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We study an optomechanical transistor, where an input field can be transferred and amplified
unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical
resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite
mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by
the phase difference between the linearized optomechanical couplings that breaks the time-reversal
symmetry of this system. The amplification arises from the mechanical gain, which provides an
effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to
the stimulated emission of atoms, where the probe field can be amplified when its frequency is in
resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this
optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification.
In addition, the presence of the mechanical gain can result in ultra-long delay in the phase of the
probe field, which provides an alternative to controlling light transport in optomechanical systems.

I. INTRODUCTION

The interaction between light and mechanical ob-
jects in the low-energy scale has been intensively stud-
ied both in theory and in experiment during the past
two decades. Given the rapid advance in microfabri-
cation [1–3], cavity optomechanical systems have been
exploited for both fundamental questions and various
applications. Such systems provide an appealing plat-
form to study the quantum behavior of macroscopic sys-
tem [4]. Meanwhile, applications of optomechanical sys-
tems, such as ultra-sensitive measurement in the molecu-
lar scale [5–10], weak-force detection [11], quantum wave-
length conversion between microwave and optical fre-
quencies [12, 13], and quantum illumination [14], have
been investigated. Furthermore, optomachanical systems
have also been used to demonstrate quantum optical
effects, such as optomechanically induced transparency
and absorption [15–24] and optomechanically induced
amplification [25, 26].

Among these applications, nonreciprocal transmission
and amplification of light fields are of great interest, simi-
lar to their analogues in electronic devices. The nonrecip-
rocal devices, which exhibit asymmetric response if the
input and output channels are interchanged, can protect
unwanted signals from entering into the network, where
are essential to signal processing and communications.
At the heart of the nonreciprocal devices is an element
that breaks the Lorentz reciprocity of the system [44].
Effects that have been used to realize the nonreciprocity
include the magneto-optical Faraday effect in ferrite ma-
terials [45–48], parametric modulation of system param-
eters [49–52], optical nonlinearity [53, 54], chiral light-
matter interaction [55], and the rotation of device in the
real space [56]. It has been shown that the nonrecip-
rocal propagation of light can be realized with optical

devices [28–31]. Meanwhile, unconventional propagation
of light has been demonstrated by engineering effective
non-Hermitian Hamiltonians in optical systems [57–64],
which can be used to realize on-chip isolators and circu-
lators [65]. Recently, PT symmetry breaking in optome-
chanical systems with coupled cavities, often accompa-
nied by the coalescence of eigenstates at an exceptional
point in the discrete spectrum, has been studied [66, 67],
and low-power phonon emissions [66], chaos [68], non-
reciprocal energy transfer [69], and asymmetric mode
switching [70] have been observed. More recently, op-
tomechanical isolators, circulators, and directional am-
plifiers have been studied in multi-mode systems by mod-
ulating the gauge-invariant phases [32–43].

Here we present a scheme for realizing an optomechan-
ical transistor in a cyclic three-mode optomechanical sys-
tem with finite mechanical gain. In this system, two
optical modes are linearly coupled with each other and
are also coupled simultaneously to a common mechanical
mode. The phase difference between the optomechani-
cal couplings breaks the time-reversal symmetry of this
system and ensures nonreciprocity in the state transmis-
sion. Meanwhile, amplification arises from the mechani-
cal gain, which induces a phonon-photon parametric pro-
cess. By combining nonreciprocity and amplification, the
transport of signal fields through this system thus resem-
bles that of electrical currents through a transistor. Com-
pared with our previous work [74], this approach does not
require the frequency matching between the pump fields
on the cavity and the mechanical modes. Furthermore,
we show that within the operational parameter window
of this optomechanical transistor, an ultra-long delay in
the phase of the probe field occurs due to the finite me-
chanical gain. These findings provide an alternative way
to achieving controlled light transport in optomechanical
systems and can stimulate future works in light amplifi-
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FIG. 1: The schematic of a cyclic three-mode optomechani-
cal system driven by two pump fields of amplitudes ε1 and
ε2 with frequency ωd. A probe field with amplitude εp and
frequency ωp is applied to one of the cavities (to cavity 1 from
the left hand side or cavity 2 from the right hand side). A
mechanical gain Gm is engineered on the mechanical mode
of frequency ωm. The cavities and the mechanical resonator
are coupled via radiation-pressure forces and the cavities are
directly coupled to each other.

cation with optomechanical devices.
This paper is organized as follows. In Sec. II, we intro-

duce the three-mode optomechanical system with finite
mechanical gain. The stability of this system is also dis-
cussed in this section. We then derive the transmission
coefficients of this system in a generic setting in Sec. III.
The behavior of the optomechanical transistor and the
ultra-long delay in the phase of the probe field are stud-
ied in detail in Sec. IV, Finally, conclusions are given in
Sec. V.

II. THE MODEL

Consider an optomechanical system that contains a
mechanical mode with frequency ωm and two cavity
modes with frequencies ω1 and ω2, respectively, as il-
lustrated in Fig. 1. The Hamiltonian of this system has
the form (~ = 1)

H = H0 +HI +Hd, (1)

H0 = ω1a
†
1a1 + ω2a

†
2a2 + ωmb†b, (2)

HI = J(a†1a2 + a1a
†
2) +

∑

i

gia
†
iai(b + b†), (3)

Hd =
∑

i

iεi(a
†
ie

−iωdteiθi −H.c.). (4)

Here H0 is the Hamiltonian of the uncoupled cavity and

mechanical modes, where a†i (ai) for i = 1, 2 and b† (b)
are the corresponding creation (annihilation) operators of
these modes. The Hamiltonian HI describes the linear
interaction between the cavities with coupling strength
J and the radiation-pressure interactions between the
cavity and the mechanical modes with coupling strength
g1 and g2. The Hamiltonian Hd represents the pump
fields applied to the cavities with frequency ωd, ampli-
tudes ε1,2 and phases θ1,2. Without loss of generality,

we assume that the parameters J , g1,2, and ε1,2 are real
numbers. This system can be realized in various configu-
rations, such as the membrane-in-the-middle setup stud-
ied in Refs. [19, 75–78], where one mechanical membrane
is inserted between two cavity mirrors and is coupled to
two cavity modes simultaneously, and the optomechan-
ical setup where a mechanical resonator is coupled to
multiple optical modes in a Fabry Perot cavity [79–81].
In the rotating frame of ωd, the Hamiltonian becomes

Hrot =
∑

i

∆ia
†
iai + ωmb†b+ J(a†1a2 + a1a

†
2)

+
∑

i

gia
†
iai

(

b+ b†
)

+ iεi(a
†
ie

iθi −H.c.), (5)

where ∆i = ωi−ωd (i = 1, 2) is the detuning of the pump
field from the cavity resonance.

We assume the cavity and the mechanical modes are
subject to input noise denoted by f in

i (i = 1, 2) for the
cavity input operators and f in

b for the mechanical in-
put with 〈f in

i 〉 = 〈f in
b 〉 = 0. With Hamiltonian (5),

the Quantum Langevin equations (QLEs) for the cavity
modes are

ȧ1 =
{

−γ1 − i
[

∆1 + g1
(

b+ b†
)]}

a1 − iJa2

+ε1e
iθ

1 +
√

2γ1f
in
1 , (6)

ȧ2 =
{

−γ2 − i
[

∆2 + g2
(

b+ b†
)]}

a2 − iJa1

+ε2e
iθ

2 +
√

2γ2f
in
2 , (7)

where γi (i = 1, 2) is the decay rate of the corresponding
cavity mode. The QLE for the mechanical mode is

ḃ = (Gm − γm − iωm) b− i
(

g1a
†
1a1 + g2a

†
2a2

)

+
√

2Gmf in
b +

√

2γmf in
b,c, (8)

where γm represents the intrinsic damping rate and Gm

denotes the controllable gain of the mechanical mode.
The noise operators f in

b,c and f in
b are associated with γm

and Gm, respectively. Under the condition Gm ≫ γm, the
effect of the mechanical gain dominates over that of the
intrinsic damping. Thus we neglect the intrinsic damping
of the mode b and the corresponding noise operator. The
QLE for the mechanical mode then becomes

ḃ = (Gm − iωm) b− i
(

g1a
†
1a1 + g2a

†
2a2

)

+
√

2Gmf in
b . (9)

In practice, the mechanical gain can be obtained with
various methods, e.g., by phonon lasing or by coupling
the mechanical mode to another cavity mode driven with
a blue-detuned optical pump field [67].

With strong pumping, the steady-state solutions of the
cavity modes 〈ai〉 and of the mechanical mode 〈b〉 can be
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FIG. 2: (Color online) Numerical calculation of the stability of this system with the parameters (a) γ1 = 10Gm, γ2 = 15Gm and

(b) γ1 = 10Gm, γ2 = 10Gm. Other parameters are G1 = |G2| ≡ G =
√

JGm/ sin θ, and ωm/Gm = 103. Each panel contains two
regions. The gray (white) regions represent the stable (unstable) regions of this system. In particular, in (b), when J = 10Gm,
the system is stable with all values θ except for θ = π/2.

obtained as

〈a1〉 =
(γ2 + i∆′

2) ε1e
iθ1 − iJε2e

iθ2

(γ1 + i∆′
1) (γ2 + i∆′

2) + J2
, (10)

〈a2〉 =
(γ1 + i∆′

1) ε2e
iθ2 − iJε1e

iθ1

(γ1 + i∆′
1) (γ2 + i∆′

2) + J2
, (11)

〈b〉 =
−i(g1 |〈a1〉|2 + g2 |〈a2〉|2)

−Gm + iωm

(12)

with ∆′
i = ∆i + gi[〈b〉 + 〈b〉∗]. These coupled equations

can be solved self-consistently. By assuming each opera-
tor is a sum of the steady-state solution and its quantum
fluctuation, i.e., ai = 〈ai〉+ δai and b = 〈b〉+ δb, and ne-
glecting the nonlinear terms, we obtain a set of linearized
QLEs:

δȧ1 = (−γ1 − i∆′
1) δa1 − iG1

(

δb+ δb†
)

−iJδa2 +
√

2γ1f
in
1 , (13)

δȧ2 = (−γ2 − i∆′
2) δa2 − iG2

(

δb+ δb†
)

−iJδa1 +
√

2γ2f
in
2 , (14)

δḃ = (Gm − iωm) δb− i(G1δa
†
1 +G∗

1δa1)

−i(G2δa
†
2 +G∗

2δa2) +
√

2Gmf in
b , (15)

where Gi = gi〈ai〉 (i = 1, 2) is the effective linear cou-
pling between the ith cavity and the mechanical mode.
We assume that the system is operated in the resolved
sideband regime with γi,Gm, Gi ≪ ωm and ∆′

i ∼ ωm.
With these assumptions, we can apply the rotating-wave
approximation to the above QLEs and neglect the fast-

oscillating counter-rotating terms. The QLEs become

δȧ1 = −Γ10δa1 − iG1δb − iJδa2 +
√

2γ1f
in
1 , (16)

δȧ2 = −Γ20δa2 − iG2δb − iJδa1 +
√

2γ2f
in
2 , (17)

δḃ = −Γm0δb− iG∗
1δa1 − iG∗

2δa2 +
√

2Gmf in
b ,(18)

where Γi0 = γi + i∆′
i, and Γm0 = −Gm + iωm. For

simplicity, we rewrite these QLEs in matrix form with

d

dt
λ = −Mλ+Υλin, (19)

where the fluctuation vector λ = (δa1, δa2, δb)
T , the in-

put field λin = (f in
1 , f in

2 , f in
b )T , the coupling matrix for

the input operators Υ = diag
(√

2γ1,
√
2γ2,

√
2Gm

)

, and
dynamic matrix

M =





Γ10 iJ iG1

iJ Γ20 iG2

iG∗
1 iG∗

2 Γm0



 . (20)

The stability of this optomechanical system can be in-
fluenced by the mechanical gain. We derive the stability
condition for this system using the Routh-Hurwitz cri-
terion, which is equivalent to the requirement that the
eigenvalues of matrix M have no positive real part. In
Fig. 2, we plot two typical cases that are employed to
investigate the optical response of this system in the fol-
lowing sections, where the gray regions are stable and
the white regions are unstable. When the system param-
eters are J = 11Gm, γ1 = 10Gm, and γ1 = 15Gm, the
stable region covers all values of θ, which can be seen in
Fig. 2(a). However, when J = γ1 = γ2 = 10Gm, as shown
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in Fig. 2(b), the system is stable with all the possible val-
ues of θ except for θ = π/2.
Practical parameters of our system can be as follows.

For optical modes at the frequency ωi/2π = 108 MHz
(i = 1, 2), the cavity damping rates can be γi/2π ∼ 1−10
MHz with current technology. For convenience of discus-
sion, we choose the mechanical frequency ωm/2π = 100
MHz. The strengths of the linearized optomechanical
couplings Gi/2π (i = 1, 2) can reach a few tens of
MHz [79–81]. Moreover, the coupling strength J between
the cavity modes can be designed to be the same order
of magnitude as the damping rates γi [33]. The magni-
tude of the mechanical gain Gm depends on specific ex-
perimental setups. Small value of Gm can be utilized to
observe OMIT-like spectra and group delay and can be
obtained by driving the mechanical mode directly. Mean-
while, tunable and large mechanical gain can be achieved
by the phonon lasing approach or by applying a blue-
detuning optical pump. The corresponding mechanical
gain is proportional to the square of the effective op-
tomechanical coupling, as shown in Ref. [67].

III. TRANSMISSION COEFFICIENTS

Apply a probe field to cavity 1 in the form of

i(εpa
†
1e

−iωpt − H.c.), as illustrated by the thin solid ar-
row in Fig. 1. The response to a probe field applied to
cavity 2 (the thin dashed arrow in Fig. 1) can be ob-
tained by exchanging the subscripts 1 and 2 in the fol-
lowing results. We assume that the amplitude of the
probe field εp is much smaller than that of the control
field ε1,2, and the steady-state solutions of the opera-
tors a1, a2, b will not be affected by the probe field.
Hence the only change in the QLEs is that one extra
term εpe

−i(ωp−ωd)t is added to (16). To solve this set of
linear QLEs, we use another interaction picture by trans-
forming δai → δaie

−i(ωp−ωd)t, f in
i → f in

i e−i(ωp−ωd)t

(i = 1, 2), and f in
b → f in

b e−i(ωp−ωd)t. The corresponding
QLEs become

δȧ1 = −Γ1δa1 − iG1δb− iJδa2 + εp +
√

2γ1f
in
1 ,(21)

δȧ2 = −Γ2δa2 − iG2δb− iJδa1 +
√

2γ2f
in
2 , (22)

δḃ = −Γmδb− iG∗
1δa1 − iG∗

2δa2 +
√

2Gmf in
b , (23)

where Γi = γi + i∆′′
i and Γm = −Gm + i∆m with ∆′′

i =
∆′

i − (ωp − ωd) and ∆m = ωm − (ωp − ωd) being the
detunings in the new frame.
The optical response of this system to the probe field

can be obtained by solving the steady state of Eqs. (21–

23). By setting 〈δȧi〉 =
〈

δḃ
〉

= 0 and neglecting the

noise terms, we obtain

〈δa1〉 = εp(Γ2Γm + |G2|2)/D, (24)

〈δa2〉 = −εp (G
∗
1G2 + iJΓm) /D, (25)

〈δb〉 = −εp(iG
∗
1Γ2 + JG∗

2)/D (26)

with the denominator

D = J2Γm + ΓmΓ1Γ2 +
(

Γ1 |G2|2 + Γ2 |G1|2
)

−iJ (G∗
1G2 +G1G

∗
2) . (27)

The amplitudes 〈δaouti 〉 of the experimentally accessible
cavity output fields are related to the cavity field 〈δai〉
by the input-output relation

〈

δaouti

〉

+
〈

δaini
〉

=
√

2γe
i 〈δai〉 , (i = 1, 2) (28)

where
〈

δain1
〉

= εp/
√

2γe
1 ,
〈

δain2
〉

= 0, and γe
i is the exter-

nal damping rate that describes the coupling between the
cavity mode and the input field. We can write γe

i = ηγi
with η being the ratio between the external damping rate
and the total damping rate. For the coupling parameter
η ≪ 1, the cavity is under-coupled; and when η ≃ 1, the
cavity is over-coupled [71, 72]. In this work, we consider
the cases of over-coupled cavities with η = 1 and neglect
the cavity intrinsic dissipation.
Using Eqs. (24, 25, 28), the transmission coefficient

t21 ≡ ∂ 〈δaout2 〉 /∂
〈

δain1
〉

can be derived as

t21 = −2
√
γ1γ2 (G

∗
1G2 + iJΓm)

D
. (29)

By interchanging indices 1 and 2 in Eq. (29), we find
that

t12 = −2
√
γ1γ2 (G

∗
2G1 + iJΓm)

D
. (30)

From (29, 30), we find that by manipulating the phase
difference between the optomechanical couplings G1 and
G2, nonreciprocal propagation of the probe field can be
achieved, i.e., |t12/t21| can be adjusted by varying the
phase difference. This effect can be understood through
the effective Hamiltonian associated with (21–23),

Heff =
∑

i

∆′′
i δa

†
i δai +∆mδb†δb

+
∑

i

Giδa
†
iδb+ Jδa†1δa2 +H.c., (31)

which describes a typical three-mode cyclic system. The
propagation of light fields in such a system depends
strongly on the interference between different paths in
the loop. A non-zero phase difference between the cou-
plings G1 and G2 can break the time reversal symme-
try of this system and gives rise to nonreciprocal optical
response [73]. Compared with our previous work [74],
the advantage of this scheme is that it does not require
the matching of the pump frequencies between the opti-
cal and mechanical fields to achieve nonreciprocal prop-
agation of the probe field. The mechanical gain can
be viewed as an effective bath that converts the beam-
splitter operation between the mechanical mode and the
cavities into phonon-photon parametric processes. We
will discuss these points in detail in the following sec-
tion.
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FIG. 3: (Color online) (a) The logarithms of the transmission
coefficients T12 and T21 vs the detuning ∆. Other parameters
are γ1 = 10Gm, γ2 = 15Gm, J = 11Gm, θ = π/2, and G1 =
|G2| ≡ G =

√
JGm. In the vicinity of ∆ = 0, the transmission

exhibits unidirectional amplification. (b) The logarithms of
the transmission coefficients T12 and T21 vs the mechanical
gain Gm. Other parameters are γ2 = 1.5γ1, J = 1.3γ1, θ =
π/2, G1 = |G2| ≡ G = J , and ∆ = 0. Here when Gm/γ1 >
1.325, the system becomes unstable.

IV. NONRECIPROCAL AMPLIFICATION AND

OPTICAL DELAY

In this section, we will investigate the properties of the
transmission coefficients under a special setup, i.e., when
the system acts as an optomechanical transistor. We will
show the feasibility of achieving signal amplification and
nonreciprocity and study the delayed output response in
this three-mode optomechanical system.

A. Optomechanical transistor

We first analyze the behavior of the transmission ma-
trix elements t12 and t21, as given by (29) and (30). For
simplicity, we assume G1 ≡ G with G > 0, G2 ≡ Ge−iθ

with a phase difference θ from G1, and ∆′′
i = ∆m ≡ ∆

with ∆′
i = ωm for the pump fields. The transmission

coefficients under these conditions can be written as

t12 =
2
√
γ1γ2

[

−iJ (−Gm + i∆)−G2eiθ
]

Dr

, (32)

t21 =
2
√
γ1γ2

[

−iJ (−Gm + i∆)−G2e−iθ
]

Dr

(33)

with the denominator

Dr = (γ1 + i∆) (γ2 + i∆) (−Gm + i∆)

+G2 (γ1 + γ2 + 2i∆) + J2 (−Gm + i∆)

−2iJG2 cos θ. (34)

Using (32) for the coefficient t12, we choose the phase

difference θ to satisfy the condition G =
√

JGm/ sin θ
and choose the detuning ∆ = Gm cos θ/ sin θ, which yields
that t21 6= 0 and t12 = 0, i.e., unidirectional propagation
of the probe field can be achieved.
We select a set of parameters that satisfy the stability

condition using the result shown in Fig. 2. Using these
parameters, we plot the logarithms of the transmission
coefficients T12 and T21 in Fig. 3(a) with Tij = |tij |2. The
result gives a clear feature of unidirectional amplification
of the probe field in the vicinity of ∆ = 0, which agrees
with our theoretical prediction. The physics origin of the
amplification arises from the mechanical gain, which can
be viewed as a coherent phonon bath that converts the
beam-splitter operation between the mechanical and the
cavity modes to effective parametric processes between
these modes. The parametric processes greatly enhance
the photoelastic scattering [67]. This effect is in ana-
logues to the stimulated emission process in atomic sys-
tems when the frequency of the probe field is resonant
with that of the anti-Stokes field, where amplification
of the incident photon field can be achieved. This sys-
tem can work as an optomechanical transistor at strong
mechanical gain with Gm ∼ γ1 by choosing appropriate
parameters. As shown in Fig. 3(b), strong unidirectional
amplification can be achieved at Gm = 1.3γ1. Meanwhile,
the increase of the mechanical gain can induce instabil-
ity to this system. With the parameters in Fig. 3(b), the
system becomes unstable for Gm/γ1 > 1.325.
In Fig. 4, we plot the logarithm of the transmis-

sion coefficient T21 at the optimal conditions for unidi-
rectional propagation, i.e., with G2 = JGm/ sin θ and
∆ = Gm cos θ/ sin θ. It is shown that in the neighbor-
hood of θ = π/2, the transmission coefficient reaches its
maximum with max (T21) ≈ 105. This strong amplifica-
tion, together with the nonreciprocity, clearly shows that
our system can be used as an optomechanical transistor
facilitated by the mechanical gain.
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FIG. 4: (Color online) Contour plot of the logarithm of the transmission probability lg (T21) for (a) γ1 = 10Gm, γ2 = 15Gm

and (b) γ1 = 10Gm, γ2 = 10Gm. The optimal unidirectional conditions are used with G1 = |G2| ≡ G =
√

JGm/ sin θ and
∆ = Gm cot θ. It is shown that when θ → π/2, the transmission probability reaches its maximum.

B. Ultra-long optical delay

The optical group delay is another important param-
eter to characterize the optical transmission and re-
sponses. It is well known that the optical transmission
within an electromagnetically-induced transparency win-
dow experiences a dramatic reduction in its group veloc-
ity. Similar effects can be expected in the optical trans-
mission in optomechanical systems. Here we investigate
the optical delay in our system. We first introduce the
optical group delay time defined in terms of the phase of
the transmitted probe field as

τij =
dδij
dωp

, (35)

where δij = arg [tij (ωp)] is the phase of the output field
at the frequency ωp [16, 18]. We consider the system
operated in the regime of an optomechanical transistor
with |t21| ≫ 1 and t12 = 0. To ensure unidirectional am-
plification and similar to the previous subsection, we let
the parameters satisfy the relations: J = 10Gm, G1 ≡ G
(G > 0), G2 ≡ Ge−iθ, ∆′′

i ≡ ∆, γ1 = 10Gm, γ2 = 15Gm,
and G2 = JGm/ sin θ. In Fig. 5, we plot the phase δ21
and the group delay τ21 as functions of the detuning ∆.
It can be shown that strong group delay occurs in the
working window of the optomechanical transistor. As θ
approaches to the value of π/2, the group delay exhibits
sharp increase. This indicates that the strengthening of
the amplification process gives rise to dramatic increase
in the group delay. Note that near θ = π/2, as shown in
Fig. 2(a), the system is close to the boundary between
the stable and the unstable regions, and is more fragile to

environmental disturbance. Therefore, there is a trade-
off between the amplification and group delay and the
stability of this system. By selecting appropriate param-
eters, one can realize an optomechanical transistor with
significant time delay.

C. Noise

In the above discussions, we focus on the nonrecipro-
cal transmission and amplification of the signal field to
the designated output channel. However, in our system,
the mechanical mode carries thermal fluctuations with
thermal occupation number nth ≫ 1 and could have a
strong impact on the performance of this optomechanical
transistor. Below we discuss the transmission of the me-
chanical noise to the cavity output. Specifically, we study
the transmission coefficient t23 that describes the forward
noise transmission and t13 that describes the backward
noise transmission [82, 83]. Using Eqs. (24)-(26) and the
input-output relations, we derive

t13 =
2
√
γ1Gm (−JG2 − iG1Γ2)

D
, (36)

t23 =
2
√
γ2Gm (−iG2Γ1 − JG1)

D
. (37)

Moreover, with the condition for unidirectionality (t12 =
0 with G1 = |G1|, G2 = |G2| e−iθ, J = |G1| |G2| /Gm,
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FIG. 5: (Color online) The group delay τ21 vs the detuning ∆ for (a) θ = 0.3π, (b) θ = 0.4π, (c) θ = 0.45π, and (d) θ = 0.47π.

The group delay τ21 is given in units of 1/Gm. Other parameters are J = 10Gm, γ1 = 10Gm, γ2 = 15Gm, and G =
√

JGm/ sin θ.

and θ = π/2), these transmission coefficients become

t13 = −i
2
√
C1

C1 − 1
, (38)

t23 =
2
√
C2 (1 + C1)

(C1 − 1) (C2 − 1)
(39)

with the cooperativity Ci = |Gi|2 /Gmγi for i = 1, 2.
Note that under the unidirectionality condition, the
transmission coefficient for the signal field becomes

t21 = −i
4
√
C1C2

(C1 − 1) (C2 − 1)
, (40)

Here the backward propagating noise is determined by
the transmission coefficient t13, which can become very
large when C1 ≈ 1. Similarly, the forward propagating
noise is determined by the transmission coefficient t23,
which can become very large when C2 ≈ 1. To avoid the
propagation of the mechanical noise to the input channel,
C1 and C2 need to be chosen to be well separated from

unity. However, as can be seen from Eq. (40), the reduc-
tion of the cooperativities results in the reduction of the
amplification. Therefore, there is a tradeoff between the
suppression of the mechanical noise and the amplification
of the signal field in our scheme. Consider the ratio be-
tween the mechanical noise and the signal field at the out-
put port. We find that t23/t21 = i (1 + C1) /2

√
C1 ≥ 1,

which indicates that the amplification of the mechanical
noise is comparable to or stronger than the amplifica-
tion of the signal. To suppress the contribution of the
mechanical noise, time average on the output signal is
required to increase the signal-to-noise ratio.

V. CONCLUSIONS

To conclude, we have shown that an optomechanical
transistor can be realized in a cyclic optomechanical sys-
tem with finite mechanical gain. Similar to our previ-
ous work [74], the nonreciprocal behavior of this system
arises from the phase difference between the optomechan-
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ical couplings G1 and G2, which breaks the time-reversal
symmetry of this system. The uniqueness of this scheme
is that we use an engineered mechanical gain to achieve
the amplification for the signal field. The presence of the
mechanical gain generates strong parametric processes
between the mechanical and the cavity modes, and sig-
nificantly enhances the photoelastic scattering at the op-
timal frequency. Combining the phase difference with the
mechanical gain thus enables the unidirectional amplifi-
cation of the signal field. Furthermore, the amplification
of the probe field is accompanied by an ultra-long group
delay in the output field. Our work hence provides an
effective approach to control the light propagation in an
optomechanical system and could stimulate future stud-
ies of nonreciprocal optomechanical interfaces in nonlin-
ear photonic devices.
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A. Schliesser, and T.J. Kippenberg, Science 330, 1520
(2010).

[17] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois,J.
D. Whittaker, and R. W. Simmonds, Nature (London),
471, 204 (2011).

[18] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichen-
field, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O.
Painter, Nature (London) 472, 69 (2011).

[19] M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M.
Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D.
Vitali, Phys. Rev. A 88, 013804 (2013).

[20] W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, Phys. Rev. A
91, 043843 (2015).

[21] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R.
Gross, and T. J. Kippenberg, Nat. Phys. 9, 179, (2013).

[22] D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O.
Painter, New J. Phys. 13, 023003 (2011).

[23] F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H.
Huebl, and R. Gross, New J. Phys. 14, 123037 (2012).

[24] Kenan Qu and G. S. Agarwal, Phys. Rev. A 87, 031802
(2013).
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