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Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric
field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-
resolved electronic phase accumulations and photoemission delays. We quantum-mechanically mod-
eled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including back-
ground contributions from secondary electrons and direct emission by the IR pulse, and adjusted pa-
rameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron
light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018). Our calculated spectra and
photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Op-
tica 224, 84 (2018)]. Our model not reproducing the measured energy-depended oscillations of
the Ag(111) photoemission phases may be interpreted as evidence for band-structure effects on the
final-state photoelectron-surface interaction not accounted for in our simulation.

I. INTRODUCTION

Complementing established energy-resolved photoelec-
tron spectroscopy [1], time-resolved spectroscopic meth-
ods based on photoemission by ultrashort extreme-ultra-
violet (XUV) pulses into the electric field of an assist-
ing time-delayed phase-coherent infrared (IR) laser pulse
have been developed during the past two decades [2–4]
and applied to probe the light-induced electronic dynam-
ics in atoms [5–10], molecules [11], and solids [12–20] with
atomic time-resolution, i.e., at the intrinsic attosecond
time scale of the electronic motion in matter (1 as =
10−18 s, 1 a.u. = 1 atomic time unit = 24 as). Such
time-resolved photoemission experiments are carried out
in two distinct ways, photoemitting electrons with ei-
ther isolated attosecond XUV pulses (IAPs) or attosec-
ond XUV pulse trains (APT). Both types of experiments
record photoelectron spectra as functions of the photo-
electron kinetic energy and XUV-IR pulse delay. While
streaked photoemission spectroscopy employs IAPs and
reveals temporal information about the photoemission
process in terms of delay-dependent photoelectron energy
shifts [3, 5, 6, 14, 20], the use of APTs in RABBITT
(reconstruction of attosecond beating by interference
of two-photon transitions) experiments provides sub-
IR-cycle time resolution by detecting delay-dependent
changes of the photoelectron yield [7, 15, 18, 21]. Both,
photoelectron-energy and yield oscillations follow in time
the carrier-field oscillations of the IR pulse with char-
acteristic photoelectron-energy-dependent phase shifts.
The yield oscillations in RABBITT spectra are due to
sideband interferences of the IR-pulse-assisted XUV pho-
toemission [22, 23].

The ionizing XUV IAPs and APTs in these two
spectroscopic methods, streaked and RABBITT time-
resolved photoelectron-emission spectroscopy, respec-
tively, are provided by splitting the primary IR laser
pulse into the assisting IR pulse and a component that
generates high harmonics (HHs) upon irradiation of a
gas-filled cell. The resulting HHs can be spectrally fil-

tered and combined to produce IAPs and APTs that
are phase-coherent relative to the assisting IR pulse. By
sending one of the split IR pulses through a delay stage,
the relative delay of the XUV and assisting IR pulse
can be scanned with sub-fs precision. APTs obtained by
HH-generation are characterized by their spectral range,
amplitude, and the phases of their individual HH con-
stituents. The HH phases of the APT thus contribute to
the observable energy-dependent phases of the yield oscil-
lation in RABBITT spectra. They are usually unknown,
but can be eliminated by either simultaneously in situ
recording a (well-understood) RABBITT spectrum from
a reference target [15, 16, 19, 23] or by simultaneously
determining RABBITT phase differences in the photo-
emission from energetically discernable initial states of
the same target [17, 18].

Locher et al. [15] recently measured RABBITT spec-
tra from Ag(111) and Au(111) and deduced RABBITT
phases for these surfaces by eliminating the HH phases
of the APT with reference to spectra recorded in situ
from an argon gas target. Furthermore, by subtracting
calculated photoemission phases for argon [22] Locher et
al. obtained the absolute RABBITT scattering phases for
the two surfaces. These energy-dependent phases charac-
terize the phase accumulation during the entire surface-
photoemission process. They include contributions from
the initial photoelectron excitation by the APT in the
solid, photoelectron propagation to the surface, the sub-
sequent side-band-producing interaction of the photo-
electron with the IR pulse, and Fresnel reflection of the
IR pulse at the surface [23, 24]. The assessment of the
relative importance of these phase increments and their
underlying elementary interactions of the photoelectron
with the solid, APT, and IR pulse is impossible based
solely on the measured spectra and requires theoretical
modeling.

In this work we employ a quantum-mechanical model
in order to calculate RABBITT spectra and phases
from Ag(111) and Au(111) surfaces, adjusting the pulse-
incidence and electron-emission geometry, as well as APT
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and IR pulse parameters to the experiment of Locher et
al. (Fig. 1). In this geometry both pulses are p po-
larized and incident under an angle of 75◦ relative to
the surface normal, while photoelectrons are detected
with a hemispherical electron analyzer. We represent
the initial valence-band and final photoelectron states
within a tight-binding model [25] and in terms of modi-
fied semiclassical Volkov final states [26, 27], respectively,
and adjust open parameters in our simulation to obtain
the best overall visual agreement with the experimental
RABBITT spectra. Our model includes a phenomenolog-
ical simulation of background contributions to the photo-
emission spectra from secondary electrons generated by
the APT and from direct photoemission by the IR pulse.
We adjusted this delay-independent photoemission back-
ground to energy-resolved XUV photoelectron spectra for
Ag(111) and Au(111) that were recently measured with
synchrotron radiation by Roth et al. [28]. Our model cal-
culations are in fair agreement with the measured RAB-
BITT spectra and RABBITT phases of Locher et al. [15].
However, our model does not reproduce their observed
energy-dependent oscillation of the Ag(111) RABBITT
phases. Since we employ photoelectron final states that
do not include details of the target band structure, the
absence of RABBITT phase oscillations in our simulation
is consistent with recent experimental evidence of sub-
tle band-structure effects influencing final photoelectron
states [15, 17, 18]. Throughout this work we use atomic
units unless stated otherwise and define the energy-scale
zero as the ionization threshold.

FIG. 1. (Color online) Schematic of interferometric photo-
emission spectroscopy applied to atomically flat Ag(111) and
Au(111) surfaces in this work. The mutually delayed ioniz-
ing XUV attosecond pulse train and assisting IR laser pulse
are linearly p polarized and incident under an angle of 75◦

relative to the surface normal. Photoelectrons are detected
with a hemispherical electron analyzer, the acceptance cone
of which is centered 30◦ from the positive z axis in the IR-
pulse-reflection (xz) plane towards the negative x axis, with
an acceptance angle of 30◦.

II. THEORY

The photoelectron yield for a given photoelectron final
energy εf = k2f/2 and time delay τ between the APT and
assisting laser pulse is given by the incoherent sum over
all occupied initial conduction-band states of the target
surface,

P0 (kf , τ) =
∑
|ki|<kF

∣∣Tkf ,ki (τ)
∣∣2 . (1)

We calculate the transition amplitude between the tight-
binding initial state Ψi

ki
and a modified Volkov final state

Ψf
kf

,

Tkf ,ki(τ) ∝ (2)ˆ ∞
−∞

dt
〈

Ψf
kf

(r, t, τ)

∣∣∣∣AXUV (z, t) · ∇
∣∣∣∣Ψi

ki (r, t)
〉
.

AXUV (z, t) is the vector potential of the inhomogenous
APT. We represent the APT interaction with conduc-
tion electrons in the non-dipole velocity gauge, thereby
allowing for arbitrary electron emission directions. In
compliance with typical XUV-APT intensities in RAB-
BITT experiments [15, 18], we assume in (2) that the
XUV APT intensity is low enough for AXUV to be in-
cluded perturbatively.

In accordance with the RABBITT experiment by
Locher et al. [15], we assume the XUV APT to be
composed of odd HHs 13 through 27, each with an
energy width (full amplitude width at half maximum
[FAWHM]) of 1 eV, and match the corresponding spectral
amplitudes to the experimental electric-field amplitudes
EXUV (z, t) = −dAXUV (z, t) /dt shown in Fig. 2 [29].
Due to the finite inelastic mean free path [30], at the en-
ergies of interest the photoelectron escape depth is lim-
ited to a few lattice spacings, aAgs =4.43 and aAus =4.45
of Ag(111) and Au(111), respectively [31], and thus much
smaller than the XUV skin depth (which is larger than
200 a.u. [32]). Accordingly we may assume that the
APT propagates without being deflected by or attenu-
ated inside the solid. In the prototypical experiment of
Locher et al. [15], the detector electron acceptance angle
was deliberately kept wide [29] in order to maximize the
signal-to-noise ratio. We therefore assume an acceptance
angle of 30◦. The electron detector was centered at an
angle of 30◦ off the surface normal on the incident side
of the IR-pulse-reflection plane (Fig. 1).

In our numerical applications, we adopt the pulse-
incidence and electron-detection geometry, as well as the
APT and IR-pulse parameters of Ref. [15]. Accordingly
we assume an IR-pulse peak intensity of 3×1011 W/cm2

and an IR-pulse width of 10 fs [FAWHM]. We extract the
IR-photon energies from Fig. 2. They amount to 1.525
and 1.487 eV for interferometric photoemission from the
Ag and Au surface, respectively.
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FIG. 2. (Color online) Electric-field intensities of the attosec-
ond pulse trains employed in interferometric photoemission
from Ag(111) and Au(111) surfaces in Ref. [15]. Adapted
from Ref. [29]. Individual higher-harmonics peaks are labeled
by their harmonic orders.

A. Initial state

We describe the initial valence-band states of the active
electron by the translationally invariant wavefunctions

Ψi
ki (r, t) = eiki,‖·r‖φki,z (z) e−iEbndt, (3)

representing the electronic motion along the surface nor-
mal direction (z axis) as a linear combination of Hulthén
Generalized Sturmian Functions (GSFs) [33–35] ϕ,

φki,z (z) =
∑
j

eikizzjϕ (ETB , α, n, |z − zj |) . (4)

We define z = 0 at the surface layer of lattice points.
The atomic orbitals ϕ are centered at the atomic layers
zj with the layer separations aAgs and aAus of Ag(111)
and Au(111), respectively. We previously applied this
tight-binding initial-state model to photoemission from
the Cu(111) d -band [25] in good agreement with experi-
mental interferometric photoemission spectra [16].

The GSFs ϕ (ETB , α, n, u) model the active electron
immersed in the screened Coulomb potential of an atomic
core and are known analytically in terms of hypergeomet-
ric functions as solutions of a 1D generalized potential-
eigenvalue problem [25, 33]. The adjustable energy ETB
determines the rate of exponential decrease of the elec-
tronic probability density with the distance u = |z − zj |
from the atomic nucleus. In zero-band-width approxima-
tion, we set Ebnd equal to -10.36 and -11.33 eV for the
Ag(111) and Au(111) surface, respectively. We obtained
these values for Ebnd by linear extrapolation of the pho-

toelectron energy εf = ω
HH/SB
XUV − Ebnd as a function of

the HH and sideband (SB) energies, ωHHXUV and ωSBXUV ,
respectively, to ω = 0. These values are within the range
of the d-band binding energies given in energy-resolved
photoemission spectra in Refs. [36, 37] and are used for

all calculations discussed in this work. We further set
ETB = Ebnd.

The parameter α determines the distribution of wave-
function nodes, while n specifies the number of nodes.
Smaller values of α imply a higher density of nodes near
the atomic nucleus [33]. We separately specified α and n
for the two surfaces by fitting the energy-resolved spectra
of Roth et al. [28], as will be detailed in Sec. III.A below.
A full 3D representation of the initial state, modeling
photoemission from the d bands of Ag and Au, would
require the initial orbitals to include the photoelectron
angular-momentum component m along the surface nor-
mal in terms of the factor eimφ. However, for the assumed
translational invariance in the surface (x, y plane), or-
bitals with nonzero m average to zero, and the only con-
tributing (l = 2, m = 0) 3D orbitals have positive parity.
Consistent with our assumption of translational invari-
ance, we therefore select 1D atomic orbitals with positive
parity by defining ϕ (ETB , α, n, u) ≡ ϕ (ETB , α, n,−u)
for z < zj .

B. Final state

The final state incorporates the interaction of the pho-
toelectron with the inhomogenous, screened laser electric
field and the surface. We model the final state by modify-
ing the well-known Volkov wavefunction for an electron
in a homogenous continuum-wave electric field [38] ac-
cording to

Ψf
kf

(r, t, τ) ∝ fεf ,θf (z)eikf,‖·r‖ (5)

×ψkf,z (z)e
iφkf

(z,td)e−iεf t,

with td = t− τ . The key elements of this heuristic gener-
alization are (i) the damping factor fεf ,θf (z), (ii) the in-
clusion of a potential step of height U0 at the surface, and
(iii) the generalization of the Volkov phase φkf describ-
ing the photoelectron interaction with the inhomogenous,
pulsed laser electric field [25, 26]:

(i) The damping factor

fεf ,θf (z) = Θ (z) + ez/[2λ(εf ) cos(θf )]Θ (−z) (6)

accounts for the loss of emission probability from deeper
layers. Θ (z) designates the Heaviside step function with
function values of 0 and 1 for z < 0 and z ≥ 0, re-
spectively. With the energy-dependent mean free path
λ (εf ) we include the loss of electron yield due to scatter-
ing of the XUV-excited photoelectron before being emit-
ted from the solid. For the numerical application in this
work, we use the mean free path values given in Ref. [30].

(ii) With the step potential −U0Θ (zim − z) and the
image-plane positions zim = 2.22 and 2.12 a.u. for
Ag(111) and Au(111), respectively [31], the z-dependent
wavefunction ψkf,z accounts for the decrease of kinetic
energy at the surface during photoelectron emission [25].
The step potential is also included in our semiclassical
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calculation of the Volkov phase factor eiφkf
(z,td) discussed

in the following two paragraphs. U0 is a free parameter
of our final-state description. We adjust this parameter
to match measured photoemission spectra (cf. Sec. III.A
below).

(iii-1) Fresnel reflection of the incident IR pulse at
the metal optical surface z = zIR generates transmit-
ted and specularly reflected electric fields. We calcu-
late the transmitted and reflected IR electric fields by
solving Fresnel’s equations [23, 39] based on the macro-
scopic, complex-valued dielectric function ε(ωIR) which
was derived within a Lorentz-Drude model [40] and yields
good agreement with the transmission and reflection
measurements on thin Ag and Au films by Johnson and
Christy [41]. Fresnel’s equations, being macroscopic in
nature, imply a discontinuity of the normal electric field
component at zIR. Based on a time-dependent DFT cal-
culation, an exponential-screening model and experimen-
tal data for Mg on W(100), Neppl et al. [14] estimated
the IR skin depth for Mg surfaces to be of the order of
one lattice spacing. At ~ωIR = 1.5 eV the extinction
coefficients for Ag, Au, and Mg are of the same order
of magnitude [32]. We therefore adopt comparable, but
adjustable, values for zIR for Ag and Au, generously lim-
iting zIR to lie between the second lattice plane and half
a lattice constant outside the top layer of atomic nuclei,
assuming full screening of the IR electric field for z < zIR.

(iii-2) We account for the photoelectron transport to
the surface by calculating the IR-pulse vector potential

AIR (zj , td) =

ˆ ∞
tsurf

dt′EIR (z̃ (t) , t′d) (7)

in the generalized Volkov phase

φkf (zj , td) = kf ·
ˆ ∞
t

dt′AIR (zj , t
′
d) (8)

along classical ballistic photoelectron trajectories
z̃ (t) [26, 27]. Consistent with the IR-intensities applied
in typical RABBITT experiments [15, 18], we neglected
the ponderomotive term (∼ A2

IR) in φkf . These
trajectories describe photoelectron propagation inside
the solid. They start at the release time t from each
atomic plane location zj and reach the onset of dielectric
screening of the incident IR-pulse zIR at time tsurf .
At zim these trajectories traverse the potential step of
height U0.

For Fresnel reflection at a precisely defined effective
optical surface, the time integrations in (7) and (8) can
be performed analytically, and only the time integration
in the transition amplitude (1) needs to be carried out
numerically.

C. Secondary electrons and IR background

The measured photoelectron yields in Ref. [15] in-
clude delay-independent background contributions from

secondary electrons generated during the XUV photo-
emission and electrons generated by above-threshold ion-
ization (ATI) by the IR pulse. We account for the
secondary-electron background within a phenomenolog-
ical model and include the ATI background by fitting
experimental data in Ref. [15].

We include the background of ATI electrons

P bgrIR (εf ) = C1e
−εf/γIR + C2 (9)

by adjusting the exponential-decay parameter γIR and
the constants C1 and C2 to reproduce the experimental
data for Ag(111) in Fig. 1(d) of Ref. [15] over the εf inter-
val [10, 30] eV. This yields γIR = 0.25231, C1 = 3.41716,
and C2 = 0.03298. Due to the lack of corresponding ex-
perimental ATI-background data for Au(111), we also ap-
ply these values in our calculations for Au(111) surfaces.
We note, however, that this inconsistency is largely cor-
rected by our target-specific scaling of the IR-background
(cf., scaling factor BIR in Eq. (13) and Sec. III.B below).

We model the secondary-electron background based on
the decrease of the photoelectron yield at a given photo-
electron energy due elastic scattering of the to-be-emitted
XUV-excited electron off other valence-band electrons.
Owing to the large mass difference, electron scattering
with the nuclei does not noticeably reduce the photo-
electron kinetic energy and can be neglected. We thus
allow a fraction of the XUV-excited electrons to scat-
ter and lose energy inside the substrate before reach-
ing the surface-vacuum interface. We further assume
that randomly scattered photoexcited electrons have lost
all phase information of the exciting APT and there-
fore do not include them in our simulation of the delay-
dependent interferometric photoemission yield. We fur-
ther assume stationary target electrons and represent
their interaction with the photoexcited projectile elec-
trons in terms of the screened Coulomb-interaction po-
tential ∝ e−r/αY /r, where r is the interelectronic dis-
tance. The screening length αY accounts for the shielding
of the electronic Coulomb interaction by the background
charge of the solid and is comparable to the Thomas-
Fermi screening lengths for metals [42]. Starting with
the First Born Approximation for the electron-electron
scattering cross section, differential in the scattering an-
gle θCM in the center-of-mass (CM) frame of reference of

the colliding electrons dσ/dΩCM (θCM ) ∝
[
α−2Y + q2

]−2
[43], we find the scattering angle θL = θCM/2, cross sec-
tion dσ/dΩL (θL) = 4 cos θLdσ/dΩCM (θCM ), and energy
loss of the scattering electron in the laboratory (L) frame
of reference [44].

In the laboratory frame, the excited electron loses some
of its incident energy εinf to the substrate electron. Due
to their equal mass, the scattered and recoiling electron
leave the collision in perpendicular directions, such that
only one of them can enter the detection cone. εinf and

the scattered (final) energy εf of the photoelectron are re-

lated to the scattering angle as cos θL =
√
εf/εinf . From

the cross section, a measure for the probability of an
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electron with energy εinf to be slowed to an energy εf , we
derive the integral kernel

K
(
εf , ε

in
)

= N(εf )

√
εf/εinf[

α−2Y + 2
(
εinf − εf

)]2 (10)

for the shift of photoelectron yield from a small energy
bin centered at εinf to a small bin around the lower energy
εf . The delay-independent secondary-electron yield is
now given by

P bgrXUV (εf ) =

ˆ εmax

εf

dεinf K
(
εf , ε

in
f

)
PXUV

(
εinf
)
. (11)

PXUV is the photoelectron yield generated by the APT,
calculated according to Eq. (1), but without including
the assisting IR laser field. The upper integration limit
εmax needs to be larger than the kinetic energy of di-
rect photoelectrons that are released by the highest HH
in the APT. With the numerically calculated normaliza-

tion factor N(εf ) we energy normalize P bgrXUV to the net
APT-only yield PXUV (cf. Sec. III.B below). In order
to compare calculated and measured RABBITT spectra,
we introduce a scaling factor BXUV , as a measure for
the number of scattered electrons that are emitted per
directly emitted (not scattered) photoelectron. We ne-

glect contributions to P bgrXUV from scattered ATI photo-
electrons, since the IR pulse is reflected at zIR, close to
the vacuum interface, and therefore does not release elec-
trons in the bulk.

Addition of the background contributions to the direct
photoelectron yield (1) results in the net photoelectron
yield

P (εf , τ) = P0 (εf , τ) + P bgrXUV+IR (εf ) (12)

with the background contribution

P bgrXUV+IR (εf )= BXUV P bgrXUV (εf ) + BIRP bgrIR (εf ) . (13)

We note that the damping factor fεf ,θf in the final pho-
toelectron state (5) and our modeling of the secondary
electron yield include different aspects of the photoelec-
tron propagation inside the solid. fεf ,θf models emission-
probability losses due to collisions inside the substrate,
i.e., this factor eliminates electrons that cannot reach the
detector due to being excited more than a few mean free
paths inside the substrate. The remaining emitted elec-
trons generate the energy-dependent secondary electron

yield BXUV P bgrXUV .

III. NUMERICAL RESULTS

A. XUV photoemission spectra

In order to start to constrain the parameters of our
model, we calculated XUV-photoionization spectra by

monochromatic p-polarized pulses with photon energies
between 20 and 60 eV (without assisting IR-pulses). We
selected an incidence angle of 45◦ and photoelectron
emission perpendicular to the surface, in order to be able
to compare our results with recently measured energy-
resolved spectra obtained by Roth et al. [28]. This com-
parison allows us to adjust the parameters n, α, and U0

in the initial- and final-state wavefunctions, separately
for the Ag(111) and Au(111) surface for different pho-
ton energies. The spectra recorded by Roth et al. used
monochromatic synchrotron radiation with photon ener-
gies ranging from 20 to 120 eV. For photon energies ω
between 20 and 60 eV we εf -integrated PXUV (εf ) over
an 1 eV interval centered at ε0f = Ebnd + ω. The consid-
ered photon-energy range from 20 to 60 eV is sufficient,
as it encompasses the APT spectral profile in the RAB-
BITT experiment of Locher et al. [15].

Figure 3 shows the best fits of our integrated XUV
photoemission yields as functions of the photon energy
to the yields measured by Roth et al. [28]. They were
obtained for the parameters U0 = −8.21 eV, nH = 6, and
αH = 0.38 aAgs for the Ag surface and for U0 = −9.88 eV,
nH = 7, and αH = 0.35 aAus for the Au surface. The
above parameter values provided yield distributions cen-
tered at the experimental peaks. We searched for opti-
cal parameters by comparing delay-integrated calculated
with the experimental photoelectron yields, starting with
a coarse parameter grid and subsequently exploring fa-
vorable parameter configurations on a finer grid. Our
search strategy is based on the following parameter hier-
archy and parameter ranges. (i) We limited the potential
step U0 to the upper and lower bounds of Chulkov poten-
tials [23, 31] inside the substrate for each material. (ii)
We varied αH between zero and half a lattice spacing, to
keep the atomic-orbital nodes localized near the lattice
points. (iii) Guided by the small numbers (1 and 2) of
wavefunction nodes of hydrogenic 4d and 5d orbitals, we
model the d bands of Ag and Au by keeping the number
of nodes nH of the GSFs ϕ as small as possible, with-
out entailing unphysical values for other parameters and
while still matching the experimental peak localization.

We used these substrate parameters for all time-
resolved calculations discussed in the following sections.

FIG. 3. (Color online) Energy-resolved XUV photoelectron
yield for (a) Ag(111) and (b) Au(111). Integrated yields
PXUV (εf ) for different potential-step parameters U0 in the
final photoelectron wavefunction. Experimental yields are
adapted from Roth et al. [28].



6

B. RABBITT spectra and background
contributions

As is obvious from the comparison of Figs. 2 and 4,
the spectral distribution of the XUV pulse train HH am-
plitudes determines the overall energy-dependent struc-
ture of RABBITT spectra. Knowledge of the experimen-
tal APT spectrum eliminates the HH-component ampli-
tudes from the list of adjustable parameters. Since the
spectral phases of the APT used by Locher et al. [15]
are not known and will be eliminated by subtracting the
phases of the reference gas target, we calculated RAB-
BITT spectra by (randomly) setting all spectral phases
equal to zero.

FIG. 4. (Color online) Normalized background of secondary

electrons P bgr
XUV , above-threshold IR-pulse-ionization elec-

trons P bgr
IR , and interferometric electron yield P0 without

background contributions for (a) Ag(111) and (b) Au(111).

Figure 5 shows our calculated interferometric spec-
tra for Ag(111) and Au(111) next to the experimental
spectra. To achieve the best overall agreement with
the measured Ag(111) spectrum, we multiplied the nor-
malized secondary-electron background with BXUV =
32.5±10 and the normalized IR contribution with BIR =
0.95 ± 0.15 [cf. Eq. (13)]. In the same way we deter-
mined BXUV = 24.5 ± 15 and BIR = 0.15 ± 0.15 for
the Au(111) spectrum. Delay-integrated photoelectron
yields P (εf , τ) (12), calculated within the error mar-
gins of BIR and BXUV , are shown as the shaded areas
in Fig. 6. Outside the error margins for BIR and BXUV
our calculated delay-integrated spectra start to signifi-
cantly deviate from the measured spectra. The signifi-
cantly lower background contamination for the Au(111)
spectrum is consistent with the larger workfunction of
Au, 5.31 eV, as opposed to 4.74 eV for Ag(111) [45]. It is
also in agreement with the data analysis in Ref. [15]. The
screening parameter, introduced for the simulation of the
secondary electron background in Eq. (10), leads to the
best reproduction of the measured spectra if adjusted to
αY = 0.5 for the Ag and Au surfaces. αY screens the
electronic repulsion, and its adjusted value is compara-
ble with the Thomas-Fermi screening length for metals
of ≈ 1 a.u. [42].

Integration of the RABBITT spectra in Fig. 5 over the
delay range from -6.0 to 6.0 fs results in distinctly dif-
ferent energy-dependent spectra. The delay-integrated

FIG. 5. (Color online) RABBITT spectra for Ag(111)
(top) and Au(111) bottom. Spectra calculated according to
Eq. (12), including secondary electron and above-threshold-
ionization background (left). Experimental spectra adapted
from Ref. [15] (right).

Ag(111) spectrum is characterized by an overall linear
decrease of the yield with increasing photoelectron en-
ergy between HH orders 17 and 23. While the calcu-
lated spectrum reveals the spectral amplitude oscillation
of the ATP, these oscillations are absent in the integrated
measured spectrum [Fig. 6(a)]. In contrast, the inte-
grated Au(111) spectrum in Fig. 6(b) shows an overall
moderately declining yield between HH orders 17 and 21
that changes to a more rapid decrease above HH order
21, and the measured Au(111) spectrum clearly indicates
the HH energies of the APT. Within the present model,
the detailed energy dependence of the photoelectron yield
depends on the z-dependent factors, φki,z and ψkf,z (z),
of the initial- and final-state wavefunctions, respectively.
The parameters in these factors are tuned to the XUV
(-pulse-only) photoemission spectra of Ref. [28]. Keep-
ing this subset of adjustable parameters in our simula-
tion of RABBITT spectra, our trained model provides
fair agreement with the measured integrated RABBITT
yields in Fig. 6.

C. RABBITT phases

In general, sideband-yield oscillations in RABBITT
spectra oscillate with twice the IR-pulse frequency and
are phase-shifted relative to each other and relative to
the carrier electric field of the assisting IR pulse [25].
We determined the RABBITT phases in our calculated
spectra by integrating the photoemission yield P (εf , τ)
over εf over a 0.6 eV energy interval centered at the cen-
tral sideband energy. This results in integrated sideband
yields P2n(τ) for any given sideband order 2n which we
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FIG. 6. (Color online) Delay-integrated RABBITT spectra
for Ag (left) and Au (right) obtained by integration of the
spectra in Fig. 5 from -6 to 6 fs. Experimental spectra adapted
from Ref. [15] (green solid line). Calculated spectra (blue

dashed line) and secondary-electron background P bgr
XUV +IR ac-

cording to Eq. (11) (red dotted line). The cyan/gray shaded
areas shows the variation of the calculated electron yields
within the uncertainty intervals for BXUV and BIR.

FIG. 7. (Color online) RABBITT phases deduced from the
interferometric photoemission yields in Fig. 5. Experimen-
tal phases adapted from Ref. [15] (black markers with error
bars). Phases calculated for zIR ranging from -2 as to 0.5 as

(yellow/grey band) and for zIR = −0.75as (red dots). Inter-
polation lines are added to guide the eye only.

mapped onto the expression

P2n(τ) =
[
a1 cos

(
2ωIRτ − φRAB2n

)
+ a2

]
e
−
[

(τ−a3)
a4

]2
+ a5

by adjusting φRAB2n and the parameters a1,...,5.
The resulting RABBITT phases are shown in Fig. 7 for

Ag(111) and Au(111) in comparison with the phases ex-
tracted by Locher et al. [15] from their measured spectra.
In order to assess the sensitivity of RABBITT phases to
the photoelectron transport time in the solid, we varied
the onset of the IR field zIR from zim to -2.0 as. Our cal-
culated RABBITT phases vary within the yellow (grey)
band. Larger values of zIR correspond to larger phases.
We adopted zIR = −0.75 as, which is compatible with
the range of IR-skin-depths deduced in Ref. [14], as the
physically most reasonable value. It results in the phases
shown as red markers connected by the red line.

Our calculations predict a similar baseline level for the
RABBITT phases

φRAB2n = 2φFres + φprop + φRABsc,2n (14)

for Ag(111) and Au(111) (Fig. 7). These include a dom-
inant contribution 2φFres that is due to the Fresnel re-
flection of the IR pulse [23]. This phase contribution
amounts to 2φFres = −1.52 rad for Ag and -1.60 rad for
Au. We added to our theoretical phases shown Fig. 7 the
experimental beam propagation phase φprop = 0.643 rad,
which is accumulated during the pulse propagation from
the reference argon gas cell to the surface under scrutiny
(cf. supplementary material in [15]).

The experimental phases φRAB2n for Ag(111) in
Fig. 7 (a) exhibit large fluctuations from one harmonic
order to the next that our model does not reproduce.
The measured RABBITT phases for Au(111) [Fig. 7
(b)], in contrast, oscillate with a much smaller amplitude
and thus deviate much less from the ballistic transport
regime. Our calculated RABBITT phases show a sim-
ilar smooth and slowly varying behavior as a function
of photoelectron energy as the theoretical phases, ob-
tained within a ballistic transport model, in Fig. 5 of
Ref. [15]. The deviation from the experimental phases
suggests that for considered photon energies the assump-
tion of classical photoelectron transport in and near the
substrate may not be valid, as is also conjectured in
Ref. [19]. This conjuncture is also consistent with the
observation in Ref. [17] that up to ≈ 30 eV the disper-
sion of photoelectrons is determined by the substrate and
strongly differs from free-electron propagation. This sug-
gests a refined modeling of the final state with more em-
phasis on details of substrate electronic structure, which
is outside the scope of the present manuscript.

IV. SUMMARY

We calculated interferometric photoemission spectra
from the (111) surfaces of Au and Ag, including back-
ground contributions from secondary electrons and direct
emission by the IR pulse. Our simulation includes param-
eters that we adjusted (i) to energy-resolved XUV photo-
electron spectra recently measured at a synchrotron light
source by Roth et al. [28] and (ii) to obtain the best over-
all agreement with interferometric spectra measured by
Locher et al. [15]. Our model is based on the evaluation
of the quantum-mechanical transition amplitude in the
non-dipole velocity gauge between translationally invari-
ant initial conduction-band states and final photoelectron
states that include the photoelectron interaction with
the inhomogenous electric field of the Fresnel-reflected
IR pulse, propagation of the photoexcited electron inside
the solid, and the effect of the potential increase at the
solid surface.

Based on our quantum-mechanical model and adjusted
parameters, we observe dominant contributions to the
photoelectron yield from secondary electrons. We find
smaller background contributions from the Au(111) than
from the Ag(111) surface, in qualitative agreement with
Au having a larger workfunction than Ag. Including
secondary-electron and above-threshold-ionization back-
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ground contributions, our simulations are in fair agree-
ment with experimental RABBITT spectra from Ag(111)
and Au(111) surfaces of Ref. [15]. We find that all RAB-
BITT phases are strongly affected by Fresnel reflection
of the IR pulse. The significant differences of the mea-
sured Ag(111) RABBITT phases for different sideband
orders remains to be explained. As our model includes
the influence of the surface electronic structure on the
final state of the photoelectron in a somewhat rudimen-
tary way, assuming a sharp potential-energy decline at
the surface and free-electron dispersion, its inability to
reproduce the observed phase oscillation may be seen as
evidence for relevant final-state photoelectron-surface in-
teractions not included in our simulation. We intend to

address this effect in a future publication.
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