

For the general case of propagation along one edge in
a lattice of N2 oscillators the first amplification stage is
placed between the node-oscillators 2 and 3. Hence, we
can reduce the noise analysis to the upper left corner in
the lattice, i.e., to the node-oscillators 1, 2, N + 1 and
N + 2 and the link-oscillators surrounding them. We
assume that each oscillator pair couples with the same
strength to their respective link-oscillator, i.e., we set
Γn,ij ≡ Γi,j , and assume that the corresponding direc-
tionality conditions between two oscillators are met, i.e.,
we set Gij = Γi,j/2 and adjust the phases in the desired
manner. Additionally, we neglect any intrinsic losses in
the node-oscillators, so that the noise originates solely
from the link-oscillators. The noise flow between the four
node-oscillators and the corresponding link-oscillators is
depicted in Figure 6a. Each oscillator pair is exposed to
the fluctuations of the respective link-oscillator which cou-
ples them, and the noise can take multiple paths from its
origin to the node-oscillator 2. Crucially, while propagat-
ing the noise contributions acquire different phase shifts
and can destructively interfere at the node-oscillator 2.
This interference is only possible for paths taken within
a closed loop involving the source link-oscillator and the
node-oscillator 2, i.e., contributions from the blue-shaded
link-oscillators in Fig. 6a. However, the noise contribu-
tion from black-shaded link-oscillators in Fig. 6a cannot

destructively interfere, as no closed loops are formed. The
latter will determine the minimum of noise which is added
to the signal.

Figure 6b depicts the individual paths taken by the
noise contributions which propagate along a close loop to
the node-oscillator 2. For optimal propagation the cou-
plings of the node-oscillator 2 to the remaining oscillators
has to be matched to their local dampings, i.e., we have
to ensure that the noise contributions are transmitted to
the node-oscillator 2 with unity transmission. We can
extract three optimal noise canceling conditions:

(i) Γ1,2 = κ+ Γ1,N+1,

(ii) Γ2,N+2 = ΓN+1,N+2 + ΓN+2,N+3 + ΓN+2,2N+2,

(iii) ΓN+1,2N+1 = Γ1,N+1 + ΓN+1,N+2, (9)

where we illustrate in Fig. 6b the propagation loops match-
ing to all three conditions. Taking for example the graph(i)

in Fig. 6b, the noise of the link-oscillators d̂12,in propa-
gates via two paths to the node-oscillator 2: directly and
via the node-oscillator 1. The effective coupling between
the two oscillators is Γ1,2, while the local damping of the
node-oscillator 1 is given as (Γ1,2 +κ+ Γ1,N+1)/2. Under
condition (i) the local damping and effective coupling
strength coincide, hence the noise of the link-oscillators

d̂12,in arrives via both paths with the same amplitude
at the node-oscillator 2. Importantly, along the path
via the node-oscillator 1 a phase-shift of π is acquired,
and combined with condition (i) in Eq. (9) the noise de-
constructively interferes at the node-oscillator 2. Similar

arguments hold for the noise contributions d̂2(N+2),in lead-
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ing to condition (ii) in Eq. (9). However, the cancellation
of the noise contribution from the two link-oscillators
d̂1(N+1),in and d̂(N+1)(N+2),in requires only one condition.
For the case that conditions (i) and (ii) are met, the node-
oscillator 2 couples indirectly via its direct neighbors
to the node-oscillator N + 1 with the effective coupling
strength Γeff = Γ1,N+1 + ΓN+1,N+2. This indirect cou-
pling Γeff has then to be matched to the local damping
of the node-oscillator N + 1, resulting in condition (iii).

To determine now the minimum of added noise we calcu-
late the symmetrized noise spectra of the node-oscillator
2. Applying the optimization conditions in Eq. (9) we
obtain (assuming zero temperature)

S̄2[0] =
1

2
G′2
[
1 +

(
Γ̃opt + Γ1,N+1 + Γ2,N+2

) 1

κ

]
, (10)

here we denote Γ̃opt as the effective coupling between the
node-oscillators 2 and 3, i.e., the first amplification stage,
and with the gain factor

G′2 =
4κ[

κ+ Γ1,N+1 + Γ2,N+2 − Γ̃opt

]2 , (11)

from which we see that for stability reasons we need Γ̃opt <
κ + Γ1,N+1 + Γ2,N+2. Note, we consider here the intra-
oscillator spectra, hence the gain factor has the dimension
of an inverse rate. As mentioned above, the minimum
of the added noise is set by the noise contamination
appearing before an amplification stage is entered, here
this corresponds to the noise added till the signal arrives
at the node-oscillator-2. Hence, in the regime of large
gain, we can approximate the minimal added noise as

n̄add '
S̄2[0]

G′2
− 1

2
' 1

2
+ [Γ1,N+1 + Γ2,N+2]

1

κ
, (12)

hence, for Γ1,N+1,Γ2,N+2 � κ the added noise approaches
the value 0.5. The latter is the expected limit as we
effectively have a linear phase-insensitive amplifier, with
the standard quantum limit of half a quantum. We can
verify numerically that this is actually the minimal added
noise for the whole lattice. In Figure 6c we plot the

added noise as a function of coupling strength Γ̃, i.e., for
increasing gain, and under the optimal noise cancellation
conditions given in Eq. (9). We set Γ1,N+1 = Γ2,N+2 =
µκ/2 and find that for µ→ 0 the noise drops close to 1/2.
Note, depicted is the noise for a 64 oscillator lattice, but,
as before, we find that the minimum of added noise is
independent of the lattice size.

For the case of vanishing couplings to the second row,
i.e., Γ1,N+1 = Γ2,N+2 = 0, the added noise in Eq. (12) is
minimal and the subsystem made of oscillator 1 and 2 is
effectively reduced to a 1D chain. Clearly, from a more
practical perspective, 1D propagation is superior for a
two-port device, i.e., deactivating all couplings in the 2D
lattice except the ones along the desired propagation path
will result in optimal noise performance. Moreover, a sim-
ple two-port routing device does in principle not require

a 2D structure, i.e., an isolator is realized within a single
unit cell of the lattice. However, multi-port routers will re-
quire small lattice structures in which our findings will be
of importance. In addition, for nonreciprocal propagation
with gain a multi-unit architecture can be advantageous,
as the number of amplification stages directly contribute
to the signal gain and increasing their number helps in
keeping the operation point of individual amplification
stages away from the instability point. The design of
multi-port routers and reconfigurable lattice amplifiers
will be a focus of future work.

VII. IMPLEMENTATION

In this section we discuss the physical implementation
of the active lattice Hamiltonian Eq. (1) with supercon-
ducting electrical circuits. We note that these effective
interactions present in this Hamiltonians are linear. The
implementations we discuss require the dynamic modula-
tion of non-linear elements with multiple tones to generate
the requisite linear interaction terms in an appropriate
rotating frame.

The first implementation we discuss is a lattice of LC-
resonators which are pairwise connected via tunable cou-
pler loops [14, 32], see Fig. 7a for the example of a circuit
diagram of a 2× 2 lattice. Each tunable coupling loop is
intersected with a single Josephson junction and induc-
tively coupled to two oscillators. Treating the loop by an
external magnetic flux allows for a tunable coupling g(t)
between these oscillators. This tunable coupling element

between two oscillator modes â and b̂ has been discussed
[32] and implemented experimentally [14]. In these setups
a pair-wise interaction between the two modes can be

generated, given by Ĥ = g(t)(â+ â†)(b̂+ b̂†). Harmonic
modulation g(t) = G cos(ωpt + φ) induces parametric
processes between the modes. The choice of the pump
frequency ωp determines which processes are resonant,
i.e., driving at the sum of the oscillators frequencies leads
to amplification, while driving at the frequency difference
induces frequency conversion.

In the active lattice setup one unit cell consists of three
oscillators which are nondegenerate in frequency. The
oscillators are pairwise connected via the tunable couplers
realizing the lattice Hamiltonian in Eq. (1) if all oscillator
pairs are driven at the respective frequency difference of
each pair. In principle, this would require three differ-
ent pump frequencies ωp per unit cell. However, it is
possible to reduce the number of pump sources by using
second harmonics of the pumps [31] and by designing a
dual-frequency node-oscillator lattice with link-oscillators
which are degenerate in frequency, see Fig. 7a.

A second implementation is based on the Josephson
parametric converter (JPC)[33], see Fig. 7b. The JPC
realizes three-wave mixing and can be operated as a re-
ciprocal or nonreciprocal quantum limited amplifier [16].
The coupling elements of the JPC are based on the Joseph-
son parametric converter (JRM), a ring which consist of
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FIG. 7. Possible implementations for a 2× 2 lattice in sc-architectures. a Circuit schematic for a lattice of LC-resonators. The
oscillators are pairwise coupled via tunable couplers, i.e., a loop intersected by a Josephson junction. Applying a flux Φij to the
loops realizes a tunable coupling gij(t) between the oscillators. For resource efficiency we choose the link-oscillator (red lines) to
be degenerate in frequency (ωc), and the node-oscillators 1(2) and 4(3) are degenerate in frequency ω1(ω2) as well. Due to
these degeneracy the 12 coupler loops require only three distinct flux values (Φ12, Φ1c and Φ2c as denoted in the graph). b
Example for an implementation utilizing Josephson parametric converters (JPC), a device which realizes three-wave mixing
between the orthogonal modes X,Y and Z of each JPC. For the lattice setup, the common mode Z of each JPC corresponds to
the link-oscillators, while the modes X and Y form the node oscillators (highlighted in red and blue). Note, in contrast to a
standard JPC setup [16], this design requires that each mircostrip resonator is intersected with two JPMs.

four JJ-junctions arranged in a Wheatstone bridge con-
figuration. Each JRM supports three orthogonal electric
modes (X,Y, Z) and by treating the ring by a flux Φ close
to half a flux quantum this device realizes three-wave mix-
ing between these modes [33]. Combining the JRM with
microstrip resonators realizes the Josephson parametric
converter (JPC), a purely dispersive device which realizes
the quadratic interactions necessary for the active lattice
setup.

The coupling between linear resonators could as well
be realized via a superconducting interference device
(SQUID). A SQUID-based tunable three-oscillator ele-
ment has recently been used to implement a nonreciprocal
frequency converter that can in-situ be reconfigured to a
phase-preserving directional amplifier [18]. A further de-
sign option involves the replacement of the link-oscillator
by a strongly damped qubit or a mechanical resonator.
The latter could be phononic modes of an optomechanical
crystal [17] or a electromechanical drum-head resonator
[19, 20]. Further details for the case of a JPC and a qubit
implementation are found in the Appendix.

We like to note that based on parametric modulations
in an oscillator lattice (without dissipation), one could
in principle construct topological non-trivial bandstruc-
tures exhibiting one-way edge modes. However, the latter
requires a high amount of control over the whole lattice.
Moreover, a certain lattice size is necessary to allow for
a clear separation of edge states from the bulk, i.e., to
prevent scattering from the edge into the bulk states. In
contrast, our proposed scheme works for arbitrary lattice
size and in principle only the phases and couplings of
the signal-carrying oscillators and their nearest neighbors
have to be fixed. The remaining oscillators do not affect

the transmission properties of the lattice and hence, the
amount of control is much less than in a topological-based
scheme.

VIII. CONCLUSION

Optimal routing of signals in a large-scale quantum
information processor comes with certain requirements:
on-chip implementation of as many components as pos-
sible, quantum limitedness, robustness to imperfections
and protection of signal sources from unwanted back re-
flections. We introduced a 2D superconducting circuit
architecture which allows the nonreciprocal routing of
excitations at the quantum level, and which can achieve
all the desired characteristics. We showed that by engi-
neering the interactions in a dual-lattice design we obtain
full control over the propagation path of a signal injected
into the structure.

Nonreciprocal routing in a lattice via dissipation en-
gineering exhibits notable new features with respect to
topological approaches: (1) there exists no apparent topo-
logical quantum numbers associated with lattices com-
posed of parametrically driven units, (2) the transport is
controlled by a non-Hermitian matrix, which is paramet-
rically dependent on drive amplitudes and frequencies,
(3) appearance of exceptional points, which are special
degeneracies of a non-Hermitian matrix, (4) the lattices
can be designed to amplify input signals near the standard
quantum limit.

The implementation of the proposed active lattice re-
quires a layout that will allow the full control over the
modulated elements, while keeping their cross-talk to a
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minimum. This is a formidable challenge that all quantum
information processing schemes have to face. A promising
route in this direction is a multilayer architecture which
would place the lattice on one chip and the control lines
for modulation in another layer. Efforts in this direction
are underway in several laboratories [14, 34, 35].
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Appendix A: One-way transport between two
connected nodes

We first discuss the basic ingredients of the proposed
active lattice, namely the implementation of one-way
transport between two given nodes i→ j. We start out
from the effective lattice Hamiltonian given in Eq. (1)
of the main text and derive the Heisenberg-Langevin
equations of motion for two sites i and i and the link
oscillator ij:

˙̂
di =− iGije−iφij d̂j − iGi;ij d̂ij ,
˙̂
dj =− iGijeiφij d̂i − iGj;ij d̂ij ,
˙̂
dij =− κij

2
d̂ij −

√
κij d̂ij,in − iGi;ij d̂i − iGj;ij d̂j , (A1)

here we assumed that the link-oscillator is coupled to
an equilibrium bath with rate κij , and that κij is the
dominant loss channel in the system, comparable to Gij ;

d̂ij,in describes thermal and vacuum noise driving the
link-oscillator. As discussed below, the satisfaction of
this condition is no requirement for directionality, but
will suppress the reverse propagating signal for a broader

range of frequencies. Adiabatically eliminating d̂ij , we
obtain the Heisenberg-Langevin equations of motion for
the two sites i and j

˙̂
di =− Γi;ij

2
d̂i + i

√
Γi;ij d̂ij,in −

[
iGije

−iφij +

√
Γi;ijΓj;ij

2

]
d̂j ,

˙̂
dj =− Γj;ij

2
d̂i + i

√
Γj;ij d̂ij,in −

[
iGije

+iφij +

√
Γi;ijΓj;ij

2

]
d̂i,

(A2)

with the definitions Γn;ij = 4G2
n;ij/κij , (n ∈ i, j). In this

damped link-oscillator regime the system of two node-
oscillators can as well be described via a Markovian master
equation, where the dissipative interaction is described

via the non-local superoperator

Γi;ijL

[
d̂i +

√
Γj;ij
Γi;ij

d̂j

]
ρ̂, (A3)

with L[ô]ρ̂ = ôρ̂ô† − 1
2 ô
†ôρ̂ − 1

2 ρ̂ô
†ô. Thus, the link-

oscillator can be interpreted as an engineered reservoir
for the node oscillators, which has two important effects.
It gives rise to an indirect exchange term between two
node oscillators, while inducing local damping at a rate
Γn;ij/2.

We aim for the situation where the oscillator j is driven
by the oscillator i but not vice versa. This can be achieved
through balancing the effective dissipative hopping term,
i.e., the second term in the square brackets in Eq. (A2),
with the unitary hopping term [12]. The balancing condi-
tions become

φij ≡ −
π

2
and Gij ≡

√
Γi;ijΓj;ij

2
. (A4)

These conditions provide a manifestly directional coupling
for excitations (j is coupled to i but not vice versa):

˙̂
di =− Γi;ij

2
d̂i +

√
Γi;ij d̂ij,in,

˙̂
dj =− Γj;ij

2
d̂i +

√
Γj;ij d̂ij,in −

√
Γi;ijΓj;ij d̂i. (A5)

This mechanism should be contrasted to earlier work
in lattices subject to artificial gauge fields [14], where
dissipation is desired to be minimal. In the latter case,
directional propagation is a pure interference effect, can
be described through Hamiltonian dynamics and therefore
it is more appropriate to talk about the breaking of time-
reversal symmetry.

Appendix B: Nonreciprocal propagation along a 1D
chain

In this section we provide further details for the example
of nonreciprocal transport along a chain of oscillators. The
oscillator chain consist of N oscillators with alternating
resonant frequencies ω1,2. Each oscillator pair is coupled
via a coherent hopping interaction and we assume equal
couplings Gije

−iφij ≡ J between oscillator i and j = i+1.
For better overview, we as well assume a uniform coupling
to the link-oscillators, i.e., we set Gi;ij ≡ λ; and we denote

the link-oscillators here as d̂ii+1 ≡ ĉi. Moving to a frame
with respect to each oscillator’s resonant frequency the
final Hamiltonian reads

Ĥ =

N∑
i=1

δid̂
†
i d̂i +

N−1∑
i=1

[
Jd̂†i d̂i+1 + λĉ†i

(
d̂i + d̂i+1

)
+ h.c

]
,

(B1)

here we take into account the detunings δi = ωi − ω1,2.
These detunings can be a consequence of the oscillators’
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resonant frequencies deviating from ω1,2 or from those
of the external driving frequencies that are necessary to
obtain the interactions in Eq. (B1) as further discussed
in Appendix D.

We assumed that oscillator 1 and N are coupled to
external waveguides with coupling strength κe, addition-
ally, all oscillator are coupled to Markovian baths with
coupling strength η. The latter is introduced to evaluate
the impact of finite loss acting on the node oscillators.
We adiabatically eliminate the link-oscillators and apply
the directionality condition J = iΓ

2 with Γ = 4λ2/κij . By
impedance matching the system via Γ = κ we obtain the
equation system

d

dt
d̂1 =−

√
κed̂1,in −

√
ηξ̂1,in + i

√
κĉ1,in − (iδ1 + κ) d̂1,

d

dt
d̂m =−√ηξ̂m,in + i

√
κĉm−1,in + i

√
κĉm,in

−
(
iδm +

η + 2κ

2

)
d̂m − κd̂m−1, m ∈ [2, N − 1]

d

dt
d̂N =−

√
κed̂N,in −

√
ηξ̂N,in + i

√
κĉN−1,in

− (iδN + κ) d̂N − κd̂N−1 (B2)

with κ = κe+η. ξ̂i,in describe thermal and vacuum fluctu-
ation impinging on each oscillator, while ĉm,in correspond
to the noise contribution arising due to the coupling to
the link-oscillators. Although, we obtain a system of
N coupled equations, it is possible to obtain analytic
expressions for the scattering parameters. Using input-

output theory, d̂i,out = d̂i,in +
√
κed̂i, we can derive the

transmission coefficient

T [0] =

(
1− η

κ

)2[
1 +

δ21
κ2

] [
1 +

δ2N
κ2

] N−1∏
m=2

1[
1 + η

2κ

]2
+

δ2m
κ2

δi≡δ=

[
1− η

κ

1 + δ2

κ2

]2 [(
1 +

η

2κ

)2

+
δ2

κ2

]2−N

' 1−N
(
η

κ
+
δ2

κ2

)
, (B3)

with d̂N,out = t[0] d̂1,out and T [0] ≡ |t[0]|2. To reach
close to unity transmission, the detunings δ/κ and the
intrinsic losses η/κ have to be kept at minimum. The
length of the oscillator chain becomes important, as with
the number of oscillators exposed to decay channels the
number of loss channels increases. On the other hand,
having finite detunings and intrinsic losses does not impact
the nonreciprocity of the system. This can be seen by
considering the output of the first oscillator

d̂1,out =
η
κ + i δ1κ
1 + i δ1κ

d̂1,in −
√

1− η
κ

1 + i δ1κ

[√
η

κ
ξ̂1,in − iĉ1,in

]
,

(B4)

crucially, the output does not contain any contributions
from oscillators higher up of the chain. The first term

simply denotes the reflection of an input signal d̂1,in, while
the second term describes the noise contribution from the
first link-oscillator and the bath of oscillator 1. However,
one still aims for a small output of oscillator 1 to protect
the source providing the input signal, if that is desired.
For the optimal case of η/κ, δ1/κ→ 0 the output simply

becomes d̂1,out = iĉ1,in, i.e., even in a perfect setting
we have an effective noise temperature at the output
oscillator 1 which is determined by the first engineered
reservoir. Hence, a cold bath driving the link-oscillator is
desirable.

A further crucial aspect is the noise which is added to
the signal while passing down the oscillator chain. The
total output of the oscillator N is given by

d̂N,out =
η

κ
d̂N,in −

√
κeη

κ

[
ξ̂N,in +

(−1)N−1[
1 + η

2κ

]N−2
ξ̂1,in

]

−
√
κeη

κ

N−1∑
k=2

(−1)N−k[
1 + η

2κ

]N−k [ξ̂k,in +
i

2

√
η

κ
ĉk,in

]
+ t[0]d̂1,in, (B5)

here we considered the limit δi/κ→ 0 as the expression
including finite detunings is rather cumbersome. The
output contains contributions from all oscillators, except
for the first link-oscillator as this contribution ends up in
the output of oscillator 1, as discussed above. To char-
acterize the noise properties we calculate the symmetric
noise spectral density, defined as

S̄N,out[ω] =
1

2

∫
dΩ

2π

〈{
d̂N,out[ω], d̂†N,out[Ω]

}〉
, (B6)

for the evaluation we use the noise correlators〈
ôin(ω)ô†in(Ω)

〉
=
〈
ô†in(ω)ôin(Ω)

〉
+2πδ(ω+Ω) = 2πδ(ω+

Ω)(n̄To + 1), where o = ξi, ck, d1,N . The output noise spec-
tral density on resonance yields

S̄N,out[0] =
1

2
+

[
1− η

κ

][
1 + η

2κ

]2(N−2)

{[
1− η

κ

]
n̄Td1 +

η

κ
n̄Tξ1

}
+
η

κ

[η
κ
n̄TdN +

[
1− η

κ

]
n̄TξN

]
+

N−1∑
k=2

η
κ

[
1− η

κ

][
1 + η

2κ

]2(N−k)

[
n̄Tξk +

η

4κ
n̄Tck

]
,

(B7)

here the second term describes the thermal noise origi-
nating from oscillator 1; while the terms in the square
brackets denote noise contributions from the remaining
node oscillators and link-oscillators. For the case of neg-
ligible intrinsic losses, the contribution which is always
present is thermal noise associated with the input signal,
i.e., S̄N,out[0] → 1/2 + n̄Td1 for η/κ → 0. However, if

one assumes thermal baths n̄T with equal temperatures
for all oscillators, the output spectrum is independent
of the ratio η/κ, S̄N,out[0] =

(
n̄T + 1

2

)
. Crucially, the
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thermal noise contribution of the link-oscillators scales
quadratically with η/κ. This becomes clearer if we set
n̄Td1,N ,ξi ≡ n̄Td and n̄Tck ≡ n̄Tlink and expand the output

noise for small values of η/κ

S̄N,out[0] =
1

2
+ n̄Td +

1

2

[
N

2
− 1

] (
n̄Tlink − n̄Td

) η2

κ2
+O

[
η3

κ3

]
.

(B8)

The reason for this quadratic scaling lies in an inter-
ference effect; neighboring node-oscillators are coupled
to the same link-oscillator and hence, part of the noise
originating from the link-oscillator cancels out.

Appendix C: Nonreciprocal propagation in 2D

Now we turn to the details of nonreciprocal signal
propagation in two dimensions. By tuning the coupling
strengths and the phases in our setup we can choose
an arbitrary path through a 2D-lattice of N2 oscillators.
We focus on three different paths: propagation over all
oscillators, along one edge and along both edges, see
Fig. 8 for the example of a 16 oscillator lattice. The
arrows between each oscillator denote the direction of the
signal/information transfer, which is determined via the
phase ϕij . Depending on the chosen direction the latter
take the following values

↓,→: ϕij = −π
2
, ↑,←: ϕij = +

π

2
. (C1)

We assume that each oscillator pair couples with the
same strength to their respective link-oscillator, i.e., we
set Γn,ij ≡ Γi,j . Hence, the remaining directionality con-
dition between two oscillators simplifies to Gij = Γi,j/2.
After applying the latter condition we end up with an
effective uni-directional coupling of oscillator i and j with
strength Γi,j , cf. Eq. (A5). The optimal values for these
effective couplings Γi,j are chosen depending on the respec-
tive propagation path through the lattice as illustrated
in the following sections.

1. Hopping over all oscillators

We start with the illustration of the special case of
hopping over all oscillator nodes. Here the signal passes
through all oscillators, and all phases are set to ϕij = −π2 ,
i.e., the signal propagates to the right- and downwards.
Although, propagation over all oscillators is not a distinct
propagation path, it comprised a couple of interesting
properties worth pointing out. As mentioned in the main
text, the point of directionality here marks a transition
from oscillatory to purely damped dynamics (in an ap-
propriately rotated frame). Moreover, it allows for unity
transmission without involving an amplification stage,
i.e., it is possible to match the sum of the local damping
experienced by each mode to the coupling to its neighbors

from which it receives the input signal. This means that
a signal has to be passed on faster than it can leak out of
an oscillator.

To realize unity transmission through the lattice we
have to create a pattern of staggered coupling strengths.
To derive this pattern we can exploit the symmetry of
the lattice. For simplicity, we focus on a N2 lattice with
N being even, but a generalization is straightforward.
We divide the square lattice along its diagonals into four
equal triangles, for an example see Fig. 8(a). Now we only
have to define the couplings in one of these triangles and
can then obtain all remaining couplings via mirroring the
coupling pattern along the diagonals. Overall, we follow
the simple rule that along the upper edge the effective
coupling between two neighbors m and m+1 decreases as
κ/2m, reaching κ/2N−1 at the corner. The same holds for
the left edge and is reversed for the lower and right edge,
while the inner couplings have to be adjusted accordingly.
For example taking the triangle involving the upper edge,
e.g., the grey shaded area in Fig. 8(a) for N = 4, the
staggered couplings for arbitrary lattice size are set via

Γm,m+1 =
κ

2m
, m = 1, ..., N − 1,

ΓnN+m,nN+m+1 =
κ

2m
, n = 1, ...,

N

2
− 1;

m = 2, ..., N − 2n,

Γn(N+1)+m,n(N+1)+m+N =
κ

2m
, n = 0, ...,

N

2
;

m = 2, ..., N − (2n− 1),
(C2)

this corresponds to a decreases in the coupling strengths
from the left side of the triangle to the right side. The
couplings scale with κ/2m which follows from the fact
that each node oscillator in this triangle effectively acts
as a beam-splitter, i.e., the signal is fed into oscillator 1
with strength κ and then passed on to oscillator 2 with
strength κ/2 and so on. The remaining couplings in the
lattice can then be obtained via mirroring the pattern
of the triangle along the diagonals, see Fig. 8(a) for the
example of a 16 oscillator lattice.

To illustrate the reason behind the chosen pattern of
coupling strengths a bit further, we consider the example
of a 16 oscillator lattice, cf. Fig. 8(a). Assuming that
all directionality conditions are matched, the expectation
values of the signal oscillator 1 and its right neighbor
oscillator 2, evolve as

d

dt
d̄1 =− κ+ Γ1,2 + Γ15

2
d̄1 −

√
κd1,in,

d

dt
d̄2 =− Γ1,2 + Γ2,3 + Γ2,6

2
d̄2 − Γ1,2d̄1, (C3)

here the coupling to the external waveguide of oscillator
1 is associated with local damping in the amount of κ/2.
Additionally, the dissipative couplings to oscillator 2 and
5 result in local dampings Γ1,2,1,5/2 respectively. For
impedance matching we need Γ1,2 + Γ1,5 ≡ κ to kill the
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a b

c d

m

FIG. 8. Example of an 16 oscillator lattice with a staggered coupling pattern (a) or uniform coupling strengths (b,c). Three
different ways to propagate through the structure are highlighted in red. The black arrows indicate which direction is chosen via
matching the phase φij and the effective strength of the interactions Γi,j . The respective values for the latter are denoted in the

graph, where Γi,j = Γ̃ corresponds to an amplification stage between two oscillators. For the case of propagating over all node
oscillators, i.e., graph (a), the staggered coupling pattern exploits the symmetry of the lattice. Here the coupling pattern in
the triangle formed between the points (a m b)(grey shaded area) can be mirrored along both diagonals to give the coupling
pattern in the triangles (b m d) and (a m c), mirroring the latter once more along the diagonal (c b) results in the couplings
in the remaining triangle (c m d).

reflection of the input signal. A symmetric choice is simply
Γ1,2 = Γ1,5 = κ/2. On the other hand, oscillator 2’s local
damping equals (Γ1,2 + Γ2,3 + Γ2,6)/2, while its coupling
to oscillator 1 is Γ1,2 = κ/2. To transfer the input signal
fast enough we need Γ2,3 + Γ2,6 = κ/2, leading to the
stationary solution d̄2 = −d̄1, which is exactly what we
were after. Crucially, the effective coupling rate between
two oscillators has decreased, i.e., for symmetric choice
we have Γ2,3 = Γ2,6 = κ/4. Overall, to match the local
damping and the effective coupling between all oscillators
for the whole 16 cavities setup, leaves us with a pattern of
staggered coupling strengths as illustrated in Fig. 8(a) and
given by Eq. C2. This results in perfect transmission of
the input signal, i.e., we have d̄16,out = −d1,in as desired.
The latter hold true for arbitrary lattice sizes.

The discussed pattern for the coupling strengths results
in unity transmission, as denoted above. However, under
realistic conditions each oscillator would experiences losses
due to the coupling to its environment. To study the
influence of intrinsic losses, we consider again the example
of a 16 oscillator lattice, where we couple each oscillator to
a Markovian bath with rate η. The transmission becomes

Thopp[0] =

(
κ− η

4η + 3κ

κ4

[η + κ]
4

)2

×

[
1 +

η + κ

2η + κ
+

1

4

[η + κ]
2

[2η + κ]
2

(
1 +

4η + 3κ

4η + κ

)]2

= 1− 16
η

κ
+

428

3

η2

κ2
+O

[
η3

κ3

]
, (C4)

in the second step we expanded the result for small ratios
η/κ. In the limit η/κ → 0 we have unity transmission.
The expanded expression of the transmission for finite
losses makes clear what happens when the signal passes
through the lattice: we have 16 intermediate oscillators,

thus in every of these oscillators we loose approximatively
η/κ-part of the signal. The corresponding added noise
follows the same logic

n̄add =16

(
n̄Td +

1

2

)
η

κ

+

{
293

3

[
n̄Td +

1

2

]
+

563

36

[
n̄Tlink +

1

2

]}
η2

κ2
+O

[
η3

κ3

]
,

(C5)

where we assumed equal thermal baths n̄Tlink for all link-
oscillators, as well as for all node-oscillators (n̄Td ). Every
node-oscillator contributes at least their vacuum fluctu-
ations to the added noise. The contribution from the
fluctuations of the link-oscillators is less damaging as it
scales with (η/κ)2. However, for η/κ = 0 we have no
added noise corresponding to the optimal situation.

While the intrinsic losses do influence the transmission,
they do not affect the directionality of the system. This
can easily be seen, if we calculate the spectral output
noise density for oscillator 1, on resonance we obtain

S̄1,out[0] =
1

2
+ n̄Tlink +

η

κ

(
n̄Tξ1 − n̄

T
link

)
+
η2

κ2

(
n̄Td1 − n̄

T
ξ1

)
,

(C6)

where n̄Tξ1 denotes the averaged thermal occupation of the

intrinsic oscillator-1 bath and n̄Td1 is associated with the
thermal fluctuations accompanying a possible input signal.
The output noise of oscillator 1 contains contributions
from the link-oscillators which couple it to oscillator 2
and 5. Crucially, besides the two reservoirs and the
fluctuations impinging on oscillator 1, there is no further
contribution from other node-oscillators, i.e., oscillator 1
is perfectly decoupled from the lattice.
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2. Propagation along one edge

Next we consider propagation along one edge of the
lattice. Here we can avoid a staggered coupling pattern,
but as discussed in the main text, for optimal noise perfor-
mance we have to carefully choose the effective coupling
strengths involving the four oscillators in the upper left
corner of the lattice, i.e., oscillators 1, 2, N + 1 and N + 2.
We set all remaining effective couplings to κ/2, except
at the amplification stages which we plant between every
second oscillator pair along the edge. For the latter case

we choose Γi,j = Γ̃ for the effective couplings. Addition-
ally, we have to set the phases φij in the right manner
to ensure propagation only along the edge. Consider for
example the signal input oscillator, i.e., oscillator 1, we
want to transmit the whole signal to oscillator 2, thus
we choose the phase φ12 in the way that oscillator 1 is
decoupled from oscillator 2, while oscillator 2 is driven
by oscillator 1, i.e., we set φ12 = −π/2. To avoid that
the any information from oscillator 1 is transmitted to
oscillator N + 1 we have to decouple oscillator N + 1 from
oscillator 1 and thus set φ1,N+1 = +π/2, i.e., the signal
cannot enter oscillator N + 1. We apply this logic along
the whole edge of the lattice.

Crucially, one has to fix all couplings between oscil-
lators surrounding the propagation path. However, the
remaining couplings and phases are less crucial, e.g., in
the 16 oscillator lattice depicted in Fig. 8(b) the lower
left block of 4 oscillators (9,10,13,14) can be completely
decoupled and the couplings between these oscillators can
in principle be set arbitrarily.

With the described coupling pattern the effective cou-
pling of oscillator N2 to oscillator 1 is of the form

d̂N2 = −1

2

N−1∏
m=2

√
Gm d̂1, (C7)

where
√
Gm denote the amplitude gain factors obtained at

each oscillator which is coupled to an amplification stage.
Importantly, each amplification stage is placed between
two oscillators m and m+1, hence the product

√
GmGm+1

corresponds to the amplitude gain factor obtained at the
whole stage. For the stages with uniform couplings, i.e.,

Γi,j = κ/2 for hopping and Γi,j = Γ̃ for amplification, the
amplitude gain factors read

√
Gm =

κ

κ− Γ̃
,
√
Gm+1 =

2Γ̃

κ− Γ̃
, (C8)

and the overall the transmission coefficient becomes

T1edge[0] =
κ2

[Γ1,2 + κ+ Γ1,N+1]
2

[
2Γ̃κ(
κ− Γ̃

)2
]2(N−3)

G2G3,

(C9)
with the oscillator 2 and 3 amplitude gain factors√

G2 =
2Γ1,2[

Γ1,2 + Γ2,N+2 − Γ̃2,3

] ,
√
G3 =

2Γ̃2,3[
Γ3,4 + Γ3,N+3 − Γ̃2,3

] , (C10)

where we have left the coupling rates involving the four
oscillators in the upper left corner of the lattice, i.e.,
oscillators 1, 2, N + 1 and N + 2, unspecified. Choosing

here as well uniform couplings (Γi,j = κ/2, Γ̃) we recover
the forward transmission given in Eq. (7) of the main text.

However, as mentioned above, for optimal noise perfor-
mance we have to carefully choose the effective coupling
strengths in the upper left corner of the lattice. The noise
contribution added to the signal before an amplification
stage is entered sets the minimum of the added noise. For
the case of propagation over one edge the first amplifica-
tion stage is between oscillators 2 and 3. Thus we have
to consider the stationary solution of oscillator 2,

d̂2 =

√
G2

Γ1,2

{
iξ̂2 −

2Γ1,2

Γ1,2 + κ+ Γ1,N+1

[√
κd̂1,in + iξ̂1 − i

2Γ1,N+1

Γ1,N+1 + ΓN+1,N+2 + ΓN+1,2N+1
ξ̂N+1

]
− i 2Γ2,N+2

Γ2,N+2 + ΓN+1,N+2 + ΓN+2,N+3 + ΓN+2,2N+2

[
ξ̂N+2 −

2ΓN+1,N+2

Γ1,N+1 + ΓN+1,N+2 + ΓN+1,2N+1
ξ̂N+1

]}
, (C11)

the first term in the square brackets is simply the input

signal (d̂1,in), while all remaining terms denote the noise

contributions ξ̂m which are added by oscillator m. As

illustrated in Fig. 6a of the main text, each of these
oscillators is exposed to the noise of all link-oscillators it

couples to, hence, ξ̂m can be expressed in terms of these
contributions
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ξ̂1 =
√

Γ1,2d̂12,in +
√

Γ1,N+1d̂1N+1,in

ξ̂2 =
√

Γ1,2d̂12,in +
√

Γ2,N+2d̂2(N+2),in +

√
Γ̃2,3d̂

†
23,in

ξ̂N+1 =
√

Γ1,N+1d̂1(N+1),in +
√

ΓN+1,N+2d̂(N+1)(N+2),in +
√

ΓN+1,2N+1d̂(N+1)(2N+1),in

ξ̂N+2 =
√

Γ2,N+2d̂2(N+2),in +
√

ΓN+1,N+2d̂(N+1)(N+2),in +
√

ΓN+2,N+3d̂(N+2)(N+3),in +
√

ΓN+2,2N+2d̂(N+2)(2N+2),in,

(C12)

here the underlined contributions can deconstructively
interfere at the node-oscillator 2, see blue-shaded link-
oscillators in Fig. 6a, while the remaining contribu-
tions cannot be compensated, i.e., the black-shaded link-
oscillators in Fig. 6a. These interferences at the node-
oscillator 2 are possible because the noise contributions
acquire different phase shifts, see Eq. (C11).

The optimal conditions for deconstructive interference
at the node-oscillator 2 given in Eq. (9) can be extracted
from Eq. (C11). As already discussed in the main text, we
have to ensure that the noise contributions are transmit-
ted to the node-oscillator 2 with unity transmission, i.e.,

so that all ξ̂m contributions inside of the wavy brackets in
Eq. (C11) come in with the prefactor of ±i. For example,
under condition (i), i.e., Γ1,2 = κ+ Γ1,N+1, the noise con-

tribution ξ̂1 originating from oscillator 1 comes in with
a prefactor of −i and therewith the same amplitude as

ξ̂2, but with a phase shift of π. This phase difference
allows for the complete cancellation of the noise contribu-

tion d̂12,in, see Eq. (C12). Similar arguments lead to all
three conditions in Eq. (9), and the stationary solution
of oscillator 2 becomes (G′2 = κG2/Γ

2
1,2)

d̂2 =−
√
G′2
{
d̂1,in +

i√
κ

[
ξ̂1 − ξ̂2 + ξ̂N+2 − ξ̂N+1

]}
,

(C13)

where all noise contributions ξ̂m have now the same pref-
actor. Inserting their explicit structure given in Eq. (C12),
all contributions arriving via a closed-loop at oscillator 2
vanish as desired. For zero temperature the symmetrized
spectra becomes

S̄2[0] =G′2
{

1 +
(

Γ̃opt + Γ1,N+1 + Γ2,N+2

) 1

κ
,

}
1

2
,

(C14)

the first term corresponds simple to the noise accompany-
ing an input on oscillator 1, while the remaining noise con-
tributions arise from the coupling to oscillator 3, N+1 and

N+2. The gain increases for Γ̃opt → κ+Γ1,N+1 +Γ2,N+2

and the added noise in the large gain limit can be approx-
imated as

n̄2,add =
S̄2[0]

G′2
− 1

2
→
{

1

2
+ (Γ1,N+1 + Γ2,N+2)

1

κ

}
,

(C15)

which coincides with the added noise for the whole lat-
tice, i.e., n̄add ' n̄2,add. The later limit is independent
of the lattice size as long the first amplification stage is
implemented between oscillator 2 and 3. Note, a simple
solution to minimize the added noise here is by setting
Γ1,N+1 = Γ2,N+2 = 0, which effectively reduces the sys-
tem to a 1D chain.

Finally, we like to briefly discuss the noise characteris-
tics without optimizing the coupling rates, i.e., by assum-

ing uniform couplings all over the lattice (Γi,j = κ/2, Γ̃),
here the stationary solution of oscillator 2 reads (G′2 =
G2/κ)

d̂2 =−
√
G′2
{
d̂1,in −

i√
κ

[
2ξ̂2 − ξ̂1 +

4

3
ξ̂N+1 − ξ̂N+2

]}
,

(C16)

for this case, the noise contributions ξ̂m come in with
different prefactors and cannot optimally interfere, the
symmetrized noise spectra for oscillator 2 becomes

S̄2[0] = G′2
(
n̄Td1 +

1

2

)
+ G′2

{
4Γ̃

κ
+ 3

}(
n̄Tlink +

1

2

)
,

(C17)

where we assumed equal bath temperatures for all link-
oscillators. We can now extract the noise which is added
up to the input signal at this stage; the added noise
referred back to the input yields

n̄2,add =
S̄2[0]

G′2
−
(
n̄Td1 +

1

2

)
=

{
4Γ̃

κ
+ 3

}(
n̄Tlink +

1

2

)
.

(C18)

Hence, even in the large gain limit and for zero tempera-

ture, i.e., for Γ̃→ κ and n̄Tlink = 0, the added noise is at
least 3.5 quanta.

3. Propagation along both edges

As a final example for nonreciprocal signal propagation
in a 2D lattice, we consider a path over both edges, where
the signal is split at oscillator 1, travels along both edges
and interferes at oscillator N2. For the example of a
16 oscillator lattice see Fig. 8(c). In a square lattice
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a b

FIG. 9. Noise flow and interference for propagating along both edges. a The red dashed area indicates the propagation of

the signal injected into the node-oscillator 1. Oscillator 2 and N + 1 are connected to amplification stages (Γ̃1,2). The noise
contributions arising from the blue-shaded link-oscillators can deconstructively interfere, while the noise contributions from the
black-shaded link-oscillators cannot be compensated. b Noise path for deconstructive interference at oscillator N2. Under the
optimal conditions in Eq. (C19) the noise contributions from the blue-shaded link-oscillators is canceled.

both pathways are symmetric and simply correspond to a
combination of two one-edge cases discussed in the section
above, i.e., the signal amplitude is simply doubled at the
output oscillator. Hence, the transmission simply gains a
factor of 4, i.e., we have T2edge[0] = 4T1edge[0].

Similarly, the noise added at each path is qualitatively
the same and we can optimize the possible deconstruc-
tive interference as before. However, in contrast to the
one-edge case where the noise flow did interfere at os-
cillator 2, the noise interferes now at the node-oscillator
N2. Hence, we have to consider the noise contributions
which propagate along a close loop to oscillator N2 as
sketched in Fig. 9b. The first amplification stages are
placed between oscillator 2 and 3 on the upper edge and
at oscillator N + 1 and 2N + 1 on the left edge, thus we

need the stationary solutions of d̂2 and d̂N+1, from which

we can extract two optimal noise canceling conditions:

(i) Γ12 + Γ1,N+1 = κ,

(ii) ΓN+1,N+2 + Γ2,N+2 = ΓN+2,N+3 + ΓN+2,2N+2,
(C19)

where we illustrate in Fig. 9b the propagation loops match-
ing to both conditions.

At oscillator N2 both pathways interfere, this means we

have to consider the combination of both contributions d̂2

and d̂N+1 as they appear in the stationary solution of os-

cillator d̂N2 , i.e., d̂N2 ∼ (d̂2 + d̂N+1)/2 ≡ D̂2,N+1. Under
the conditions given in Eq. (C19) all noise contributions
of the link-oscillators connecting the four oscillators in
the left upper corner cancel and we obtain

D̂2,N+1√
G′2

∼ d̂1,in +
i√
κ

[√
Γ̃1d̂
†
23,in +

√
Γ̃2d̂
†
(N+1)(2N+1),in +

√
ΓN+2,N+3d̂(N+2)(N+3),in +

√
ΓN+2,2N+2d̂(N+2)(2N+2),in

]
(C20)

where we assumed the same gain factor for both amplifi-
cation stages, i.e.,

√
G′2 ≡

√
κ

Γ12 + Γ2,N+2 − Γ̃1

=

√
κ

Γ1,N+1 + ΓN+1,N+2 − Γ̃2

,

(C21)

and the gain increases for Γ̃1 → Γ12 + Γ2,N+2 and Γ̃2 →
Γ1,N+1 + ΓN+1,N+2. Hence, the noise effectively added
after the first two amplification stages can be expressed

as

n̄2,N+1 =

{
Γ̃1 + Γ̃2 + ΓN+2,N+3 + ΓN+2,2N+2

}
1

2κ
,

→ 1

2
+

1

κ
(Γ2,N+2 + ΓN+1,N+2) (C22)

where we assumed the large gain limit in the second
step. For Γ2,N+2,ΓN+1,N+2 � κ the added noise drops
down to half a quantum – the SQL of a phase-insensitive
amplifier. As for the one-edge case, the minimum noise
value added to a signal leaving the final output port
coincides with n̄2,N+1 (for large gain). This minimum
added noise is again independent of the lattice size; it is
solely determined by the first amplification stages.
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4. Various propagation paths

A crucial aspect of our setup is that we can choose an
arbitrary path through the lattice. We find that, inde-
pendent of the chosen propagation path and the lattice
size, the dynamics at the point of directionality are de-
scribed by purely real eigenvalues. Figure 10 depicts the
results for a 64 oscillator lattice and three different path
ways. The case of propagation over all oscillators, i.e.,
Fig. 10a(i), shows similarities to the cavity chain, here the
point of directionality coincides with three exceptional
points and marks a transition from oscillatory to purely
damped dynamics (in the rotated frame).

Appendix D: Examples for implementations in a
superconducting lattice architecture

There are multiple ways to implement the proposed
setup as sketched in Fig. 6 in the main text. In this
section we provide further details for these actual imple-
mentations. The basic building block could for example
consists of three cavity modes representing the two node-
oscillators and the link-oscillator. The three modes are
coupled via one or more non-linear elements which, un-
der appropriate driving, provides the desired interactions
between them. Crucially, we require a coherent exchange
interaction between the node-oscillators, while the cou-
pling to the link-oscillator realizes an indirect exchange
interaction. However, instead of using a cavity mode as
the link-oscillator one could as well us a highly damped
qubit which we discuss in detail in the following section.

1. A highly damped qubit as an engineered
reservoir

We focus on a single element made out of two node-
oscillators with frequencies ω1 and ω2, which are described

by the operators d̂1 and d̂2. We require a coherent hopping
interaction of the form

Ĥhop =M(t) d̂†1d̂2 + h.c., (D1)

where M(t) = G12 cos(ωP t + φP ) is a time-dependent
coupling which is modulated by an external pump. Such
an interaction can be realized by coupling the two cavi-
ties via a superconducting quantum interference device
(SQUID) [36–38]. Driving the respective coupling cir-
cuit with an external flux at the frequency difference of
the cavity modes, i.e., ωP = ω1 − ω2, induces resonant
hopping between them.

The Hamiltonian in Eq.(D1) realizes reciprocal infor-
mation transfer between the two cavity modes. To break
this symmetry we combine this coherent interaction with
an engineered dissipative interaction, i.e., we construct
an engineered reservoir which is connected to the two
cavity modes and mediates an effective interaction be-
tween them. For this we couple both modes to a qubit

with transition frequency ωq. The qubit itself is an open
system, i.e., it is coupled with rate γ to an environment
which damps its dynamics. As we will see in what follows,
the qubit realizes our engineered reservoir in the high
damping case, i.e., when its dynamics is much faster as
the one of the cavity modes and can effectively considered
to be a Markovian bath for the cavities. The combined
system is described by the Hamiltonian

Ĥ =
ωq
2
σ̂z +

∑
n=1,2

[
ωnd̂

†
nd̂n + gn

(
d̂n + d̂†n

)
σ̂x

]
. (D2)

The qubit and the cavity modes interact via a standard
Rabi interaction, where gn corresponds to the coupling
between the individual modes and the qubit, the latter
is described by the Pauli operators σ̂x,y,z. An external
drive at frequency Ω modulates the transition frequency
of the qubit,

Ĥdrive = Ωε cos(Ωt+ φ)σ̂z. (D3)

a driving scheme which incorporates first order sideband
transition physics [39–42]. This means that by tuning the
drive to a sideband at frequencies ωq ±ωn (blue/red) one
can realize first order scattering processes between the
qubit and the cavity modes. For example, having a tone
on the red sideband results in swapping of excitations
between the cavity modes and the qubit, a process which
conserves the number of excitations. On the other side,
having a tone on the blue sideband realizes a two-mode
squeezing interaction which generates entanglement and
amplification. A possible realization would be an external
flux line in the vicinity of a transmon qubit.

In the next step we introduce an interaction picture
with respect to the free Hamiltonian for the cavities and
the qubit, as well as to the drive Hamiltonian Ĥdrive,
described by the unitary transformation

U(t) =e−i[ω1d̂
†
1d̂1+ω2d̂

†
2d̂2]te−

i
2ωqte

−i
t∫
0

dt′Ĥdrive(t′)
, (D4)

applying this transformation the our system Hamiltonian,
i.e., Ĥ′ = U†ĤU , leaves us still with a time-dependent
Hamiltonian of the form

Ĥ′ =
∑
n=1,2

d̂n
[
G+
n (t) σ̂− +G−n (t) σ̂+

]
+ h.c.,

G±n (t) = gn

+∞∑
k=−∞

Jk(2ε)e−i[ωn±ωq±kΩ]t e∓ikφ,

(D5)

with the time modulated coupling coefficients G±n (t). So
far this Hamiltonian is exact and involves Raman up- and
down scattering processes between the cavity resonant
frequency and the sidebands at ωn ± ωq. However, by
choosing the frequency of the external pump one can engi-
neer desired resonant interactions in the coupled system.
We choose a special hierarchy of the resonant frequencies
involved, setting ω1 − ωq = ωq − ω2 = ∆ and drive at
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a b

FIG. 10. a Averaged steady-state amplitude of each oscillator in a lattice of 256 cavities. The dissipative hopping strength Γ is
fixed, while the coherent coupling strength J is increased from the left to right column. Once the directionality conditions are
matched, i.e., graph (vi) and (ix), only the edge cavities have a finite occupation. However, to have a transmission close to
unity, amplification stages have to be implemented. b Eigenvalues as a function of dissipative coupling strength for a N = 8
oscillator lattice for various propagation ways. All eigenvalues are real at the point of directionality Γ = κ/2. The coherent
hopping strength is set to |J | = κ/4 and the dissipative rate Γ is varied. The dynamics at the point of directionality is described
by purely real eigenvalues, the latter is independent of the chosen propagation path and the lattice size.

Ω = ∆. Then the couplings G−n become only secular for
k = ±1, hence, for large enough ∆ we can make a rotating
wave approximation (RWA) and approximate the cou-
plings to G−n (t) ' ±gnJ1(2ε) e±iφn ≡ ±Gne±iφn , where
the +(−) sign refers to n = 1(2). Setting G1 = G2 ≡ G
the effective Hamiltonian becomes

Ĥ′eff = G
(
d̂1e
−iφ − d̂2e

−iφ
)
σ̂+ + h.c.. (D6)

The remaining counter-rotating contributions originating
from G−n (t) are oscillating with k′∆ where k′ 6= 0 and can
be neglected. Additionally, the counter-rotating terms
related to the parametric coupling G+

n (t) are off resonant
for

k1 6=
ω1 + ωq
ω1 − ωq

, k2 6=
ω2 + ωq
ωq − ω2

, k1,2 ∈ Z, (D7)

which can be achieved by appropriate choice of the reso-
nant frequencies.

Hence by comparing the non-RWA and the RWA solu-
tions we can determine the influence of counter-rotating
terms. The only solutions which in principle could be
obtained analytically are from the master equation given
in Eq. (D8).

Finally, we include the coherent hopping given in
Eq. (D1) and have now our final building block, a two
cavity unit where we can tune the interaction direction by
adjusting the strength and the phase of the drive tone on
the qubit together with tuning the coherent interaction.
An advantage of the chosen frequency hierarchy is, that
the pump frequency for the coherent interaction is at
ωP = ω1−ω2 = 2∆, which is simply the second harmonic

of the drive tone on the qubit. Hence, a single pump
source is in principle sufficient.

The qubit is tantamount to a cavity mode as a link-
oscillator. To see this, we assume that the qubit is coupled
to a zero-temperature bath with decay rate γ. In the
case of a highly damped qubit it can be adiabatically
eliminated and the system is modeled via the Lindblad
master equation (setting ϕ ≡ π − 2φ)

d

dt
ρ̂ =− i

[
Ĥhop, ρ̂

]
+ ΓL[d̂1 + eiϕd̂2]ρ̂, Γ =

4G2

γ
,

(D8)

with the superoperator L[ô]ρ̂ = ôρ̂ô†− 1
2 ô
†ôρ̂− 1

2 ρ̂ô
†ô. This

master equation describes the two kinds of interactions
between the cavity modes we were aiming for: the coherent
hopping Ĥhop, defined in Eq. (D1), with coupling strength
G12 and the dissipative hopping with rate Γ assisted by
the qubit.

The adiabatic elimination of the qubit is possible in the
high damping case; to show that the master equation (D8)
describes the system dynamics successfully we perform a
numerical simulation of the master equation with the full
Hamiltonian using Eq. (D5) and Eq. (D1). We compare
our findings to the RWA solution involving Eq. (D6) and
the Markovian limit described by Eq. (D8). Figure 11(a-c)
depicts the resulting dynamics for the cavities’ expectation
values 〈d1,2〉 = d̄1,2 for three different initial conditions
(and assuming always that the directionality conditions
are met). In the Markovian limit their time-dependence
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FIG. 11. Numerical simulations of the master equation for the cavities plus qubit system for three different initial conditions.
Graph (a-c) depict the dynamics of the cavities expectation value with (Non-RWA) and without (RWA) a rotating wave
approximation. Here, the non-RWA solution is simulated with the full coherent dynamics of Eq. (D5), while the RWA solutions
are simulated with the Hamiltonian given in in Eq. (D6). Additionally, the results for the Markovian limit (Markov) are plotted,
i.e., a simulation based on Eq. (D8). Parameters are ω1/κ = 1100,ω2/κ = 100, ωq/κ = 600 and γ/κ = 100. Graph (d-f) depict
the noise spectra for both cavities for various values of qubit damping rate γ (as denoted in the graph). For finite rate γ we used
a rotating wave approximation, i.e., we simulated Eq. (D6), and compare it to the results for the Markovian master equation
(D8). The resulting spectra coincide in the high damping case as expected.

is described via (with Γ = κ)

d̄1(t) = d̄1(0)e−κt, d̄2(t) =
{
d̄2(0)− d̄1(0)κt

}
e−κt.

(D9)

The simulated dynamics coincide nicely with these ex-
pressions. For the case of finite occupation of each cavity
at time t = 0, i.e., d̄1(0) = d̄2(0), the expectation values
decay fast and d̄2(t) becomes negative at t/κ = 1 as ex-
pected. cf. Fig. 11(a). Crucially, for d̄1(0) = 0 and finite
d̄2(0) the dynamics of cavity 1 is unaffected, while for the
reversed initial conditions excitations are transfered from
cavity 1 to 2, see Fig. 11(c) and (b) respectively.

Figures 11(d-f) depict the resulting noise spectral den-
sities as a function of frequency. Here we compare the
RWA solution involving Eq. (D6) for various values of
γ and the Markovian limit described by Eq. (D8). In
the large damping regime the analytical solutions for the
noise spectra are (n̄Tlink = 0)

S1[ω] =
1

κ

n̄Td1(
1 + ω2

κ2

) , S2[ω] =
1

κ

[
n̄Td2(

1 + ω2

κ2

) +
n̄Td1(

1 + ω2

κ2

)2
]
,

(D10)

here the cavity-1 spectra has no contribution from cavity
2. These expressions require a large enough damping γ/κ
of the qubit, however, on resonance (ω = 0) the system
is always nonreciprocal, see Fig. 11(d-f). Crucially, the
damping γ/κ determines the frequency range over which
one obtains directionality.

2. Implementation with a Josephson Parametric
Converter (JPC)

Another possible implementation is based on the
Josephson Ring modulator [33, 43], which is a ring inter-
sected with four Josephson junction realizing three-wave
mixing. Embedding the latter element into a circuit
with three microwave resonators enables quantum limited
amplification and conversion of microwave signals; the
complete circuit is called a Josephson Parametric Con-
verter (JPC)[33]. Moreover, the JPC can be operated in
a nonreciprocal mode, which was recently demonstrated
in [16]. In the following we recall the basic ideas of this
mode of operation. The basic system Hamiltonian of the
JPC yields

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ+ g3

(
â+ â†

) (
b̂+ b̂†

) (
ĉ+ ĉ†

)
,

(D11)

where g3 denotes the coupling strength g3 of the three
modes with resonant frequencies ωa,b,c. We introduce an
interaction picture with respect to the free Hamiltonian
and obtain

Ĥ =g3

(
âe−iωat + â†e+iωat

) (
b̂e−iωbt + b̂†e+iωbt

)
(
ĉe−iωct + ĉ†e+iωct

)
. (D12)

Each of the mode is externally driven via an off-
resonant pump, the corresponding driving frequencies



19

are ωP,n, (n ∈ a, b, c). In the next step we perform a
displacement transformation of the form

â =āe−i(ωP,a−ωa)t−iφa + d̂1,

b̂ =b̄e−i(ωP,b−ωb)t−iφb + d̂2,

ĉ =c̄e−i(ωP,c−ωc)t−iφc + d̂3, (D13)

where we keep the amplitudes ā, b̄ and c̄ real and intro-
duce the pump-phases φn. The first terms describe the
strong field component resulting from the external driving.
Note, in this rotated frame we have to subtract the modes
resonant frequency from the pump frequency. We assume
strong driving and thus neglect possible fluctuations at
the pump frequencies, i.e., we make a stiff pump approxi-
mation. The second terms describe the field/fluctuations
at the modes’ resonant frequencies. After some algebra

we find for the resonant interactions

Ĥ = g3c̄

[
d̂†1d̂
†
2e
−i(ωP,c−(ωa+ωb))t−iφc

+ d̂†1d̂2e
−i(ωP,c−(ωa−ωb))t−iφc

]
+ g3b̄

[
d̂†1d̂
†
3e
−i(ωP,b−(ωa+ωc))t−iφb

+ d̂†1d̂3e
−i(ωP,b−(ωa−ωc))t−iφb

]
+ g3ā

[
d̂†2d̂
†
3e
−i(ωP,a−(ωb+ωc))t−iφa

+ d̂†2d̂3e
−i(ωP,a−(ωb−ωc))t−iφa

]
+ h.c., (D14)

here we made a rotating wave approximation. The choice
of the pump frequencies determines the resonant inter-
actions between two modes. Pumping at the sum of the
frequencies results in non degenerate parametric ampli-
fication, i.e., first terms in the upper Hamiltonian. The
second terms describe frequency conversion and are real-
ized if one drives at the frequency difference of two modes.
The latter would correspond to choosing the pumping
scheme

ωP,a = ωb − ωc, ωP,b = ωa − ωc, ωP,c = ωa − ωb,
(D15)

which results in the effective Hamiltonian

Ĥint =Gcd̂
†
1d̂2e

−iφc +Gbd̂
†
1d̂3e

−iφb +Gad̂
†
2d̂3e

−iφa + h.c.,
(D16)

with Gn ≡ g3n̄; here we again neglected counter-rotating
terms. This is exactly the Hamiltonian for our building
block. A basic gauge transformation yields Eq.(1) of the
main text. Here one of the modes can be considered as the
link-oscillator which realizes the dissipative interaction
between the remaining two modes. We note that one
could as well employ a SQUID as the coupling element
between the three modes as demonstrated recently [18].
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