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We explore quantum many-body physics of a driven Bose-Einstein condensate in optical lattices.
The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective
Rabi frequency. The lowest lying modes in a driven condensate are characterized by zero group
velocity and non-zero current. Thus, the laser field induces roton modes, which carry interaction in
a driven condensate. We show that collective excitations below the energy of the laser-induced gap
remain undamped, while above the gap they are characterized by a significantly suppressed Landau
damping rate.
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I. INTRODUCTION

Multicomponent Bose-Einstein condensates (BECs) of
ultracold gases [1–4] are a superb system for exploring
quantum many-body physics and emergent phenomena
in a well-controlled macroscopic quantum system. The
spinor BEC led to a major advances that include ob-
servation of Dirac monopoles [5], exotic magnetism [1],
spin Hall effect [6], spontaneous symmetry breaking [7],
coherent spinor dynamics [8], dynamic stabilization [9],
vortex formation [10], quantum spin mixing [11], spin do-
main wall formation [12], and realization of topological
states [13, 14]. The observation of the low-lying collec-
tive modes of a condensate revealed its dynamics and
unique spectral signatures [15, 16]. Moreover, collective
modes in a two-component condensate were instrumen-
tal in the examination of the crossover from a BEC to
Bardeen-Cooper-Schrieffer (BCS) superfluid regime of ul-
tracold Fermi gases [17–19]. At low temperatures, the de-
cay of collective modes, caused by the coupling between
them, is described by the Landau damping process [20].
In this Letter, we show that the laser field induces a
gap in an otherwise gapless Bogoliubov spectrum, which
leads to the existence of roton modes in a driven conden-
sate. We show that the laser-induced gap in the spectrum
of elementary excitation protects the low-lying collective
modes from Landau damping. Above the energy of the
gap, the damping is dominated by the laser-induced ro-
ton modes and is considerably suppressed compared to
the phonon-mediated damping found in a field-free con-
densate.

We describe a weakly interacting two-component BEC
confined in an optical lattice (see Fig.1.(a)) by a driven
Bose-Hubbard Hamiltonian [3, 4]. For a driven two-
component BEC we obtain the exact results for the ele-
mentary amplitudes and find a set of exact symmetries
that are inherent among them. Based on the obtained
energy spectrum and amplitudes, we explore the near-
equilibrium dynamics of a condensate and calculate Lan-
dau decay rate of the collective modes. The microwave
field that drives the condensate from the ground state to
the first excited state operates in a single mode regime
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FIG. 1. Bose-Einstein condensate in an optical lattice driven
by a laser field (a) Bose-Einstein condensate (yellow spheres)
confined in an optical lattice, formed by counter-propagating
waves (red arrows) and driven from the ground state by the
laser field Ω(t). (b) Two-component Bose-Einstein conden-
sate is modeled by a set of two-level systems, driven from
the ground state |b〉 to the excited state |a〉 by the laser field
Ω(t). The laser field is characterized by the Rabi frequency
ΩR and detuning ∆. Initially, the condensate is prepared in
the ground state |b〉.

[21–25], and is characterized by the Rabi frequency and
detuning (see Fig. 1.(b)). We find that the applied laser
field creates a gap in the energy spectrum that dramati-
cally modifies the interaction in a driven condensate. In a
scalar BEC, coupling between the collective modes, car-
ried by the phonons, leads to the absorption (emission) of
the collective modes described by Landau damping [26]
(Beliaev damping [27]). In contrast, the lowest lying el-
ementary excitations in a driven BEC have zero group
velocity and non-zero current. Thus, the interaction in
a driven condensate is carried by the laser-induced roton
modes. The laser-induced gap in the spectrum of elemen-
tary excitation ensures zero Landau damping of the col-
lective modes lying below energy of the gap. Above the
gap, it is proportional to the density of the laser-induced
roton mode and is considerably slowed down compared
to a field-free scalar condensate.
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The suppression of the collective modes was previ-
ously reported for a number of physical systems. This
includes the observation of suppressed Landau damping
in the Bose-Fermi superfluid mixture [28, 29], reduced
decay rate of the collective excitation in fermionic polar
molecules confined in optical lattices due to the quan-
tum Zeno mechanism [30], and the prediction of the ab-
sence of damping for quasi 2D dipolar Bose gas at zero
temperature [31–33]. However, in all of these systems
the energy spectrum is gapless for small momenta, and
therefore the interaction in a BEC gas is carried pre-
dominantly by the phonons. Thus, the phonon modes
contribute the most to the Landau damping of the low-
lying collective modes. For larger momenta, the roton
modes are damped out, and therefore, Landau damp-
ing in scalar or dipolar BECs is carried primarily by
the phonon modes [32]. In contrast to these studies,
we show that the energy spectrum of elementary excita-
tions of a two-component BEC acquires a gap in the pres-
ence of a laser field, which was reported previously [34].
We demonstrate that Landau damping of the collective
modes in a driven two-component BEC is governed by the
rotons and is considerably suppressed, compared to the
phonon-mediated damping in scalar BECs. Moreover,
we find that collective oscillations lying below the energy
of the gap are damping free. The undamped collective
modes of a driven multicomponent condensate, combined
with the extremely long coherence time of BECs, will al-
low one to observe long-lived internal dynamics of nonlin-
ear macroscopic phenomena, such as quantum vortices,
quantum turbulence, and solitons [3].

II. MANY-BODY HAMILTONIAN OF A DRIVE
TWO-COMPONENT BEC IN OPTICAL LATTICE

We start with the Bose-Hubbard Hamiltonian of the
two-component BEC in an optical lattice, [21–23, 35–38]

H =

∫
dr
∑
j=a,b

ψ̂†j (r)

(
− h̄2

2m
∇2 + V (r)− µj

)
ψ̂j(r)

+
1

2

∫
dr
∑
j=a,b

ψ̂†j (r)

 ∑
j′=a,b

gjj′ ψ̂
†
j′(r)ψ̂j′(r)

 ψ̂j(r)

+
ΩR
2

∫
dr
(
ei∆tψ̂†a(r)ψ̂b(r) + e−i∆tψ̂†b(r)ψ̂a(r)

)
. (1)

Here ψ̂j(r) is the field operator, which obeys Bose-
Einstein statistics and annihilates a particle character-
ized by the mass m, location r, and the internal state
j = a(b) for a particle in the excited (ground) state. The
chemical potential for a particle occupying the internal
state j is given by µj . The lattice potential is assumed

to have a cubic form, V (r) = V0

∑3
i=1 sin2(kLri), and is

given in terms of the lattice vector kL = π/aL, where aL
is the lattice constant. The interaction between particles
occupying the internal states j and j′ are given by the
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FIG. 2. (Color online) Rabi-Bogoliubov spectrum for a driven
two-component Bose-Einstein condensate in an optical lattice.
The new dispersion law consists of two branches, Eka(ΩR)
(solid curves) and Ekb(ΩR) (dashed curves), which are sepa-
rated by the standard Bogoliubov spectrum. The first branch
of the new Rabi-Bogoliubov spectrum that lies above the Bo-
goliubov spectrum is characterized by the gap and has char-
acteristic quadratic dispersion relation for small momenta k
in the units of the lattice constant aL. The second branch
of the spectrum has a real solution only for certain values of
momenta, while for the rest of the momenta, has only purely
imaginary solutions.

coupling constants gjj′ . The laser field that drives the
condensate from the ground state |b〉 to the first excited
state |a〉 is characterized by the Rabi frequency ΩR and
detuning ∆ (see Fig.1.(b)) from the excited state.

In the tight binding model, and lowest band approxi-
mation, which is valid in the long-wavelength limit, one
can expand the bosonic field operators ψ̂j(r) in the Wan-

nier basis ψ̂j(r) =
∑
n bnjwj(r−rn). Throughout the pa-

per, we will use the index convention, according to which
the first argument of the index describes the site in an
optical lattice, while the second argument corresponds to
the internal state within the site. The expansion of the
field operators in the Wannier basis in the driven Bose-
Hubbard Hamiltonian 1 directly leads to

H = −
∑
j=a,b

∑
〈m,n〉

Jjjmn

(
b̂†mj b̂nj + b̂†nj b̂mj

)
(2)

−
∑
j=a,b

µj
∑
n

b̂†nj b̂nj +
∑

j,j′=a,b

Ujj′

2

∑
n

b̂†nj b̂
†
nj′ b̂nj′ b̂nj

+
ΩR
2

∑
n

(
ei∆tb̂†nab̂nb + e−i∆tb̂†nbb̂na

)
,

where we considered hopping between nearest neighbors,
indicated by 〈m,n〉. Here the hopping integral is

J ijmn = −
∫
drw∗i (r− rm)

[
− h̄2

2m
∇2 + V (r)

]
wj(r− rn),

(3)
and the on-site interaction is

Ujj′ = gjj′

∫
drw∗j (r)w∗j′(r)wj′(r)wj(r). (4)
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In order to transform the Bose-Hubbard Hamiltonian
into the k-space we introduce the Fourier transform of
the creation and annihilation operators,

b̂nj =
1√
NL

∑
k

exp [−ikrn]âkj , (5)

whereNL is number of lattice cites. Then we linearize the
Fourier-transformed Bose-Hubbard Hamiltonian Eq.(2)
by expanding the creation and annihilation operators
near their average values, âkj = 〈â0j〉 + (âkj − 〈â0j〉).
Here 〈â0j〉 is the average value of the annihilation opera-
tor, which is given in terms of number of the particles oc-
cupying zero momentum state N0j , 〈â0j〉 =

√
N0j . The

coupling between particles occupying the internal states
j = {a, b} is described by the matrix(

naUaa
√
nanbUab√

nanbUba nbUbb

)
≡
(
ua sa
sb ub

)
. (6)

Here nj = N0j/NL are the average filling factors of the
particles occupying the internal state j and momentum
k = 0. In this work we will consider the simplified case,
u = naUaa = nbUbb and s =

√
nanbUab =

√
nanbUba.

However, the main physical results concerning the Rabi-
Bogoliubov spectrum of a driven two-component BEC
and the characteristic rate of Landau damping of the
collective modes in the symmetric case match the results
obtained in the general case Eq.(6). In the special case
u = s the matrix Eq.(6) simplifies to the fully symmet-
ric Manakov model, which very closely describes a two-
component BEC of 87Rb.

III. RABI-BOGOLIUBOV ENERGY SPECTRUM
AND AMPLITUDES OF A DRIVEN

TWO-COMPONENT BEC IN OPTICAL LATTICE

The linearized Bose-Hubbard Hamiltonian can be di-
agonalized via the generalized Bogoliubov transforma-
tion. This transformation introduces the quasiparticle
creation and annihilation operators, according to âkj =

Ukα̂ka + V ∗k α̂
†
−ka + Wkβ̂kb + Y ∗k β̂

†
−kb. Here α̂k,a and

β̂k,b are the quasiparticle annihilation operators in the
excited j = a (ground j = b). We impose the Bose-
Einstein commutation relation for these quasiparticle op-

erators, [α̂kj , α̂
†
−k,j′ ] = δjj′ , and [β̂kj , β̂

†
−k,j′ ] = δjj′ . This

leads to a constraint on the Rabi-Bogoliubov amplitudes,
U 2
k − V 2

k + W 2
k − Y 2

k = 1.

In the quasiparticle basis the Bose-Hubbard Hamilto-
nian is diagonal and is given by,

Heff =
1

2

∑
k

Ea(k)α̂†a,kα̂a,k +
1

2

∑
k

Eb(k)β̂†b,kβ̂b,k. (7)

Rabi-Bogoliubov spectrum of elementary excitations is
obtained from the condition det [M − 1(E/2)] = 0,
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FIG. 3. (Color online) Rabi-Bogoliubov amplitudes for a
two-component Bose-Einstein condensate in an optical lattice
driven by a microwave field. The standard Bogoliubov am-
plitudes have poles at the location of the roots of Bogoliubov
spectrum. The laser field, which drives the condensate, cre-
ates a gap in the spectrum of elementary excitations. As a
result, Rabi-Bogoliubov amplitudes (a) U 2

k and (b) V 2
k are

finite for all values of momenta k, given in the units of the
lattice constant aL. For a two-component condensate, one ob-
tains additional Rabi-Bogoliubov amplitudes, (c) W 2

k and (d)
Y 2

k , which are absent for a scalar BEC. These amplitudes en-
sure Bose-Einstein commutation relation for the quasiparticle
creation and annihilation operators.

where the matrix M is given by

M = (8)
tk + u+ ∆

2 s+ ΩR

2 u s
s+ ΩR

2 tk + u− ∆
2 s u

−u −s −tk − u− ∆
2 −s− ΩR

2

−s −u −s− ΩR

2 −tk − u+ ∆
2

 .

Here, the tunneling parameter tk = 4J sin2 (kaL/2) is
given in terms of tunneling amplitude J ≡ Jjjmn, mo-
mentum k, and the lattice constant aL. The exact Rabi-
Bogoliubov spectrum of a driven two-component conden-
sate is

Ea(k) =
√

4tk (tk + 2u) + ∆2 + Ω2
R + 4sΩR + 4σ, (9)

Eb(k) =
√

4tk (tk + 2u) + ∆2 + Ω2
R + 4sΩR − 4σ (10)

where the parameter σ is defined as the positive branch
of the square root,

σ2 = 4stk (tk + u) ΩR + s2
(
4t2k −∆2

)
(11)

+ (tk + u) 2
(
∆2 + Ω2

R

)
.

For the Rabi-Bogoliubov amplitudes we find a set of
symmetries that hold among them,

V 2
k (Ea, σ) = −U 2

k (−Ea, σ), (12)

W 2
k (Eb, σ) = U 2

k (Eb,−σ),

Y 2
k (Eb, σ) = −U 2

k (−Eb,−σ).
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The new symmetries are the direct generalization of the
intrinsic symmetries of the standard Bogoliubov ampli-
tudes. Indeed, if one reverses the sign of the energy in
the square of the first Bogoliubov amplitudes, v2

k(E), and
swaps the sign of the whole expression, one arrives at the
second Bogoliubov amplitude, i.e. u2

k(E) = −v2
k(−E).

As a result of the symmetries Eq.(12), one can obtain all
the Rabi-Bogoliubov amplitudes from any one of them,
for instance, U 2

k (Ea, σ), which is explicitly given by,

U 2
k (Ea, σ) =

1

4Eaσ
×
(
s2 (4tk − 2∆) (13)

+ (2tk + 2u+ Ea + ∆) ((tk + u) ∆ + σ)

+ 2s (2tk + u) ΩR + (tk + u) Ω2
R

)
We note that in the long-wavelength limit the Rabi-

Bogoliubov amplitudes Wk(Ea) and Yk(Ea) are purely
imaginary. Therefore, we are left with the real-valued
Rabi-Bogoliubov amplitudes Uk(Ea) and Vk(Ea), which
can be considerably simplified in the special case of a
resonant drive, i.e. ∆ = 0,

Uk(Ea) =

√
Ea + 2(tk + u+ s+ ΩR/2)

4Ea
, (14)

Vk(Ea) = −
√
−Ea + 2(tk + u+ s+ ΩR/2)

4Ea
,

where Eα =
√

(2tk + ΩR) (2tk + 4u+ 4s+ ΩR).

IV. LANDAU DAMPING OF COLLECTIVE
EXCITATION IN A DRIVEN

TWO-COMPONENT BEC IN OPTICAL LATTICE

In the previous section we derived the exact Rabi-
Bogoliubov spectrum and amplitudes of the elementary
excitations for a driven two-component BEC in an optical
lattice. The collective excitations of a driven BEC repre-
sent its vibrational (normal) modes with the dispersion
law given by the derived Rabi-Bogoliubov energy spec-
trum. In this section, we will consider the interaction
between the collective modes and the thermally excited
modes in a driven two-component BEC. In particular,
we will examine the scattering process of an incoming
collective mode and a thermal mode that creates a sin-
gle outgoing thermal mode. In this collision process, the
outgoing thermal mode may gain or lose energy, which
ultimately depends on the slope of its energy distribu-
tion. The negative slope of the Bose-Einstein distribu-
tion, which governs the energy distribution of the ther-
mal modes, results in a net loss of energy of the thermal
modes. As a result, it leads to the Landau damping pro-
cess [4, 26, 39] of the collective excitation in a driven
two-component BEC. The interaction between the col-
lective modes in given by,

Vint =
gjj
2

∫
drψ̂†j (r)ψ̂†j (r)ψ̂j(r)ψ̂j(r). (15)

First, we expand the field operator ψ̂j(r) around its equi-

librium value, 〈ψ̂j(r)〉, with a perturbation due to the

fluctuations in the system, δψ̂(r),

ψ̂j(r) = 〈ψ̂j(r)〉+ δψ̂j(r). (16)

Next, we expand the perturbation, δψ̂j(r), in a linear su-
perposition of the quasiparticle creation and annihilation
operators of thermal and collective modes,

δψ̂j(r) =
(
Ucolα̂col + V ∗colα̂

†
col + Wcolβ̂col + Y ∗colβ̂

†
col

)
+

+
∑
m

[
Umα̂m + V ∗mα̂

†
m + Wmβ̂m + Y ∗mβ̂

†
m

]
. (17)

Here the sum goes over all the thermal modes in a
driven two-component BEC. The probability of absorp-
tion (emission) of a collective mode is given by Fermi
Golden Rule [4],

W = π
∑
mn

|〈n|Vint|m〉|2 . (18)

The next step consists of collecting all the terms that
form a product of three quasi-particle operators - the
annihilation operator of an incoming collective mode,
the annihilation operator of an incoming thermal mode,
and the creation operator of an outgoing thermal mode.
Thus, we obtain the Landau damping rate of the collec-
tive excitation in a driven two-component BEC,

ΓL = −π
∑
m,n

[
g(0)(En)− g(0)(Em)

]
× (19)(

|Amn|2δ(E(a)
n − E(a)

m − h̄ωq)+
+|Bmn|2δ(E(b)

n − E(a)
m − h̄ωq)+

+|Cmn|2δ(E(a)
n − E(b)

m − h̄ωq)+
+|Dmn|2δ(E(b)

n − E(b)
m − h̄ωq)

)
.

Here the energies E(a)(k) and E(b)(k) are the branches
of the Rabi-Bogoliubov spectrum given by Eq.(9) and
Eq.(10), respectively; h̄ωq is the energy of the incoming
collective mode; g(0)(E) is the thermal distribution of the
thermal modes, given by the Bose-Einstein distribution,
g(0)(E) = 1/(exp[βE]−1). Here the amplitudes are given
by (with g̃jj = 2

√
Ngjj)

Amn = g̃jj [(Ucol + Wcol) (UmU ∗n + Vm(U ∗n + V ∗n ))

+ (Vcol + Ycol) (Um(U ∗n + V ∗n ) + VmV ∗n )] , (20)

Bmn = g̃jj [(Ucol + Wcol) (UmW ∗
n + Vm(W ∗

n + Y ∗n ))

+ (Vcol + Ycol) (Um(W ∗
n + Y ∗n ) + VmY ∗n )] , (21)

Cmn = g̃jj [(Ucol + Wcol) (U ∗n (Wm + Ym) + YmV ∗n )

+ (Vcol + Ycol) (WmU ∗n + V ∗n (Wm + Ym))] , (22)

Dmn = g̃jj [(Ucol + Wcol) (WmW ∗
n + Ym(W ∗

n + Y ∗n )))

+ (Vcol + Ycol) (Wm(W ∗
n + Y ∗n ) + YmY ∗n ))] . (23)
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In the continuous limit we can replace the sum in Eq.(19)
by the integral, which directly leads us to

ΓL = (24)

−πh̄ωq
∫

d3p

(2π)3
|Amn|2

∂g(0)(E(a))

∂E(a)
δ(E

(a)
p+q − E(a)

p − h̄ωq)

−πh̄ωq
∫

d3p

(2π)3
|Bmn|2

∂g(0)(E(b))

∂E(b)
δ(E

(b)
p+q − E(a)

p − h̄ωq)

−πh̄ωq
∫

d3p

(2π)3
|Cmn|2

∂g(0)(E(a))

∂E(a)
δ(E

(a)
p+q − E(b)

p − h̄ωq)

−πh̄ωq
∫

d3p

(2π)3
|Dmn|2

∂g(0)(E(b))

∂E(b)
δ(E

(b)
p+q − E(b)

p − h̄ωq),

where we expanded the Bose-Einstein factor, g(0)(E), in
a Taylor series and kept the leading non-vanishing term.
This expansion is valid only for the low-energy collective
modes with energy h̄ωq � kBT , where kB is the Boltz-
mann constant. In the long-wavelength limit, the leading
contribution to Landau damping comes form the real-
valued Rabi-Bogoliubov amplitudes Uk(Ea) and Vk(Ea).
Thus, the Landau damping rate can be simplified into,

ΓL ' (25)

−πh̄ωq
∫

d3p

(2π)3
|Amn|2

∂g(0)(E(a))

∂E(a)
δ(E

(a)
p+q − E(a)

p − h̄ωq).

In the long-wavelength limit, the scattering amplitude
Amn can be reduced to,

Amn ' 4
√
N
gjj
2
× (26)[

(Ucol + Vcol)

(
UmU ∗n + VmV ∗n +

1

2
(VmU ∗n + UmV ∗n )

)
+ (Ucol − Vcol)

1

2
(VmU ∗n −UmV ∗n )

]
.

For the low energy excitation, the Rabi-Bogoliubov am-
plitudes can be simplified to

Ucol + Vcol '
√
ωq√

2(u+ s)
, (27)

Ucol − Vcol '
√

2(u+ s)
√
ωq

.

As a result, the scattering amplitude acquires a particu-
larly simple form

A(E(a)) =

=

√
ωq√

2(u+ s)

[(
U 2
m + V 2

m + UmVm
)

+ E(a) ∂U 2
m

∂E(a)

]
'

√
ωq√

2(u+ s)

[
3

4

E(a)

(u+ s)

]
. (28)

If we introduce E(a) ≡ E, we obtain the Landau decay
rate of the collective modes in a driven two-component

BEC,

ΓL = −πh̄ωq
2π

(2πh̄)3

(
4
√
N
gjj
2

√
ωq√

2(u+ s)

)2
1

q

× β ∂

∂β

∫
dp

1

vg

p2

E

1

(eβE − 1)

(
3

4

E

(u+ s)

)2

, (29)

where ωq and q are the frequency and momentum of the
collective mode. Now we define the density of the roton
gas,

ρr =
4π

3(2πh̄)3

∫
dp p2E

2

vg

(
− ∂

∂E

1

(eβE − 1)

)
=

4π

3(2πh̄)3

(
−β ∂

∂β

)∫ ∞
E0

dE
p2

v2
g

E

(eβE − 1)
, (30)

where the group velocity is defined as vg = ∂E(p)/∂p and
β = 1/kBT . For small momenta we find laser-induced
roton-like spectra, E ' E0+E2p

2/2, where we have intro-

duced the gap E0 =
√

ΩR (4u+ ΩR)/2 and the curvature

E2 = (2u+ ΩR) /[m∗
√

ΩR (4u+ ΩR)], given in terms of
the effective mass m∗ = 1/(Ja2

L). Then we immediately
obtain Landau damping rate of the two-component BEC
in an optical lattice expressed in terms of the density of
the laser-induced roton mode,

ΓL = θ(h̄ωq − E0)
27π

16
h̄ωq

ρr
ρ(ωq)

, (31)

where the collective mode spectral density
ρ(ωq) = q(u + s)3/(g2

jjNωq) and the momentum

q =
√

2(h̄ωq − E0)/E2. For a collective mode with
energy below the gap, i.e. h̄ωq < E0, the Landau
damping is zero, ΓL = 0. Thus, laser-induced gap
in the spectrum protects the collective modes from
Landau damping. Above energy of the gap, the Landau
damping rate is proportional to the density of the laser-
induced roton gas, which scales at low temperatures as
ρr ' 1

β2 . In the special field-free case, i.e. ΩR = ∆ = 0,

Rabi-Bogoliubov spectrum reduces to the conventional
Bogoliubov spectrum. Thus, we obtain well-known
result [39] of the phonon-mediated Landau damping of
the collective modes,

ΓL(ΩR = 0) =
27π

16
h̄ωq

ρn
ρ
' 1

β4
. (32)

Here ρn is the normal density of a phonon gas ρn =
2π2T 4/(45h̄3c5), where c is the speed of sound [40].
Therefore, in the presence of a laser field damping of
the collective modes in the condensate significantly slows
down compared to the laser-free phonon-mediated Lan-
dau damping of a scalar BEC.
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The damping rate of collective excitations in a driven
Bose gas can be verified via two-photon Bragg spec-
troscopy as it was done in [41]. In the experiment, the
quasiparticles in a BEC of 87Rb atoms were excited by
tuning the frequency difference and angle between the
Bragg beams applied to the condensate. Immediately af-
ter the applied Bragg pulses, the magnetic trap, which
confined the BEC, was rapidly turned off. Following
the free expansion the BEC cloud was imaged via on-
resonance absorption, which allowed the number of scat-
tered atoms as a function of energy and momentum to
be extracted. The measurement revealed a significant
suppression of collisions of quasiparticles at low momen-
tum. In both cases, namely, Beliaev damping of collec-
tive modes in a laser-free BEC, and Landau damping in a
laser-driven condensate, the physical systems are charac-
terized by a critical energy, below which collision of the
collective modes and associated damping processes are
completely suppressed. We conclude that even though
the collisions between quasiparticles in the experiment
were described by the Beliaev damping process, we ex-
pect that the same holds for Landau damping of collec-
tive modes in a laser-driven condensate.

V. CONCLUSIONS

We have investigated the quantum many-body physics
of a driven two-component Bose-Einstein condensate in
an optical lattice driven by a microwave field. We de-

rived exact analytical results for the generalized Rabi-
Bogoliubov spectrum and amplitudes of the condensate.
We found a gap in the spectrum of elementary excita-
tion in the BEC, which amounts to the effective Rabi
frequency of the applied laser field. We discovered sym-
metries between the elementary excitations of a driven
Bose gas, which generalize the underlying symmetries in
the standard Bogoliubov amplitudes. The gapped spec-
trum and new symmetries of elementary excitations in a
driven BEC dramatically modify dynamics of collective
modes compared to the laser-free case. Specifically, we
found that below the gap energy the collective mode are
damping-free. Above the gap energy the damping rate
is proportional to the density of the laser-induced roton
mode. Thus, the Landau damping rate of the collec-
tive modes in a driven condensate is considerably reduced
compared to the phonon-mediated damping processes in
a laser-free condensate.
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D.S. Hall, “Observation of Dirac monopoles in a synthetic
magnetic field,” Nature 505, 657–660 (2014).

[6] Xiaopeng Li, Stefan S Natu, Arun Paramekanti, and
S Das Sarma, “Chiral magnetism and spontaneous
spin hall effect of interacting Bose superfluids,” Nature
Comm. 5 (2014).

[7] L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalat-
tore, and D.M. Stamper-Kurn, “Spontaneous symme-
try breaking in a quenched ferromagnetic spinor Bose–
Einstein condensate,” Nature 443, 312–315 (2006).

[8] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You,
and Michael S Chapman, “Coherent spinor dynamics
in a spin-1 Bose condensate,” Nature Phys. 1, 111–116
(2005).

[9] T.M. Hoang, C.S. Gerving, B.J. Land, M. Anquez, C.D.
Hamley, and M.S. Chapman, “Dynamic stabilization of
a quantum many-body spin system,” Phys. Rev. Lett.

111, 090403 (2013).
[10] Volker Schweikhard, I Coddington, Peter Engels,

Shihkuang Tung, and Eric A Cornell, “Vortex-lattice
dynamics in rotating spinor Bose-Einstein condensates,”
Phys. Rev. Lett. 93, 210403 (2004).

[11] C.K. Law, Han Pu, and N.P. Bigelow, “Quantum spins
mixing in spinor Bose-Einstein condensates,” Phys. Rev.
Lett. 81, 5257 (1998).

[12] J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Mies-
ner, A.P. Chikkatur, and W. Ketterle, “Spin domains in
ground-state Bose–Einstein condensates,” Nature 396,
345–348 (1998).

[13] Jae-yoon Choi, Woo Jin Kwon, and Yong-il Shin, “Ob-
servation of topologically stable 2d skyrmions in an an-
tiferromagnetic spinor Bose-Einstein condensate,” Phys.
Rev. Lett. 108, 035301 (2012).

[14] J.E. Williams and M.J. Holland, “Preparing topological
states of a Bose–Einstein condensate,” Nature 401, 568–
572 (1999).

[15] D.S. Jin, J.R. Ensher, M.R. Matthews, C.E. Wieman,
and E.A. Cornell, “Collective excitations of a Bose-
Einstein condensate in a dilute gas,” Phys. Rev. Lett.
77, 420 (1996).

[16] M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.M.
Kurn, D.S. Durfee, C.G. Townsend, and W. Ketterle,
“Collective excitations of a Bose-Einstein condensate in
a magnetic trap,” Phys. Rev. Lett. 77, 988 (1996).



7

[17] Qijin Chen, Jelena Stajic, Shina Tan, and Kathryn
Levin, “BCS–BEC crossover: From high temperature su-
perconductors to ultracold superfluids,” Phys. Rep. 412,
1–88 (2005).

[18] Thomas Bourdel, L Khaykovich, Julien Cubizolles,
J Zhang, Frédéric Chevy, M Teichmann, L Tarruell,
SJJMF Kokkelmans, and Christophe Salomon, “Experi-
mental study of the BEC-BCS crossover region in lithium
6,” Phys. Rev. Lett. 93, 050401 (2004).

[19] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim,
C Chin, J.H. Denschlag, and R. Grimm, “Collective ex-
citations of a degenerate gas at the BEC-BCS crossover,”
Phys. Rev. Lett. 92, 203201 (2004).

[20] J.H. Pixley, Xiaopeng Li, and S Das Sarma, “Damping
of long-wavelength collective modes in spinor Bose-fermi
mixtures,” Phys. Rev. Lett. 114, 225303 (2015).

[21] Dieter Jaksch and Peter Zoller, “The cold atom hubbard
toolbox,” Ann. Phys. 315, 52–79 (2005).

[22] A. Sørensen, L.-M. Duan, J.I. Cirac, and Peter Zoller,
“Many-particle entanglement with Bose–Einstein con-
densates,” Nature 409, 63–66 (2001).

[23] Elena V. Goldstein and Pierre Meystre, “Quasiparti-
cle instabilities in multicomponent atomic condensates,”
Phys. Rev. A 55, 2935–2940 (1997).

[24] Marta Abad and Alessio Recatia, “A study of coherently
coupled two-component bose-einstein condensates,” Eur.
Phys. J. D 67, 148 (2013).

[25] Samuel Lellouch, Tung-Lam Dao, Thomas Koffel, and
Laurent Sanchez-Palencia, “Two-component bose gases
with one-body and two-body couplings,” Phys. Rev. A
88, 063646 (2013).

[26] L. D. Landau, “On the vibrations of the electronic
plasma,” Sov. J. Phys. 10, 25 (1946).

[27] S.T. Beliaev, “Application of the methods of quantum
field theory to a system of bosons,” Sov. Phys. J. 7, 289–
299 (1958).

[28] Igor Ferrier-Barbut, Marion Delehaye, Sebastien Lau-
rent, Andrew T Grier, Matthieu Pierce, Benno S Rem,
Frédéric Chevy, and Christophe Salomon, “A mixture
of bose and fermi superfluids,” Science 345, 1035–1038
(2014).

[29] Wei Zheng and Hui Zhai, “Quasiparticle lifetime in a
mixture of bose and fermi superfluids,” Phys. Rev. Lett.

113, 265304 (2014).
[30] Bo Yan, Steven A Moses, Bryce Gadway, Jacob P Covey,

Kaden RA Hazzard, Ana Maria Rey, Deborah S Jin, and
Jun Ye, “Observation of dipolar spin-exchange interac-
tions with lattice-confined polar molecules,” Nature 501,
521–525 (2013).

[31] Stefan S. Natu and S. Das Sarma, “Absence of damp-
ing of low-energy excitations in a quasi-two-dimensional
dipolar bose gas,” Phys. Rev. A 88, 031604 (2013).

[32] Stefan S. Natu and Ryan M. Wilson, “Landau damping in
a collisionless dipolar bose gas,” Phys. Rev. A 88, 063638
(2013).

[33] Stefan S. Natu, L. Campanello, and S. Das Sarma, “Dy-
namics of correlations in a quasi-two-dimensional dipolar
bose gas following a quantum quench,” Phys. Rev. A 90,
043617 (2014).

[34] Paolo Tommasini, EJV de Passos, AFR de Toledo Piza,
MS Hussein, and E Timmermans, “Bogoliubov theory
for mutually coherent condensates,” Physical Review A
67, 023606 (2003).

[35] Andrea Micheli, D Jaksch, J Ignacio Cirac, and P Zoller,
“Many-particle entanglement in two-component Bose-
Einstein condensates,” Phys. Rev. A 67, 013607 (2003).

[36] EV Goldstein, MG Moore, H Pu, and Pierre Meystre,
“Eliminating the mean-field shift in two-component
Bose-Einstein condensates,” Phys. Rev. Lett. 85, 5030
(2000).

[37] H. E. Nistazakis, Z. Rapti, D. J. Frantzeskakis, P. G.
Kevrekidis, P. Sodano, and A. Trombettoni, “Rabi
switch of condensate wave functions in a multicomponent
Bose gas,” Phys. Rev. A 78, 023635 (2008).

[38] L Santos, GV Shlyapnikov, P Zoller, and M Lewenstein,
“Bose-Einstein condensation in trapped dipolar gases,”
Phys. Rev. Lett. 85, 1791 (2000).

[39] L.P. Pitaevskii and S. Stringari, “Landau damping in di-
lute Bose gases,” Phys. Lett. A 235, 398–402 (1997).

[40] L. D. Landau and E.M. Lifshitz, Statistical Physics, Vol. I
(Pergamon, 1980).

[41] N. Katz, J. Steinhauer, R. Ozeri, and N. Davidson, “Be-
liaev damping of quasiparticles in a bose-einstein conden-
sate,” Phys. Rev. Lett. 89, 220401 (2002).


	 Damping-free collective oscillations of a driven two–component Bose gas in optical lattices
	Abstract
	Introduction
	Many-body Hamiltonian of a drive two-component BEC in optical lattice
	Rabi-Bogoliubov energy spectrum and amplitudes of a driven two-component BEC in optical lattice
	Landau damping of collective excitation in a driven two-component BEC in optical lattice
	Conclusions
	Acknowledgments
	References


