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The statics, stability and dynamical properties of dark-bright soliton pairs are investigated mo-
tivated by applications in a homogeneous system of two-component repulsively interacting Bose-
Einstein condensate. One of the intra-species interaction coefficients is used as the relevant parame-
ter controlling the deviation from the integrable Manakov limit. Two different families of stationary
states are identified consisting of dark-bright solitons that are either antisymmetric (out-of-phase) or
asymmetric (mass imbalanced) with respect to their bright soliton. Both of the above dark-bright
configurations coexist at the integrable limit of equal intra- and inter-species repulsions and are
degenerate in that limit. However, they are found to bifurcate from it in a transcritical bifurcation.
The latter interchanges the stability properties of the bound dark-bright pairs rendering the anti-
symmetric states unstable and the asymmetric ones stable past the associated critical point (and
vice versa before it). Finally, on the dynamical side, it is found that large kinetic energies and thus
rapid soliton collisions are essentially unaffected by the intra-species variation, while cases involving
near equilibrium states or breathing dynamics are significantly modified under such a variation.

PACS numbers: 03.75.Lm,03.75.Mn,67.85.Fg

I. INTRODUCTION

Multi-component Bose-Einstein condensates (BECs)
and the nonlinear excitations that arise in them have
been a focal research point over the past two decades
since their experimental realization [1, 2]. Among these
excitations, dark-bright (DB) solitons constitute a funda-
mental example [3], whose experimental realization in a
87Rb mixture [4] has triggered a new era of investigations
regarding the stability and interactions of these matter
waves both with each other [5], as well as induced by the
external traps [6–9].

Within mean-field theory the static and dynamical
properties of such states are well described by a system of
coupled Gross-Pitaevskii equations [1, 2]. The latter is a
variant of the so-called defocusing (repulsive) vector non-
linear Schrödinger equation [10, 11], to which it reduces
in the absence of a confining potential. In this homoge-
neous setting, single DB solitons exist as exact analytical
solutions when the repulsive interactions within (intra-)
and between (inter-) the species are of equal strength;
this is the integrable, so-called Manakov limit [12]. In
this setting, multiple solitonic states, both static and
travelling ones, have been analytically derived by using
the inverse scattering transform (IST) considering both
trivial [12], or more recently, non-trivial boundary con-
ditions [13, 14] allowing also for energy (and phase) ex-
changes between the bright soliton components. Addi-
tionally, the Hirota method has been used to explore dif-
ferent families of DB soliton solutions ranging from per-

fectly antisymmetric (out-of-phase) to fully asymmetric
ones (mass imbalanced), with respect to their bright soli-
ton counterpart [15] (see also for a small sample among
numerous additional studies the works [16–19]).

As a matter of fact, given their versatility, BECs of-
fer additional layers of tunability, enabling the control-
lable departure from this integrable Manakov limit. In
particular, exploiting the tunablility of both the inter-
and intra-species scattering lengths that can be achieved
in current experimental settings with the aid of Fesh-
bach resonances [20–24], a new avenue opened towards
exploring DB soliton interactions under parametric vari-
ations [25–29]. This allowed to address the robustness of
these matter waves in BEC mixtures with genuinely dif-
ferent scattering lengths. However, typically in realistic
settings all three coefficients of inter- and intra- compo-
nent interactions are slightly different, and hence it is of
particular interest to explore how things deviate from the
integrable limit.

In the present work, our aim is to bring to bear the en-
hanced understanding of the integrable limit that exists
through the recent works of [13, 14] in order to control-
lably appreciate how statics, bifurcations and dynamics
are affected upon deviations from this limit. More specif-
ically, we will examine stationary states at the integrable
limit and how they (and their respective stability prop-
erties) are modified upon deviation from integrability. In
the process, we will uncover an unusual example of a
transcritical bifurcation with symmetry involving bound
DB soliton pairs of two kinds: antisymmetric and asym-
metric ones. In the former, the bright components are
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out-of-phase whereas in the latter they are imbalanced
in terms of their respective masses. We will then turn
to dynamical states involving (from the integrable limit)
solutions with different speeds. We will initialize such
states in regimes close to and far from integrability to ob-
serve the implications of non-integrability on them. Our
main conclusion there is that for states of high kinetic
energy (where the latter dominates the DB interaction)
implications of the non-integrability are rather limited.
However, for states of proximal DBs with prolonged (or
recurrent) interactions, non-integrability can have a sig-
nificant impact in the outcome of their collisions, as we
illustrate via suitable numerical computations.
The paper is organized as follows. In Sec. II we provide

the setup of the multi-component system under consider-
ation. In Sec. III the static properties of two-DB soliton
solutions upon varying the intra-species interactions are
exposed. Sec. IV is devoted to studying the dynamical
properties of these matter waves, while Sec. V contains
our conclusions and future perspectives.

II. MODEL SETUP

As our prototypical playground, we consider the fol-
lowing one-dimensional (1D) system of coupled nonlinear
Schrödinger equations:

i∂tψd =− 1

2
∂2xψd + (|ψd|2 + g12|ψb|2 − µd)ψd,

(1)

i∂tψb =− 1

2
∂2xψb + (g12|ψd|2 + g22|ψb|2 − µb)ψb.

(2)

In the above equations, ψd (ψb) is the wavefunction of
the dark (bright) soliton component while µd (µb) is the
corresponding chemical potential. Furthermore, g12 ≡
g12/g11, and g22 ≡ g22/g11 denote the rescaled interac-
tion coefficients which are left to arbitrarily vary, span-
ning both the miscible and the immiscible regime of in-
teractions. Note that in this setting the miscibility of the
two components occurs when g12 6

√
g22, and refers to

the absence of phase separation between the species [30].
Additionally, Eqs. (1)-(2) stem from the corresponding
BEC system assuming a setting without a longitudinal
trap, but only with a transverse trap of strength ω⊥. The
coupling constants in 1D are gjk = 2~ω⊥ajk, where ajk
denote the s-wave scattering lengths (with a12 = a21)
that account for collisions between atoms of the same
(j = k) or different (j 6= k) species. The aforementioned
dimensionless 1D system also assumes the measuring of
densities |ψj |2, length, time and energy in units of 2a11,

a⊥ =
√

~/ (mω⊥), ω
−1
⊥

and ~ω⊥, respectively. We note
that in the following all our results are presented in di-
mensionless units.
From here, µd can be also scaled out via the transfor-

mations: t → µdt, x → √
µdx, |ψd,b|2 → µ−1

d |ud,b|2, and

thus the system of equations (1)-(2) acquires the follow-
ing form

i∂tud +
1

2
∂2xud − (|ud|2 + g12|ub|2 − 1)ud = 0, (3)

i∂tub +
1

2
∂2xub − (g12|ud|2 + g22|ub|2 − µ)ub = 0, (4)

where µ ≡ µb/µd is the rescaled chemical potential. The
above system of equations conserves the total energy

E =
1

2

∫ +∞

−∞

dx
[

|∂xud|2 + |∂xub|2 + (|ud|2 − 1)2

+ g22|ub|4 − 2µ|ub|2 + 2g12|ud|2|ub|2
]

, (5)

as well as the total number of atoms

N ≡ Nd +Nb =
∑

i=d,b

∫

∞

−∞

dx|ui|2, (6)

with Nd, Nb, denoting the number of atoms in the first
and second component of the system of Eqs. (3)-(4) re-
spectively. Nd and Nb are also individually conserved.

III. STABILITY ANALYSIS OF BOUND

ANTISYMMETRIC AND ASYMMETRIC

DARK-BRIGHT PAIRS

By considering the time-independent version of the
aforementioned system of Eqs. (3)-(4), namely:

ud = −1

2
∂2xud + (|ud|2 + g12|ub|2)ud, (7)

µub = −1

2
∂2xub + (g12|ud|2 + g22|ub|2)ub, (8)

bound states consisting of two DB solitons can be found
in [27, 29] for out-of-phase or antisymmetric bright soli-
tons for arbitrary nonlinear coefficients.
First, let us briefly recall what is known about the

Manakov model. In such a case the system possesses
exact two-DB soliton solutions that can be obtained by
using either Hirota’s method studied in Ref. [15] or the
more recent exact expressions found in Ref. [13] by us-
ing the inverse scattering transform (IST) but with non-
trivial boundary conditions. In particular, the exact
static two-DB solutions can be written in the following
form:

ud =
(1 − a) cosh(ξ1 + ξ2)− (1 + a) cosh(ξ1 − ξ2)

(1 − a) cosh(ξ1 + ξ2) + (1 + a) cosh(ξ1 − ξ2)
,

ub =
2(1− a2) sinh ξ1

(1 − a) cosh(ξ1 + ξ2) + (1 + a) cosh(ξ1 − ξ2)
,

where ξ1 = x− δ1, ξ2 = a(x− δ2) and µ = 1− a2/2.
There are three free parameters here: a, δ1 and δ2.

One of them is due to the translational invariance: Shift-
ing δ1 → δ1 + δ̄, δ2 → δ2 + δ̄ only displaces the overall
solution by δ̄, so fixing the overall location of the pair
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FIG. 1. (Color online): BdG (linearization) spectrum of stationary antisymmetric two-DB soliton states, upon varying g22.
Both (a1) the real, Re(ω), and (a2) the imaginary part, Im(ω), of the eigenfrequencies ω are shown as a function of the
intra-species repulsion g22. Upon increasing g22 there exists a critical value, g22cr = 1, above which the antisymmetric branch
destabilizes. Note that since g12 = 1, the critical point is the integrable limit, while the trajectories of the two anomalous modes
(see text) appearing in the spectrum are shown with red squares (solid red lines are used as a guide to the eye). (b1) − (c3)
Spatio-temporal evolution of antisymmetric stationary two-DB states upon increasing g22, verifying the BdG results. (b1)−(b3)
[(c1)− (c3)] correspond to the density |ud|

2 [|ub|
2] of the dark [bright] component. All quantities are expressed in dimensionless

units.

one can fix δ1 = −δ2 =: δ. Then one is still left with a
nontrivial two-parameter family, with parameters a and
δ. Fixing the chemical potential ratio µ fixes a and vice
versa (note that there is no loss of generality in assuming
a > 0 since a → −a only flips the global sign of ud).
The parameter a must satisfy 0 ≤ a ≤ 1 and accord-
ingly 1/2 ≤ µ ≤ 1. The second parameter δ can also
be taken positive since δ → −δ, x → −x leaves ud, ub
invariant (up to a global sign), so changing the sign of δ
just performs a reflection about x = 0, exchanging the
two DBs. For δ = 0, ud(x) = ud(−x), ub(x) = −ub(−x),
so the DB pair is antisymmetric. As δ becomes larger,
the asymmetry increases towards a dark/DB state and
the equilibrium distance between the solitons increases.
In our simulations µ is fixed, so a is fixed. But still, in
the integrable limit there will be a one-parameter family
of two-DB solutions of varying δ, continuously ranging
from perfectly antisymmetric to extremely asymmetric.
As we depart from integrability, such an explicit ex-

pression is no longer available. In light of that, the cor-
responding stationary states were numerically obtained
by means of a Newton’s fixed point iteration method and
using as an initial guess for identifying the numerically
exact (up to a prescribed tolerance) two-DB spatial pro-
file the following ansatz:

ud(x) = tanh [D(x− x0)]× tanh [D(x+ x0)] , (9)

ub(x) = ηsech [D(x− x0)] + ηsech [D(x+ x0)] e
i∆θ.

(10)

In the above expressions 2x0 is the relative distance be-

tween the two DB solitons, D denotes their common in-
verse width, while ∆θ is their relative phase within the
bright component, with ∆θ = π (∆θ = 0) corresponding
to out-of-phase (in-phase) bright solitons. Note also that
the (background) amplitude of the dark soliton compo-
nent is unity, while η denotes the amplitude of the bright
soliton counterpart. Here, we will solely focus on the
out-of-phase or antisymmetric case (as the in-phase case
does not produce a bound state pair in the homogeneous
setting [27]). Upon varying g12 typically within the in-
terval 0.75 6 g12 6 1.5, while keeping both µ = 2/3
and g22 = 0.95 fixed, earlier numerical studies [27, 29]
showcased that antisymmetric two-DB states exist as
stable configurations only within a bounded interval of
the inter-species repulsion coefficient g12 limited by crit-
ical points both in the miscible and in the immiscible
regime, associated with a supercritical and a subcriti-
cal pitchfork bifurcation respectively. Furthermore, new
families of solutions consisting of mass imbalanced DB
pairs, i.e. different amplitudes between the bright soli-
ton constituents, were found to bifurcate through pitch-
fork bifurcations from the above obtained antisymmetric
states.

However, by fixing g22 6= 1 in these previous works
it has not been possible to systematically approach the
Manakov limit of g12 = g22 = 1. To address this impor-
tant special limit, and explore the effect of breaking the
integrability, below we fix g12 = 1 and perform a contin-
uation in g22, i.e., starting from g22 = 0.95 (immiscible
regime) up to g22 = 1 and beyond, towards the misci-
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ble domain of interactions, considering the fate of both
the antisymmetric and asymmetric bound states. Note
also that for the numerical findings to be presented be-
low the rescaled chemical potential is fixed to µ = 0.7
in the dimensionless units adopted herein. In Figs. 1
(a1) − (a2) the linearization, or so-called Bogolyubov-
de Gennes (BdG), spectrum of the antisymmetric bound
pairs is shown as a function of the nonlinear coefficient
g22. This is obtained by expanding around an equilib-
rium configuration as follows:

ud = u
(eq)
d +

(

a(x)e−iωt + b⋆(x)eiω
⋆t
)

, (11)

ub = u
(eq)
b +

(

c(x)e−iωt + d⋆(x)eiω
⋆t
)

, (12)

where “⋆” stands for the complex conjugate. Then the
system for the eigenfrequencies ω (or equivalently eigen-
values λ = iω) and eigenfunctions (a, b, c, d)T is numeri-
cally solved. If modes with purely real eigenvalues (imag-
inary eigenfrequencies) or complex eigenvalues (and thus
eigenfrequencies) are identified, the configuration is char-
acterized as dynamically unstable. Moreover, there is a
class of modes that bears the potential to lead to instabil-
ities. These are the modes with negative so-called energy
or Krein signature [31]. The relevant quantity is defined
as

K = ω

∫

(

|a|2 − |b|2 + |c|2 − |d|2
)

dx, (13)

and can be directly evaluated on the basis of the eigen-
vector (a, b, c, d)T and eigenfrequency ω. Both the real,
Re(ω), and the imaginary, Im(ω), parts of the eigenfre-
quencies ω are depicted in Figs. 1 (a1) and (a2) respec-
tively. Notice that in close contact with our previous find-
ings [27, 29], two anomalous (namely, bearing negative
Krein signature) modes appear in the linearization spec-
tra and their trajectories are denoted with red squares
[see Fig. 1 (a1)]. Among these modes, the higher-lying
one is found to be related to the out-of-phase vibration
of the bound DB pair [27]. More importantly, the lower-
lying anomalous mode is associated, through its eigen-
vector, with a symmetry breaking in the bright soliton
component, resulting in mass imbalanced (with respect
to their bright soliton counterpart) DB pairs that we will
trace later on in the dynamics. In both cases the afore-
mentioned findings can be identified by adding the corre-
sponding eigenvector to the relevant antisymmetric DB
solution. The background (continuous, in the limit of in-
finite domain) spectrum is also depicted in the same fig-
ure with blue circles. As it is observed, upon increasing
g22 towards the integrable limit the frequencies of both of
the anomalous modes decrease. Following the lower-lying
mode it becomes apparent that there exists a critical
point g22cr = 1 where this mode goes from linearly sta-
ble (for g22 < g22cr) to linearly unstable (for g22 > g22cr).
Notice that exactly at the integrable limit this anomalous
mode becomes neutrally stable, while past g22cr = 1 it
destabilizes as it is evident from the non-zero imaginary
part presented in Fig. 1 (a2).

To verify the stability analysis results presented above,
the spatio-temporal evolution of both the stable and un-
stable antisymmetric DB pairs is computed and shown
in Figs. 1 (b1) − (c3). Notice that the antisymmetric
configuration is only slightly modified as g22 is increased
over the interval considered. Minor differences, mostly
in the amplitude of the bound pairs upon increasing g22,
can be inferred by inspecting the overall decrease of the
norm of the bright component (see Fig. 3 below). Here,
Figs. 1 (b1)−(b3) [(c1)−(c3)] correspond to the density of
the dark [bright] soliton component. In particular, in all
cases we use as an initial condition the numerically ob-
tained stationary states at selected values of g22, i.e., be-
low, at and above the associated critical point, and we nu-
merically evolve the system of Eqs. (3)-(4) using a fourth
order Runge-Kutta integrator. As anticipated from the
aforementioned BdG outcome, for g22 > g22cr = 1 the
instability dynamically manifests itself via a dramatic
mass redistribution between the bright soliton counter-
parts. The latter leads in turn to the splitting of the
bound pair and results in asymmetric states with a dark
and a DB soliton pair repelling one another and moving
towards the boundaries (cf. also with the corresponding
non-integrable cases in [27, 29]).

We now explore the same diagnostics for the asymmet-
ric DB bound pairs that are degenerate with the anti-
symmetric ones in the integrable limit. These stationary
asymmetric states are once again numerically identified
and their stability outcome is summarized in Fig. 2. As
before, Fig. 2 (a1) depicts the real part, Re(ω), of the
eigenfrequncies ω as a function of g22, while Fig. 2 (a2)
shows the corresponding imaginary part, Im(ω). In the
real part of the spectrum the absence of the lower-lying
anomalous mode is verified. Recall that the existence of
this mode in the spectrum of the antisymmetric branch
signalled the presence of the asymmetric branch of solu-
tions [see Fig. 1 (a1)]. In contrast to the antisymmetric
states investigated above, this family of solutions is un-
stable for g22 < 1 as is evident in that regime by a non-
zero imaginary eigenfrequency illustrated in Fig. 2 (a2).
On the other hand, the state remains spectrally stable
for g22 > 1, and the formerly unstable mode, now be-
comes an anomalous one with a real eigenfrequency. It is
important to note here, that the equilibrium distance is
found to be larger for the asymmetric states when com-
pared with the antisymmetric ones [compare e.g. Fig. 2
(b2) with Fig. 1 (b2)]. The equilibrium distance also be-
comes larger for the asymmetric states upon increasing
g22, as can be deduced by more closely inspecting e.g.
Figs. 2 (b2) and (b3). As before, our BdG results are
confirmed via the long-time evolution of the stationary
asymmetric states and are illustrated in Figs. 2 (b1)−(c3).
Once more, Figs. 2 (b1) − (b3) depict the evolution of
the density of the dark soliton component, while Figs. 2
(c1)− (c3) illustrate the propagation of the density of the
bright soliton counterpart. As it is expected, for values
g22cr < 1 instability sets in almost from the beginning
of the dynamics, with the solitons featuring attraction,
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FIG. 2. (Color online): (a1) − (b2) Same as in Fig. 1 but for the asymmetric two-DB states. Notice that in contrast to the
antisymmetric states, these bound pairs are unstable for g22 < 1, as can be seen from the non-zero imaginary part, Im(ω),
depicted in panel (a2). As the integrable limit is reached the bound pair stabilizes and remains robust even upon further
increasing the nonlinear coefficient g22. (b1) − (c3) Space-time evolution of both the unstable (g22 < 1) and stable (g22 > 1)
asymmetric stationary two-DB states upon increasing g22. Panels (b1)− (b3) [(c1)− (c3)] correspond to the density |ud|
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more pronounced in the dark soliton counterpart shown
in Fig. 2 (b1), which results in a collision event at in-
termediate time scales. However, and as anticipated for
g22 = g12 = 1 shown in Figs. 2 (b2) and (c2) solitons
remain intact throughout the propagation, a result that
holds as such even upon considering parameters beyond
the integrable limit and on the miscible side depicted in
Figs. 2 (b3) and (c3).
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FIG. 3. (Color online): (a) Number of atoms, Nb, of the
bright soliton components as a function of g22 for both the
antisymmetric and the asymmetric states. (b) Transcritical
bifurcation diagram obtained by measuring ∆N (see text) as
a function of g22. In all cases the stable (unstable) branches
are denoted with solid (dashed) blue lines.

The above-observed differences between the antisym-
metric and asymmetric branches of solutions can be fur-

ther understood by inspecting the decrease in the number
of atoms of the bright component, Nb, as a function of
the nonlinear coefficient g22 depicted for both cases in
Fig. 3 (a). It is observed that as g22 increases the bright
norm decreases faster for the asymmetric states, while
the two norms are exactly the same at the integrable
point. Finally, the transcritical nature of the bifurca-
tion diagram is illustrated in Fig. 3 (b). To obtain this
bifurcation diagram we calculated the difference in the
number of atoms in the bright part, Nb, for either the
asymmetric or the antisymmetric branches of solutions
defined as ∆N = Nb −Nantisym.

b , upon varying the non-
linear coefficient g22. Notice that the stability character
of the antisymmetric and the asymmetric states is ex-
changed at the integrable point verifying the effectively
transcritical nature of this bifurcation. It is worthwhile to
comment a little on this bifurcation. Firstly, we point out
that saddle-center and pitchfork examples are much more
common than transcritical ones in our experience with
Hamiltonian systems. In fact, the corresponding state
where ∆N possesses the opposite sign (i.e., the parity
symmetric variant of our DB-pair configuration) is also a
solution. In that light, it can be thought of as transcriti-
cal bifurcation with symmetry. In fact, an even more cru-
cial way in which the symmetry of the bifurcation can be
appreciated is the neutrality discussed previously at the
Manakov limit. The freedom in the variation of δ in that
context represents a one-parameter family of solutions
within which one can freely move and which represent
different asymmetries in the bright component. A by-
product of this invariance is the presence of a vanishing
frequency eigenmode at the critical point of this bifurca-
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tion, i.e., at the transition point from stability to insta-
bility for the antisymmetric branch or vice-versa for the
asymmetric one. However, it is important to point out
that these features (neutrality, controllable asymmetry,
and associated vanishing eigenfrequency) seem to disap-
pear once we depart from the integrable limit, marking
the absence of additional symmetry in the latter case.

IV. DARK-BRIGHT SOLITON COLLISIONS

In what follows we consider collisions between two-
DB states at the integrable limit of equal inter- and
intra-species interactions, i.e. g12 = g22 = 1, as well
as deviating from it towards the miscible and the im-
miscible regime. In both cases we use as an initial
ansatz (t = 0) the exact solution for such two-DB states,
namely [13, 14]:

q1(x, 0) = qo

[

1 +
1

D(x, 0)

[

δ̄1
(z⋆1)

2

q2o − z1z2

(

δ1
q2o − z1z

⋆
2

z1(z⋆1 − z1)
e−2ν1x − δ2

q2o − |z2|2
z2(z2 − z⋆1)

eix(z2−z⋆

1
)

)

+
δ̄2(z

⋆
2)

2

q2o − z1z2

(

δ2
q2o − z⋆1z2
z2(z⋆2 − z2)

e−2ν2x − δ1
q2o − |z1|2
z1(z1 − z⋆2)

eix(z1−z⋆

2
)

)

+ q4o |δ1|2|δ2|2
(

q2o − |z1|2
) (

q2o − |z2|2
)

|q2o − z⋆1z2|2|z1 − z2|4 (z⋆1z⋆2 − z1z2)

16ν21ν
2
2z1z2|q2o − z1z2|2|z⋆1 − z2|4

e−2x(ν1+ν2)
]

]

, (14)

q2(x, 0) = − qo
D(x, 0)

[

δ̄1z
⋆
1

q2o
e−iz⋆

1
x +

δ̄2z
⋆
2

q2o
e−iz⋆

2
x +

[ δ̄1δ̄2z
⋆
1z

⋆
2

(

q2o − z⋆1z
⋆
2

)

(z⋆1 − z⋆2)
2

q2o (q
2
o − z1z2)

]

×
[ δ1z1

(z⋆1 − z1)
2
(z1 − z⋆2)

2 e
−2ν1x−iz⋆

2
x +

δ2z2
(z⋆2 − z2)2(z2 − z⋆1)

2
e−2ν2x−iz⋆

1
x
]

]

. (15)

Here, q1(x, 0) [q2(x, 0)] is the wavefunction for the two
dark [bright] soliton solution of the first [second] com-
ponent in the system of Eqs. (1)-(2). qo is the ampli-
tude of the background, zj = κj + iνj correspond to
the eigenvalues of the IST problem where kj = 2κj is
the soliton’s velocity, while δj are the so-called norm-
ing constants [13, 14]. In all cases j = 1, 2 accounts

for the first and the second component of the vec-
tor nonlinear Schrödinger system. Additionally, δ̄1 =
−δ⋆1(q2o(q2o − |z1|2)(q2o − z⋆1z2))/((z

⋆
1)

2(q2o − z⋆1z
⋆
2)), and

δ̄2 = −δ⋆2(q2o(q2o − |z2|2)(q2o − z⋆2z1))/((z
⋆
2)

2(q2o − z⋆1z
⋆
2)),

are related to the complex conjugates of the aforemen-
tioned norming constants. The denominator of the above
equations is given by

D(x, 0) = 1− δ̄1(z
⋆
1)

2

q2o − z1z2

(

δ1
q2o − z1z

⋆
2

4ν21
e−2ν1x − δ2

q2o − |z2|2

(z2 − z⋆1)
2 e

ix(z2−z⋆

1
)

)

+
δ̄2(z

⋆
2)

2

q2o − z1z2

(

−δ2
q2o − z2z

⋆
1

4ν22
e−2ν2x + δ1

q2o − |z1|2

(z1 − z⋆2)
2 e

ix(z1−z⋆

2
)

)

+ q4o |δ1|2|δ2|2
(

q2o − |z1|2
) (

q2o − |z2|2
)

|q2o − z1z
⋆
2 |2|z1 − z2|4

16ν21ν
2
2 |q2o − (z1z2)|2|z⋆1 − z2|4

e−2x(ν1+ν2). (16)

In order to initialize the dynamics we first render the
two-DB states of Eqs. (14)-(15) well-separated. The lat-
ter can be achieved by parametrizing the norming con-

stants δj (j = 1, 2) as: δj = (2νj/(qo
√

q2o − z2j )) exp(xj +

iφj) and varying the position offset xj , and/or the phase
φj . Throughout this work, the amplitude of the back-
ground is fixed to qo = 1. In the case examples presented
in Figs. 4 (a1) − (a6), the DB pairs are located around

x1 ≈ 0 and x2 ≈ −10 respectively. Furthermore, we
fix the corresponding phases φ1 = φ2 = π/4, the veloc-
ity of the first DB pair k1 = 0, and we vary k2 within
the interval [0.35, 0.85]. It is important to note that k2
also significantly influences the asymmetry between the
bright soliton counterparts. More specifically, for high
speed solitons i.e., for k2 > 0.75, the moving DB has a
very weak bright component gradually becoming a single
dark soliton impinging on a DB stationary wave. We have
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FIG. 4. (Color online): (a1)−(a6) Collisions between an initially at rest (i.e. k1 = 0) DB pair and a moving one at the integrable
limit. From left to right the velocity, k2, of the moving DB pair is increased from k2 = 0.35 to k2 = 0.85, φ1 = φ2 = π/4, while
the insets illustrate the initial profile of the two-DB state. Notice that as the velocity is increased the amplitude of the bright
soliton decreases, leading, for k2 = 0.85, to a state with almost only one bright soliton in the second component. (b1)− (b4) The
same as the above but for fixed k2 = 0.65, and for different values of the intra-species repulsion. (c1)− (c4) The same as before
but upon varying the phase between the soliton constituents, namely for φ1 = 0 and φ2 = π. In all cases the panels depict the
density, |q1(x, t)|

2,
(

|q2(x, t)|
2
)

of the dark (bright) soliton component in the top (bottom), while all quantities shown are in
dimensionless units. Other parameters used are ν1 = 0.8, and ν2 = 0.5.
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FIG. 5. (Color online): Collisions of DB states with zero
initial velocities, k1 = k2 = 0, and upon increasing g22. The
corresponding density profiles for g22 = 0.85 are illustrated as
insets in panels (a1) and (b1). Notice the breathing dynamics
that the DB pairs undergo as the intra-species repulsion is
increased. (a1) − (a5) [(b1) − (b5)] Evolution of the density,
|q1(x, t)|

2 [|q2(x, t)|
2], of the dark [bright] soliton component.

Other parameters used are ν1 = 1/2, ν2 = 1/3, δ1 = 1 +
i/5, and δ2 = 1 − i/3. All quantities shown are expressed in
dimensionless units.

conducted numerous collisional simulations at and below
as well as above the integrable limit (in terms of values
of g22). Our main finding in these cases where one of the
solitons possesses a substantial speed is that generically
the collisional phenomenology remains essentially similar

[see also Figs. 4 (b1)− (b4), as well as Figs. 4 (c1)− (c4)]
to what is predicted by the analytical expressions of the
integrable limit [13].

This situation is in contrast to cases where the solitons
have been initialized with vanishing speed, in which we
have seen that the breaking of integrability has a max-
imal impact. A characteristic example of this kind is
given in Figs. 5 (a1) − (b5), where once more Figs. 5
(a1)− (a5) [(b1)− (b5)] depict the breathing dynamics of
the dark [bright] soliton constituent. In this case involv-
ing k1 = k2 = 0, and the choice of the norming constants
of δ1 = 1 + i/5 and δ2 = 1 − i/3 (for ν1 = 1/2 and
ν2 = 1/3), we find that at the integrable limit the so-
lution forms a beating state. This “fragile” beating is
already seen to be significantly impacted by small de-
viations from integrability of the order of 5% as it is
evident in Figs. 5 (a2), (b2), and (a4), (b4), which refer
to deviations towards the miscible and the immiscible
regime respectively. However, the phenomenology is dra-
matically affected for deviations of the order of 15% or
more, whereby the former beating state gives way, upon
already the first collision of the DB pair, to an indefinite
separation between the two DBs. Remarkably, this devi-
ation takes place both in the miscible, Figs. 5 (a1), (b1),
and in the immiscible regime, Figs. 5 (a5), (b5). Under
different values of the norming constants, the departure
from the breathing state may be “decelerated”. A case
example of this kind is depicted in Fig. 6. In particu-
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lar in this realization all parameters used are the same
as in the aforementioned collisional scenario except for
δ1 = 5 + i/5. Notice that for this choice of parame-
ters the aforementioned deceleration against repulsion is
more pronounced within the immiscible regime of inter-
actions [compare e.g. panels (a5) and (b5) here, with
Figs. 5 (a5) and (b5)]. Furthermore, this change in the
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FIG. 6. (Color online): Same as in Fig. 5 but for δ1 = 5+ i/5,
with all quantities shown expressed in dimensionless units.

norming constant affects the bright soliton characteristics
resulting in particular in slightly mass imbalanced bright
soliton counterparts, illustrated as insets in Figs. 6 (a1)
and (b1), when compared to the spatial profiles of the
solitons shown as insets in Figs. 5 (a1) and (b1). On the
other hand, when initializing the dynamics considering
a genuinely stationary configuration, the results of the
stability analysis of the previous section are confirmed.
Namely, for a genuinely antisymmetric bright configura-
tion, stability persists on the side of g22 < 1, while a
splitting (symmetry breaking) instability into a DB and
a dark soliton arises for g22 > 1, with the stability inter-
vals being reversed for asymmetric initial conditions.

V. CONCLUSIONS AND FUTURE

CHALLENGES

In the present work we have investigated the stability
and dynamics of matter-wave DB solitons in homoge-
neous binary BECs. We have done so by taking advan-
tage in a systematic fashion of the understanding and
knowledge imparted by the inverse scattering transform
and the Hirota method within the integrable Manakov
limit. In that limit, both antisymmetric and asymmetric
DB pair waveforms are identified, but also solutions in-
volving DB pairs interacting with different speeds can be
explored via cumbersome, yet explicit analytically avail-
able formulae. We have benchmarked the results of our
numerical simulations against these expressions and sub-
sequently extended our analysis past the integrable limit

to identify the nature of the deviations from the corre-
sponding results. This has given rise to an array of in-
teresting findings. In particular, in the case of stationary
solutions we have identified an intriguing transcritical bi-
furcation with symmetry. Antisymmetric and asymmet-
ric solutions in the bright soliton component of the DB
pairs have been found, respectively to be, stable (unsta-
ble) for g22 < 1 (g22 > 1), exchanging their stability in
the degenerate (invariant under symmetry breaking) case
of the integrable limit. Moreover, as regards collisions,
we have seen that those bearing significant kinetic energy
were essentially unaffected by the breaking of integrabil-
ity. On the other hand, the more delicate beating (or
even stationary) states were drastically affected by the
breaking of integrability, typically leading to the fission
of the elements within the pair, possibly accompanied by
a symmetry breaking between the bright components.

These findings suggest a multitude of interesting di-
rections for future studies. A straight forward one would
be to consider such multicomponent interactions in the
presence of quantum fluctuations [32]. In such a setting
it has recently been shown that DB states decay into
daughter DB ones, so it would be particularly interest-
ing to explore how the collisional dynamics of the above
beating states is altered by taking into account beyond
mean-field effects. Yet another interesting aspect would
be to extend our current considerations involving a higher
number of species. In this spinor setting, solutions in
the form of dark-dark-bright and dark-bright-bright soli-
tons have been theoretically obtained [33], and also very
recently experimentally observed [34]. Thus a study of
their static and dynamical properties will enhance our
understanding of these soliton complexes. Furthermore,
one could also explore multicomponent interactions as
the ones considered herein but in higher dimensions. As
is well-known there are no direct analogues of the Man-
akov model that are known to be integrable at present.
However, it is nevertheless of interest to explore inter-
actions of vortex-bright solitons in two dimensions [35]
and of configurations such as vortex line-bright solitons
or vortex-ring-bright solitons in three dimensions [36].
These possibilities are presently under consideration and
will be reported in future publications.
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