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Abstract – The loss of contrast in double-slit electron-diffraction due to dephasing and decoherence processes 
is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to 
distinguish between dephasing and decoherence. This establishes a measure of time-reversibility that does not 
require the determination of coherence terms of the density matrix, while von Neumann entropy, another 
measure of time-reversibility, does require coherence terms. This technique is exciting in view of the need to 
understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the 
transition from the classical to the quantum regime. 

  

In optical and matter-wave interferometry a loss of contrast is a limit on the detection capability 
of such devices. Loss of contrast can be attributed to physical processes divided into two broad 
classes. Dephasing processes are time-reversible, while decoherence processes are time-irreversible. 
Time-reversibility can be established by evaluating the change in entropy, lnS Trρ ρ= − , where ρ  is 
the density matrix describing the physical system. When S  remains constant in time, the process is 
time-reversible; while when it increases in time, the process is time-irreversible [1]. The value of the 
entropy depends on the off-diagonal or coherence terms of the density matrix, which is apparent 
from the calculation of the entropy using the spectral decomposition, lni iS λ λ= −∑ , where iλ  are 
the eigenvalues of the density matrix. In diffraction experiments, determination of the coherence 
terms would require special techniques, such as quantum state tomography [2]. Thus, the on-diagonal 
terms of the density matrix, that describes the spatial probability distribution of the physical system, 
do not appear to provide direct access to the very nature of the process that is limiting the contrast 
observed in that probability distribution. This makes it hard to identify sources of contrast loss and 
thus take appropriate measures to reduce such a loss. Additionally, when studying the transition from 
the quantum to classical domain, by introducing controlled decoherence processes, it is hard to 
establish that it is indeed decoherence and not dephasing that causes a loss of contrast. 

In this paper, we propose and analyze a method based on repetitive measurements of the spatial 
probability distributions, that can be used to distinguish dephasing from decoherence processes. The 
spatial second-order (also called intensity) correlation function of the measurements provides this 
information. For dephasing processes that upon visual inspection appear to completely destroy the 
diffraction pattern, the intensity correlation function restores the far-field diffraction pattern. For 
decoherence processes no such restoring works.  



 

2 
 

To support our claims, we consider an electron double-slit experiment [3,4] as an archetypical 
example of an interference experiment, and add a process by which contrast is lost. This situation 
described is not just a thought experiment, but is typical for experiments. For example, we reported 
an electron diffraction experiment with nano-fabricated gratings, where some loss of contrast was 
observed and modeled [4].   

An optical experiment that exhibited loss of contrast was performed by Rui-Feng et al [5]. In 
their setup, a laser beam with a 632.8 nm wavelength passed through a ground glass disk and double-
slits. The detection screen was placed in the Fresnel diffraction region with respect to the double-
slits. The ground glass disk appeared to completely destroy the contrast of the diffraction pattern. 
The normalized intensity correlation function was used to regain the double-slit diffraction pattern. 
This is a striking result in its own right. The central question which was not addressed is: “How can 
we detect if an object dephases or decoheres the laser light? Of course, a ground glass disk dephases, 
but if we had an unknown interaction could we tell from diffractive noisy images the difference?”  
Or in general: “Can spatial correlation be used to identify dephasing and decoherence processes?”   

In our simulation, we studied the analogous double-slit physical system but changed the 
diffracting particle from photons to electrons as decoherence theory is often studied in the context of 
matter optics [6–11]. Based on the matter-wave analogy [12] the method is expected to work for both 
matter waves and optics. Our approach is to simulate electron diffraction in three different situations 
as shown in Fig. 1. In the first situation, a two-path interferometer, i.e., a double-slit experiment, 
exhibits excellent contrast. In the second and third situation, an object is introduced after the double-
slit that interacts with the electron wave so to cause dephasing or decoherence. We will refer to this 
as a “dephaser” and “decoherer.” These latter two patterns share a reduced contrast but are found to 
have qualitatively different intensity correlation functions.    

 

 

FIG. 1. Dephasing versus decoherence. A sketch of three situations where electron waves interfere. In (a), 
electron waves are unaffected. An interference pattern will be observed in the probability distribution with 
excellent contrast. The observed pattern is taken from Bach et al. [4]. In (b), a “dephaser,” represented by a 
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random potential distribution (green wiggly line), adds a position dependent phase to the electron wave. As a 
result, the diffraction pattern appears to be washed out, but information about the diffraction pattern can be 
recovered. In (c), a “decoherer” separates the electron wave into a probabilistic sum of several Gaussian 
waves in addition to a random potential distribution. A low contrast diffraction pattern similar to (b) is 
obtained, but now the pattern cannot be recovered.   

The example physical system we study (Fig. 2) is motivated by previously used experimental 
parameters for electron double-slit and decoherence experiments [10,13]. A coherent electron wave 
with an energy of 1670E =  eV and a transverse width of 0 15w =  μm at the source propagates 

1 24L =  cm and encounters a double-slit. A dephaser or decoherer is located immediately after the 
double-slit, represented by a horizontal surface. The size of the surface and the double-slit are both 
chosen to be 500 nm wide, larger than the distance between the center of the two slits (150 nm).  The 
width of the slits is 50d =  nm. Electrons are diffracted and dephased or decohered and continue to 
propagate to the detection screen at a distance 2 25L =  cm. An interference pattern can be found on 
the detection screen which is placed in the far-field region (or in the Fresnel diffraction region with 
respect to the double-slits but far-field region with respect the single slit (as in [5]).  

 

 

 

FIG. 2. Schematic of the physical system. An electron wave impinges on a double slit. Subsequently, a 
dephaser or decoherer disturbs the electron wave. The corresponding real phenomenon is plausibly caused by 
the back-action of the image charge on the electron [10,14–18]  

Propagation of the electron wave is simulated using the path integral method [12,19], 

   ( ) ( ) ( )/2

/2

w

b b a a b aw
x dx x h x ,xψ ψ

−
′= ∫ .                                                   (1) 

The state of the wave-function ( )b bxψ  at each location bx  at the double-slit plane has accumulated a 

phase attribution from the state of the wave function ( ) 1a axψ =  at each location ax  on the source 

according to ( )b ah x ,x . Subsequently, the wave-function ( )b bxψ  is modified by the dephaser or 



 

4 
 

decoherer to be ( )c bxψ  and finally propagated in the same process descripted in Eq. 1 from the 

double-slit to the detection screen and noted as ( )s sxψ . For the impulse response function [20] 

( ) ( )2 /i lh x,x e T xπ λ′ ′=                                                                  (2) 

in equation (1), 2 2( )l x x z′= − +  is the propagation length, z  is either 1L or 2L , / 2h mEλ =  is the 

de Broglie wavelength of electron. This function is given in terms of the transmission function ( )T x′

. The transmission function equals one for the case that the electron propagates from the source to 
the double-slit, ( ) ( ) 1aT x T x′ = = . After passing through the double-slit, the transmission function 
will become the double-slit transmission function 

( ) ( ) ( )b bT x T x D x′ = =                                                                     (3) 

which equals one at the slits, and zero elsewhere.  

The dephaser is simulated by applying a smooth random potential phase ( )bxθ  onto the wave 

function in form as ( ) ( )( ) bi x
c b b bx x e θψ ψ=  at the double-slit. The random phase is given by a sum of 

Gaussians, 

( )
2

2
b i

i

x x

b i
i

x Ae σθ
⎛ ⎞−

−⎜ ⎟⎜ ⎟
⎝ ⎠=∑ ,                                                                (4) 

where iA  are uniformly distributed random numbers ranging from 0 to 2π. The Gaussian widths iσ  
are random numbers with a normal distribution. The mean value of iσ  is chosen at 4 nm, and its 
standard deviation at 1 nm for our numerical example. The set of coordinates of centers { }ix  are 
uniformly distributed random positions covering the double slit. Thus, to realize this dephaser, 500 
different Gaussian distributions of ~4 nm width are combined [13]. The spacing of the random 
Gaussians is much smaller than slit width (50 nm) and results in a probability distribution that is 
spread all over the detection screen.  

To describe the decoherer, the wave front is cut into n  independent overlapping Gaussians, 
( )n bxϕ , effectively reducing the tranverse coherence length, w , to the width of the Gaussian, iσ . 

The Gaussians are propagated separately to find the wave-functions ( )n sf x  at the detection screen 
location. The density matrix before the decoherer is given by  

( ) ( ) ( )*

1,

1,i b b n b n b
n N

x x x x
N

ρ ϕ ϕ
=

′ ′= ∑ ,                                                        (5) 

with 
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 ( ) ( ) ( )

2

02
b n

b

x x
i x

n b b bx N x e eθ δϕ ψ
⎛ ⎞−−⎜ ⎟⎜ ⎟
⎝ ⎠= .                                                      (6) 

The normalization constant N  is the same for each Gaussian, ( )b bxψ  is the wavefront on the 
double-slit before the decoherer, and 0δ  is a constant width of 100 nm. Each Gaussian is shifted by 

0nx nx= , with 0 12.5x =  nm. Additionally, the same smooth potential phase shift ( )bi xe θ  described in 
Eq. 4 is applied. The final density matrix is given by 

( ) ( ) ( )*

1,

1,f s s n s n s
n N

x x f x f x
N

ρ
=

′ ′= ∑ .                                                      (7) 

The von Neumann entropy is calculated from lni iS λ λ= −∑ , where iλ  are the eigenvalues of the 

density matrix. The initial entropy for the pure state is  0S = . The effect of the decoherer is to 
reduce the absolute value of the off-diagonal matrix elements in the density matrix. Consequently, 
for the dephaser the entropy remains the same, while for the decoherer the entropy increases (Fig. 3).  

 

 

 

FIG. 3. Entropy. Schematic representation of the decoherer and dephaser in the simulation. The blue vertical 
lines show the electron wave front after passage through the double-slit. The Gaussians represent a sample of 
four incoherent waves emerging from the decoherer. The blue curve is a sample of the smooth random 
potential added to the electron wave for both the dephaser and decoherer. The entropy before and after the 
dephaser/decoherer is indicated. 

The dependence of the von Neumann entropy on the transverse coherence length, w , after the 
decoherer, is determined, and compared to the Shannon entropy. To do this, the Gaussians widths 
and centers were varied, keeping their ratio fixed. A narrower width describes more decoherence and 
yields larger entropy and vice versa. A simpler decoherer model is added for comparison. In this 
model, the overlapping Gaussian functions are replaced with adjacent non-overlapping top-hat 
functions. The Shannon entropy, lni iS p p=−∑ , for this simpler decoherer, can be calculated 

analytically, and compared to the computer simulated von Neumann entropy. Here, ip , is the 
probability to land within one top-hat function. When the two slits are covered with N top-hat 
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functions, the probability for an electron to be found within one of the top-hats, is / 2ip w d= . The 

corresponding Shannon entropy is ( )ln ln / 2i iS p p w d= − =∑ . The analytic Shannon entropy matches 
the simulated von Neumann entropy very well (Fig. 4). For the case of Gaussian distributions, the 
entropy matches that for the top-hat case very well when the widths, w , are smaller than a single slit. 
As the value of w  is increased above the single slit width, but remains below the slit separation, the 
entropy remains relatively constant. When w  starts to exceed the separation, the entropy reduces to 
zero, as expected for a fully coherent state. 

 

FIG. 4. Transition of Entropy. The entropy change is indicated as a function of the transverse coherence 
length. The von Neumann entropy for the Gaussian model (green circles), and the top-hat model (red 
triangles) are compared to the Shannon entropy (blue line). The von Neumann entropy and Shannon entropy 
(blue line) match well for the top-hat model. The Gaussian model matches well for transverse coherence 
lengths smaller then a single-slit. When the transverse coherence length exceeds the slit separation, the 
entropy approaches zero as expected for a pure state.  

Now that we have introduced a dephaser and decoherer, we can proceed to test if a repetitive 
measurement of the probability distribution can be used to independently determine if a process is 
due to dephasing or decoherence. To do so, the diffraction pattern was calculated 500 times for both 
the dephaser and decoherer. Each realization used a different set of random numbers (in Eq. (4)) to 
generate a dephaser and decoherer. In Fig. 5, two realizations are shown. In the dephasing realization 
5(a) and 5(c), the peaks and valleys are more pronounced than in the decoherer realization 5(b) and 
5(d). This is consistent with earlier work using a Wigner function approach [21]. Panels (e) and (f) 
are averaged patterns over 500 realizations.   
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FIG. 5. Simulation realizations. (a) and (c) are two realizations with a dephaser and (b) and (d) are with 
decoherer. In (a), (b) and (c), (d), the same random number are used thus the influence of dephaser and 
decoherer will be more comparable. (e) and (f) are dephaser/decoherer averaged pattern over 500 realizations. 
The decoherer gives a similar probability distribution to dephaser but with blurred peaks. 

 

For each probability distribution, the intensity correlation function is calculated. In general, the 
second-order correlation function is defined as, 

( ) ( ) ( ) ( ) ( ) ( )2
1 2 1 2 1 1 2 2 1 1 2 2

* *G x ,x ,x ,x x x x xψ ψ ψ ψ′ ′ ′ ′≡ ,                             (8)  

from which the intensity correlation function ( ) ( ) ( )(2)
1 2 1 1 2 2s s s s s sG x ,x I x I x=  at the detection 

screen is obtained. In equation (8), ...  indicates averaging over time, while in our simulation the 
averaging is performed over multiple realizations. Following Cheng’s derivation [20] 

( )
( ) ( )

( ) ( ) ( ) ( )

1 2

2
1 2 1 2 1 2 1 2

1 1 1 2 2 2 1 1 1 2 2 2

(2)
s s

b b b b b b b b

* *
s b s b s b s b

G x ,x

= dx dx dx dx G x ,x ,x ,x

×h x ,x h x ,x h x ,x h x ,x .

′ ′ ′ ′

′ ′
∫                                    (9) 

In equation (9), the subscript b  represents coordinates at the double-slit and s  at the screen. 
( ) ( )2

1 2 1 2b b b bG x ,x ,x ,x′ ′  is the second-order correlation function and contains wave-functions at the 
double-slit after the dephasing or decoherence process. This equation describes the propagation of 
the second-order correlation function from the double-slit to the screen. 
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Applying the result from Goodman [22] * * * * * *
1 2 3 4 1 3 2 4 1 4 2 3u u u u u u u u u u u u≡ + to Eq. 8, a relation 

between the second-order and first-order correlation function is obtained, 

( ) ( ) ( )
( ) ( )

(2) (1) (1)
1 2 1 2 1 1 2 2

(1) (1)
1 2 2 1

, , , , ,

, , ,
b b b b b b b b

b b b b

G x x x x G x x G x x

G x x G x x

′ ′ ′ ′=

′ ′+
                                    (10) 

where ( ) ( ) ( )(1) *,ib jb ic ib jc jbG x x x xψ ψ≡ . Substitution of Eq. 10 into Eq. 9 yields  

( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )

2
1 2

1 *
1 1 1 1 1 1 1 1 1 1

1 *
2 2 2 2 2 2 2 2 2 2

1 *
1 2 1 2 1 1 1 2 2 2

1 *
2 1 2 1 2 2 2 1 1 1

1 1 2 2

1 2 1 1

,

, , ,

, , ,

, , ,

, , ,

s s

b b b b s b s b

b b b b s b s b

b b b b s b s b

b b b b s b s b

s s s s

b b s

G x x

dx dx G x x h x x h x x

dx dx G x x h x x h x x

dx dx G x x h x x h x x

dx dx G x x h x x h x x

I x I x

dx dx h x

′ ′ ′=

′ ′ ′×

′ ′ ′+

′ ′ ′×

=

+

∫
∫
∫
∫

( ) ( ) ( ) ( )
21*

, 1 2 2 , 2 1 2 .b s b b bx h x x G x ,x∫

                                          (11) 

Therefore, the deviation of the second-order correlation function is 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2

2
1 2 1 1 2 2

21*
1 2 1 1 , 1 2 2 , 2 1 2

,

,

, .

s s

s s s s s s

b b s b s b b b

G x x

G x x I x I x

dx dx h x x h x x G x x

Δ

≡ −

≡ ∫

                                     (12)      

To evaluate Eq. 12, the impulse response function h  can be approximated for z x x′− . In this case  
( )

2
x x

l z
z

′−
≈ + , which applied to Eq. 2, gives 

                          ( )
( )

( )
2

2, .
k x x

iikz zh x x e e T x
′−

′ ′=                                                         (13) 

The random potential phase affects the wave function in such a way that when the integration time is 
long enough (or the number of realizations is large enough in the simulation,) the first-order 

correlation function ( ) ( ) ( )2 1(1)
1 2, b bi x x
b bG x x e θ θ⎡ ⎤−⎣ ⎦∝  can be evaluated to give 

( ) ( )(1)
1 2 0 1 2,b b b bG x x I x xδ≈ − .                                                  (14) 

In this evaluation, the random phase we consider in the simulation, consists of narrow gaussians, 
analogous to the expected effect that a real physical system would have on an electron wave. The 
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delta function description in Eq (14) is thus an approximation for the case of narrow gaussians, and is 
obtained for a pointwise random phase. 

Up to this point, no distinction was made between the dephaser or decoherer. For the dephaser, 
substitution of Eq. 13 and 14 into Eq. 12, leads to the deviation,  

( ) ( )

( ) ( ) ( ) ( )
( )

( )
2 2
2 1

2
1 2

21*
1 2 1 , 1 2 , 2 1 2

2

22
0 1 2

,

,

2 .
s s

s s

b b s b s b b b

x x
ik

z
s s

G x x

dx dx h x x h x x G x x

kI e T x x
z

π
−

Δ

≡

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∫                                     (15) 

The 2T is the Fourier transformation of 2T . In the following we drop the subscript “s”; i isx x=  to 
represent coordinates on the screen. We recall the expression of the transmission function (Eq. 3) and 
substitute in Eq. 15 to get  

( ) ( )2 2
1 2 1 2

k kT x x D x x
z z

⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.                                                    (16) 

Thus, Eq. 15 can be rewritten as  

( )
( )

( )
2 2
2 1

(2)
1 2

2

22
0 1 2

,

2 .
x x

ik
z

G x x

kI e D x x
z

π
−

Δ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

                                                    (17) 

Using the normalized intensity correlation function:  

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
1 2

2
1 2 1 2

1 2 1 2

,

, /

/ 1,

g x x

G x x I x I x

I x I x I x I x

Δ

= Δ

= −

                                                   (18) 

where ( )1I x  represents the intensity at position 1x  on the screen. 

We come to a result that 

( )
( )

( )
2 2
2 1

1 2

2

(2) 22
1 2 ,,

x x
ik

z
x xg x x e D k

−

Δ ∝ ,                                                           (19) 



 

10 
 

where ( )
1 2, 1 2 / .x xk k x x z= − In the simulation symmetric coordinates are chosen in the x-axis, 

1 2x x x= = −  and 0x =  is chosen at the center of detection screen. The normalized second order 
correlation function [5] is thus  

( ) ( ) ( ) ( ) ( )
2

2 2 2, 2 /g x x g x D kx zΔ − ≡ Δ ∝ .                                           (20) 

This result states that the deviation of normalized intensity correlation function is proportional to 
the Fourier transformation of the double-slit spatial pattern and thus the far field interference pattern. 
It reveals that the diffraction pattern will be recovered if a dephaser is applied. However, for a 
decoherer, the far-field pattern is not recovered. For the decoherer, Eq. 15 is expressed as 

( ) ( )

( ) ( ) ( ) ( )

( )
( )

2 2
2 1

2
1 2

21*
1 2 1, 1 2, 2 1 2

2

22
0 1 2

,

,

2 ,

n
n

x x
ik

z
n

n

G x x

dx dx h x x h x x G x x

kI e T x x
z

π
−

Δ

′ ′ ′ ′ ′ ′≡

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∫

∑

                                        (21) 

where ( ) ( )1 ,n i jG x x′ ′  is the n-th wave’s first-order correlation function. 

The deviation of the normalized intensity correlation function of the far field intensity 
distribution for 500 different phase realizations are averaged using Eq. 18 and compared to the 
Fourier transformation of the double-slit transmission function,   

 

2
2 2

2

sin sin4 sinc

sincos

W WI W

D

θ θ
λ λ

π θ
λ

−
⎛ ⎞ ⎛ ⎞= ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

,                                              (22) 

where W  is the width of slits, D  is the distance between the center of two slits and λ  is wavelength 

(30 pm). The angle θ  is related to detector position by 2x
d

θ = , where x  is the distance to the center, 

and d  is the distance between detection screen and double-slit. The result is given in Fig. 6.  
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FIG. 6. Double slit pattern recovery. A comparison is made between the deviation of intensity correlation 
function and the corresponding far-field diffraction pattern (Eq. 22) of the double-slits. The orange solid curve 
is the far-field double slit diffraction pattern. In (a), the blue dashed curve is the intensity correlation function 
averaged over 500 dephaser realizations, while in (b) the blue line is the same for 500 decoherer realizations. 
In (a), the deviation recovers the diffraction pattern while in (b) this is not the case.  

The relationship between Fig.5 and 6 is that two example patterns of the 500 total simulations are 
shown for the dephaser in Fig. 5(a) and Fig. 5(c), which correspond to the intensity correlation 
function in Fig. 6(a). In the same way the decoherer patterns in Fig. 5(b) and Fig. 5(d), correspond to 
Fig. 6(b). The effect of applying the intensity correlation function on the patterns that underwent 
dephasing (blue in Fig 6(a)) is in agreement with the theoretical double slit diffraction pattern 
(orange) which confirms Eq. 17. This phenomenon has been observed in the optical regime [5] and 
we have now shown that it is possible to be observed in the matter-wave regime. In Fig. 6(b) the 
intensity correlation function for the decoherer shows the absence of a double slit pattern. Thus, we 
have a method to tell a difference between decoherence and dephasing in a process. 

The visibility of the intensity correlation functions is also calculated since it is related to the 
entropy increase in the simulation. The relationship is model dependent, but it is monotonical within 
the model considered. We investigated the relation and find a confidence range to estimate the 
sensitivity of our method. The results are presented in Fig. 7. 
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FIG. 7 Entropy and the visibility. The figure shows their relationship in our model. The data is generated by 
calculating the visibility of the intensity correlation function for different strengths of the decoherence process 
in the system. The intensity correlation functions are based on 500 measurements for every decoherence 
strength. A stronger decoherence process produces more decoherence and a corresponding higher entropy. 
Blue dots with lower visibility indicate more decoherence. The error bar is a 95% confidence interval. The red 
line above is the measured visibility value for the pure dephasing process. This figure serves to indicate the 
sensitivity of the method. 

In summary, the increase of entropy (Fig. 3) is one-to-one related to the absence of a double-slit 
diffraction pattern in the intensity correlation function (Fig. 6), and such an absence identifies the 
presence of a time-irreversible process. This finding regarding the change in entropy matches 
Zurek’s description of decoherence very well. Zurek [23] explains that “Observers can be ignorant 
of phases for reasons that do not lead to an imprint of the state of the system on the environment. 
…Transfer of information about a decohering system to the environment is essential, and plays a key 
role in the interpretation.” That is to say, if information is transferred by decoherence to the 
environment, then the information entropy will increase. “Hence, in the case of dephasing …, 
information about the cause obtained …afterwards, suffices to undo the effect.” In our example, the 
effect of the dephasing (the scrambling of the diffraction image) is undone by the correlation method 
presented here. “Decoherence relies on entangling interactions… Thus neither prior nor posterior 
knowledge of the state of the environment is enough.” Indeed, for our example, the correlation 
method does not recover the diffraction image for the case of decoherence. 

In this context the interesting approach of Stibor [24–26] to remove dephasing is relevant. In 
their method correlation in space and time is used and experimentally shown to remove dephasing 
for externally applied fields. It is different from the present method in that a specific form of the 
dephasing fields is assumed, that it uses time explicitly, and that it does not evaluate decoherence.  

The Hanbury-Brown and Twiss effect can also be compared with our method. First, it is useful 
to recall the difference between the classical and quantum Hanbury-Brown Twiss (HBT) effect. The 
classical HBT effect is a wave phenomenon (that holds for one-particle experiments), while the 
quantum HBT effect depends on the bosonic or fermionic nature of the particle [27,28] (that holds 
for two-particle experiments).  Our method can only be compared meaningfully to the classical HBT 
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effect as we are using one-particle wave functions. We thus compare, for example, the second-order 
correlation function for collision-broadened thermal light to the second-order correlation function for 
electrons emanating from a double-slit with a noisy phase (see Appendix A). There is no 
mathematically identical mapping between these second-order correlation functions.  

For thermal light, the second-order correlation function can be expressed in terms of the first-
order correlation function; (2) (1) 2( ) 1 | ( ) |g gτ τ= +  [29], while for electrons that propagate from a 

double slit a similar relation is found by (2) * (1) 2
1 2 1 2 1 1 1 2 2 2 1 2( , ) 1 | ( , ) ( , ) ( , ) |g x x dx dx h x x h x x g x x′ ′ ′ ′ ′ ′= + ∫  (this 

is our Eq. 11 normalized by ( ) ( )1 1 2 2I x I x ). A difference is that matter wave propagation (with a 

quadratic dispersion relation) is not the same as light propagation (with a linear dispersion relation).  
Additionally, the light of thermal sources is considered to be continuous and not pulsed.  The 
electron source is a double slit and is not continuous in space. Finally, our method distinguishes 
between dephasing and decoherence for electrons. Decoherence is a quantum property and not a 
wave property.  

It is not clear at this point how general the intensity correlation function processing method is. 
All our numerical tests indicate that the method works when the dephaser pervades the entire wave-
function, with spatial fluctuations one order of magnitude (or more) smaller than the single slit 
width. This is the scenario discussed in multiple theoretical models [14,16,17,30,31] and 
experiments [10,13,18]. Other alternative setups such as an interferometer with a dephaser or 
decoherer in one arm can be considered. When a known static dephaser is placed in the other 
interferometer arm, dephasing and decoherence can be distinguished. On the other hand, when the 
dephaser only acts at the location of one slit, and no dephaser is present at the location of the other 
slit, the double-slit pattern is not recovered in the intensity correlation function. This is an example 
where the method fails. A more detailed study is required to identify both analytically and 
numerically what the validity range of the correlation method is. An additional experimental 
requirement is that multiple probabilities distributions must be recorded, each corresponding to 
different phase realizations. This can be done by decohering or dephasing object as a function of the 
position. For example, the lateral position of the surface in Fig. 2 could be varied. For a position 
dependent dephaser, it is expected that the diffraction pattern will be recovered, while for a decoherer 
(as for example based on image charge) the lateral position does not affect the diffraction image and 
the diffraction pattern will not be recovered. The correlation method is not expected to work in all 
cases. For example, if the surface acts as a homogeneous decoherer, there may be no position 
dependence. If the time dependence of the interaction between the electron and the surface is on the 
order of the electron-electron interaction time ( 10≈ fs) then a repetitive time-averaged accumulation 
of the probability distribution will yield identical results. In this case techniques exists that are 
developed for ultrafast electron diffraction and microscopy [32,33] where this time domain in now 
being reached [34]. 

In conclusion, an alternative to holography or tomography is offered to distinguish dephasing 
from decoherence and thus identify time reversible from time irreversible processes. The visibility of 
intensity correlation functions can be analyzed to find the corresponding entropy change. In our 
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model, visibility lower than 0.998314 (corresponding entropy increase is 0.043) confirms the 
existence of decohering process in the system with a 95% confidence level. Note, that the sensitivity 
of method varies with model. This technique of using repetitive correlation measurements to 
distinguish between dephasing and decoherence is discussed in the context of electron matter optics, 
should be applicable to optics, and can lead to new experiments in both fields.  

 

The authors wish to thank Wolfgang Schleich, Sam Keramati and Eric Jones for discussions. 
This work was completed utilizing the Holland Computing Center of the University of Nebraska, 
which receives support from the Nebraska Research Initiative. We gratefully acknowledge support 
by the U.S. National Science Foundation under Grant No. 1602755. 

 
 

Appendix A 

Collision broadened thermal light can be described as summation of light waves emitted from 
numerous atoms. Those waves consist of many discrete wave trains. From one wave train to another, 
a sudden phase shift will occur due to atomic collisions. The length τ  of each wave train is 

exponentially distributed as 1( ) c

c

p e
τ
ττ

τ
−

= , where ( )p τ  is the probability of finding a wave train with 

length τ , and cτ  is the mean free flight time of atoms.  The frequency of all emitted waves is 
assumed to be the same. To express this mathematically, 

 1 2 ( )( ) ( )
0( ) ( ... )ni ti t i ti tE t A e e e e φφ φω−= + + + .                                                     (A1) 

Inside the equation is a summation of the fields of n  atoms. Considering the first atom for example. 
It’s field includes a multi-step function as shown below. 

 
FIG. (A1) Multi-step function. This figure shows the phase of emitted light by one atom in the thermal source. 
The atom is emitting light wave trains of certain frequency and phase as the horizontal line segments indicate. 
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A collision will reset its initial phase which cause a “phase jump” in the figure. The length of each line is the 
temporal length of a wave train which is set by the free flight time of the atom. The length is an exponentially 
distributed random number with a mean free flight time cτ . A temporal grid is shown on the figure to indicate 
the discretization of time (see text). 

         The second-order correlation function is defined by 

(2) ( ) ( ) ( ) ( )( ) ,
( ) ( ) ( ) (

E t E t E t E tg
E t E t E t E t

τ ττ
∗ ∗

∗ ∗

< + + >=
< >< >

                                              (A2)   

where ...  is the average taken over a time much larger than the mean free flight time cτ . To 
compare this calculation with our simulation for electrons, we rewrite the integral as a sum using a 
discretized time duration as labeled in figure A1. Thus, ( )t t j=  and ( )jτ τ= Δ . The (2) ( )g τ  function 
can be written as  

1(2)

2

1 1

( ) ( ) ( ) ( ) /
( ) .

( ) ( ) ( ) ( ) /

J

j
J J

j j

E j E j j E j E j j J
g

E j E j E j E j J
τ

∗ ∗

=

∗ ∗

= =

+ Δ + Δ
=
∑

∑ ∑
                                  (A3) 

Substituting the field expression Eq. (A1) into Eq. (A3) gives 

( ) ( )( ) 2 ( ) 2

1 1 1(2)

( ) ( )( ) 2 ( ) 2 2

1 1 1 1

| | | | /
( ) .

| | | | /

i i

i i

J n n
i j i j ji t j i t j j

j i i
J n J n

i j i ji t j i t j

j i j i

e e e e J
g

e e e e J

φ φω ω

φ φω ω
τ

+Δ− − +Δ

= = =

− −

= = = =

=
∑∑ ∑

∑∑ ∑∑
                                 (A4) 

However, in our simulation, the spatially dependent phase noise cannot be mapped identically onto 
the counterpart of temporal stepped phase in the thermal light model. To illustrate this, consider the 
thought experiment modeled in our simulation (Fig. A2). 
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FIG. (A2) Simulation schematic. A uniform source is placed on the double-slit plane (the double slit is 
removed). A noisy phase is applied.  Discretized spatial coordinates are used. The green and red lines indicate 
the propagation path from the source ( )a j  to the screen position ( )x jΔ  and ( )x j− −Δ .  

Discretized spatial coordinates ( )a a j=  on the source and ( )x x j= Δ  on the screen are shown. 
Amplitudes on the source propagate from point j  to point j±Δ  and the pathlength l  is a function of 
j  and jΔ . Using the path integral formalism, fields on the screen are  

2 ( , ) ( )( ) ,i

J i l j j i j
i

j

E x e e
π

φλ
− Δ

=∑                                                                (A5) 

2 ( , ) ( )( ) .i

J i l j j i j
i

j

E x e e
π

φλ
− −Δ

− =∑                                                            (A6)  

Using the intensity correlation function  

(2) ( ) ( )( ) ,
( ) ( )
I x I xg x

I x I x
< − >=

< >< − >
                                                          (A7)  

and expressing this explicitly in discrete spatial coordinates, we find 

2 ( , ) 2 ( , )
( ) ( )2 2

(2)
2 ( , ) 2 ( , )

( ) ( )2 2 2

| | | | /
( ) .

| | | | /

i i

i i

l j j l j jn J Ji ii j i j

i j j
l j j l j jn J n Ji ii j i j

i j i j

e e e e N
g j

e e e e N

π π
φ φλ λ

π π
φ φλ λ

Δ −Δ− −

Δ −Δ− −
Δ =

∑∑ ∑

∑∑ ∑∑
                          (A8)  

This can now be compared with Eq. (A4). The summation order is different. For thermal light the 
random phase depends on j  and j j+ Δ , while for electron it depends only on j . For thermal light 
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the time is dependent on j j+ Δ , while for electrons the position depends on j  and jΔ . The total 
number of summations is also different.  
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