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Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-
rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultra-
violet (XUV) and soft x-ray beams in a tabletop-scale setup have received considerable attention.
Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle
of the fundamental frequency ω using tailored bichromatic (ω, 2ω) counter-rotating circularly polar-
ized laser fields with a molecular target. The full control of the electronic pathway is first analyzed
by a classical trajectory analysis and then extended to a detailed quantum study of H+

2 molecules
in bichromatic (ω, 2ω) counter-rotating circularly polarized laser fields. The radiation spectrum
contains doublets of left and right circularly polarized harmonics in the XUV ranges. We study
in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state
resonances alter the ellipticity and phase of the generated harmonic peaks.

I. INTRODUCTION10

High-order-harmonic generation (HHG) is an attrac-11

tive table-top source of coherent, bright, and tunable12

extreme ultraviolet (XUV) and soft X-ray radiation13

with applications in coherent diffractive imaging, ultra-14

fast holography, and time resolved measurements [1–6].15

Moreover, circularly polarized HHG may find additional16

applications in nanolithography, ultrafast spin dynamics,17

and magnetic circular dichroism [1, 7–13].18

A direct approach for generating circularly polarized19

HHG was suggested 22 years ago [14, 15], and recently20

measured by Fleischer et al. [7]. In this scheme, circu-21

larly polarized HHG are driven by co-propagating circu-22

larly polarized bichromatic fields that rotate in opposite23

directions (counter-rotating) and interact with argon gas.24

This experiment [7] opened up the possibility and motiva-25

tion of generating bright circularly polarized HHG com-26

parable to the flux efficiency of linearly polarized HHG.27

Recently, Fan et al. [1] did just that, they generated28

bright circularly polarized soft X-ray HHG beams with29

photon energies greater than 160 eV and flux compara-30

ble to the HHG flux obtained using linearly polarized31

800 nm driving lasers. These bright circularly polarized32

high-order-harmonic beams in the soft X-ray region were33

generated from He, Ne, and Ar atoms, and used to imple-34

ment X-ray magnetic circular dichroism measurements in35

a tabletop-scale setup [1]. Previously, such radiation has36

only been available at large-scale X-ray facilities such as37

synchrotrons.38
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The primary characteristics of the bichromatic circu-39

larly polarized HHG spectra can be described in terms of40

the energy and angular momentum conservation, which41

gives rise to a doublet structure of the HHG spectrum.42

The right peak in the doublet has a circular polariza-43

tion with the same helicity as the driving field with the44

higher frequency, the left peak has a circular polarization45

with the same helicity as the driving field with the lower46

frequency [1, 7–13, 16, 17]. The driving laser field param-47

eters determine the spectral, temporal, and polarization48

properties of the circularly polarized HHG, enabling the49

creation of tailored circularly polarized HHG waveforms50

[16]. For instance, the frequencies of the bichromatic51

laser field can be chosen to tune the photon energy and52

bandwidth of the emitted harmonics from the XUV to53

the soft x-ray region [1, 16]. Also, in the same respect54

the relative intensity ratio of the bichromatic laser field55

can be adjusted to preferentially select either the right or56

left circularly polarized harmonics [16]. In the frequency57

domain, this enhances the harmonic orders that rotate in58

the same direction as the higher-intensity driving laser.59

While an impressive progress has been achieved in gen-60

eration of bright circularly polarized radiation by atomic61

targets, this area remains largely unexplored for molecu-62

lar systems. In this work, we address the problem with63

the H+
2 molecule subject to bichromatic counter-rotating64

circularly polarized intense laser fields and adopt wave-65

lengths (790 nm and 395 nm) reported in a recent experi-66

ment [16]. We show through the use of a tailored relative67

intensity ratio of the bichromatic laser field we can gen-68

erate radiation with circular polarization and have con-69

trol over the electronic recollisions in the time domain70

for the H+
2 molecule. We control the period of the rec-71

ollisions with help from the classical trajectory analysis72

and apply it to a nonperturbative quantum investiga-73

tion to produce a recollision event that features three74
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returns for any 790 nm cycle during the laser pulse. We75

also find excited-state resonances can alter neighboring76

doublet structures in the HHG spectrum, and can also77

deviate the phase and ellipticity of neighboring doublets78

breaking down their perfect circular polarization.79

The organization of this paper is as follows. In Sec. II80

we briefly discuss our theoretical and computational ap-81

proach for the general treatment of the multiphoton dy-82

namics of diatomic molecular systems subject to bichro-83

matic counter-rotating circularly polarized intense laser84

fields. In Sec. III we explore the control of the electronic85

pathway with use of the standard classical approach. In86

Sec. IV we study HHG of H+
2 molecules driven by bichro-87

matic counter-rotating circularly polarized laser pulses.88

The HHG spectra exhibit a distinct doublet structure,89

and the harmonics within each doublet possess circular90

polarizations with opposite handedness. In Sec. V we91

employ the synchrosqueezing transform (SST) to ana-92

lyze the time-frequency spectra of the below-, near-, and93

above-threshold HHG of H+
2 . We show that the electron94

returns are controlled with the intensity parameters used,95

and three dominant returns are seen within one cycle of96

the 790 nm field. In Sec. VI we provide a proof of per-97

fect circular polarization and opposite handedness of the98

harmonics within the doublets, by calculating their ellip-99

ticity and phase parameters from the dipole acceleration100

data for below-, near-, and above-threshold HHG regions.101

We also show that excited-state resonances have effects102

on neighboring harmonics altering their perfect circular103

polarization. Section VII contains concluding remarks.104

II. THEORY AND NUMERICAL TECHNIQUES105

To calculate the HHG spectra, we solve the time-106

dependent Schrödinger equation for the H+
2 molecule107

in the bichromatic counter-rotating circularly polarized108

laser fields. The initial wave function is an unperturbed109

eigenfunction of H+
2 . For our calculations, we select the110

ground (1σg) electronic state. The nuclei are fixed at111

their positions, and the nuclear motion is not taken into112

account. To describe the diatomic molecular ion H+
2 , we113

make use of the prolate spheroidal coordinates ξ, η, and114

ϕ which are related to the Cartesian coordinates x, y,115

and z as follows [18]:116

x = a
√

(ξ2 − 1)(1− η2) cosϕ,

y = a
√

(ξ2 − 1)(1− η2) sinϕ,

z = aξη (1 ≤ ξ <∞,−1 ≤ η ≤ 1).

(1)

In Eq. (1) we assume that the molecular axis is directed117

along the z axis, and the nuclei are located on this axis118

at the positions −a and a, so the internuclear separation119

R = 2a. The internuclear distance for the H+
2 (Re =120

2.00a0) molecule is fixed at its equilibrium distance Re.121

A. Generalized pseudospectral method and122

solution of time-independent eigenvalue problem123

First, we solve the unperturbed eigenvalue problem124

and obtain the eigenvalues and eigenfunctions:125

[−1

2
∇2 + U(ξ, η)]Ψ(ξ, η, ϕ) = EΨ(ξ, η, ϕ). (2)

Here the kinetic energy operator in the prolate spheroidal126

coordinates reads as:127

−1

2
∇2 =− 1

2a2
1

(ξ2 − η2)

(
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

+
ξ2 − η2

(ξ2 − 1)(1− η2)

∂2

∂ϕ2

)
,

(3)

and the Coulomb interaction with the nuclei is as follows128

(the charge of each center is unity):129

U(ξ, η) = − 2ξ

a(ξ2 − η2)
. (4)

For the unperturbed molecule, the projection m of the130

angular momentum onto the molecular axis is conserved.131

Thus the wave function Ψ(ξ, η, ϕ) can be represented in132

a separable form,133

Ψ(ξ, η, ϕ) = ψm(ξ, η) exp(imϕ), (5)

and separate eigenvalues problems for different |m| are134

obtained,135

− 1

2a2
1

(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

− m2

ξ2 − 1
− m2

1− η2

]
ψm = Eψm.

(6)

To solve Eq. (6), we use the generalized pseudospectral136

(GPS) method. Note that the exact eigenfunction ψm137

behaves as (ξ2−1)|m|/2(1−η2)|m|/2 in the vicinity of the138

nuclei; for odd |m|, this is a nonanalytical function of the139

coordinates. Straightforward numerical differentiation of140

such a function could result in signicant loss of accuracy.141

We circumvent this difficulty by choosing a special map-142

ping transformation within the GPS method [19]. Other143

details of the GPS method in prolate spheroidal coordi-144

nates can be found in Refs. [20–24].145

Solving the eigenvalue problem (6) for different even146

and odd m, we obtain unperturbed energy values and147

eigenstates of H+
2 , which are used as initial states for time148

propagation as well as for construction of propagation149

matrices.150

B. Solution of the time-dependent Schrödinger151

equation in bichromatic circularly polarized laser152

pulses153

The time-dependent Schrödinger equation in the154

bichromatic circularly polarized laser pulses is solved155
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by means of the split-operator method in the energy156

representation [20–25]. We employ the following split-157

operator, second-order short-time propagation formula:158

Ψ(t+ ∆t) = exp(−i1
2

∆tH0)

× exp[−i∆tVext(r, t+
1

2
∆t)]

× exp(−i1
2

∆tH0) +O((∆t)3).

(7)

Here ∆t is the time propagation step, H0 is the unper-159

turbed electronic Hamiltonian which includes the kinetic160

energy and interaction with the nuclei, Vext(r, t) is the161

term due to the coupling to the bichromatic circularly162

polarized external fields, in the following form:163

Vext(r, t) = [E1(t) + E2(t)] · r. (8)

The laser electric-field strengths E1(t) and E2(t) refer to164

the two frequency components of the bichromatic field.165

In what follows, we shall assume that the laser fields166

E1(t) and E2(t) propagate along the z axis and have167

circular polarizations on the x − y plane. The counter-168

rotating fields E1(t) and E2(t) are expressed as follows:169

E1(t) =
1√
2
F1(t) [êx cos(ω1t) + êy sin(ω1t)] , (9)

170

E2(t) =
1√
2
F2(t) [êx cos(ω2t)− êy sin(ω2t)] . (10)

Since the dipole approximation is well justified in the171

near infrared and visible wavelength region, the fields are172

assumed uniform in space. In Eqs. (9) and (10), ω1 and173

ω2 denote the carrier frequencies while F1(t) and F2(t)174

represent the temporal pulse envelopes. We use the sine-175

squared pulse shape:176

F1(t) = F1 sin2 πt

N1T1
, (11)

177

F2(t) = F2 sin2 πt

N2T2
, (12)

where F1 and F2 are the peak electric field strengths,178

T1 and T2 are the optical cycle durations for each field179

[T1 = 2π/ω1 and T2 = 2π/ω2], and the integer numbers180

N1 and N2 are the total pulse durations measured in181

optical cycles.182

The dipole interaction potentials in the length gauge183

have the following expressions in the prolate spheroidal184

coordinates:185

E1(t) · r =
a√
2
F1(t)

√
(ξ2 − 1)(1− η2)

× cos(ϕ− ω1t),
(13)

186

E2(t) · r =
a√
2
F2(t)

√
(ξ2 − 1)(1− η2)

× cos(ϕ+ ω2t).
(14)

In our calculations, we use the carrier wavelengths187

395 nm for the field E1(t) (ω1 = 0.1153 a.u.= 3.14 eV)188

and 790 nm for the field E2(t) (ω2 = 0.0576 a.u.=189

1.57 eV), respectively. One cycle of the ω1 and ω2190

fields are 1.32 and 2.64 fs, respectively. The peak field191

strengths F1 and F2 correspond to the intensities I1 =192

2 × 1014 W/cm2 and I2 = 1.25 × 1013 W/cm2, respec-193

tively. The pulse durations are chosen as N1 = 34 and194

N2 = 17. The total pulse duration for both fields is 45195

fs. To obtain converged HHG spectra for the laser field196

parameters used in the calculations, we set the grid size197

(for ξ, η, and ϕ coordinates, respectively) to 160×48×48198

and use 4096 time steps per one 395 nm (ω1) optical cycle199

in the time propagation process. The spatial and tem-200

poral grid parameters have been varied to make sure all201

the results are fully converged. The linear dimension of202

the box where the time-dependent equations are solved203

is chosen as 50 a.u. to ensure accurate description of all204

important physics for the laser field parameters used in205

the calculations; between 30 and 50 a.u. we apply an ab-206

sorber which smoothly brings down the propagated wave207

functions without spurious reflections from the boundary.208

The HHG power spectra can be investigated accurately209

once the time-dependent wave function Ψ(ξ, η, ϕ, t) is210

available. We calculate the expectation values of the in-211

duced dipole acceleration in the x, y, and z directions:212

ax(t) = 〈Ψ(ξ, η, ϕ, t)|∂U(ξ, η)

∂x
|Ψ(ξ, η, ϕ, t)〉

+ E1x(t) + E2x(t),
(15)

213

ay(t) = 〈Ψ(ξ, η, ϕ, t)|∂U(ξ, η)

∂y
|Ψ(ξ, η, ϕ, t)〉

+ E1y(t) + E2y(t),

(16)

214

az(t) = 〈Ψ(ξ, η, ϕ, t)|∂U(ξ, η)

∂z
|Ψ(ξ, η, ϕ, t)〉. (17)

Then the power spectrum S(ω) (spectral density of the215

radiation energy) can be obtained by the Fourier trans-216

formation of the time-dependent dipole accelerations,217

Sx(ω) =
2

3πc3

∣∣∣∣∫ ∞
−∞

ax(t) exp(iωt)dt

∣∣∣∣2 , (18)

218

Sy(ω) =
2

3πc3

∣∣∣∣∫ ∞
−∞

ay(t) exp(iωt)dt

∣∣∣∣2 , (19)

219

Sz(ω) =
2

3πc3

∣∣∣∣∫ ∞
−∞

az(t) exp(iωt)dt

∣∣∣∣2 , (20)

220

Stot(ω) = Sx(ω) + Sy(ω) + Sz(ω). (21)

We note that for the homonuclear diatomic molecule H+
2221

initially in the state with the definite parity and laser222

fields polarized in the plane perpendicular to the molec-223

ular (z) axis, the contribution Sz(ω) vanishes.224
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III. CONTROLLING CLASSICAL RETURN225

TIMES FOR MOLECULES IN BICHROMATIC226

COUNTER-ROTATING CIRCULARLY227

POLARIZED LASER FIELDS228

The classical trajectory of the electron subject to229

bichromatic counter-rotating circularly polarized laser230

fields in the x− y plane is given by the equations:231

x =
1√
2

[
F1

ω2
1

cosω1t+
F2

ω2
2

cosω2t

]
+

1√
2

[
F1

ω1
sinω1t0 +

F2

ω2
sinω2t0

]
(t− t0)

− 1√
2

[
F1

ω2
1

cosω1t0 +
F2

ω2
2

cosω2t0

]
,

(22)

232

y =
1√
2

[
F1

ω2
1

sinω1t−
F2

ω2
2

sinω2t

]
− 1√

2

[
F1

ω1
cosω1t0 −

F2

ω2
cosω2t0

]
(t− t0)

− 1√
2

[
F1

ω2
1

sinω1t0 −
F2

ω2
2

sinω2t0

]
.

(23)

Here F1 and F2 are constants, so the pulse envelope is233

not taken into account. This approximation is reasonable234

in the vicinity of the envelope maximum where the HHG235

mostly takes place. Eqs. (22) and (23) correspond to the236

zero position and zero velocity at t = t0 and generally237

describe an infinite motion of the electron. A closed pe-238

riodic trajectory is obtained with the zero drift velocity.239

In this case one has instead of Eqs. (22) and (23):240

x =
1√
2

F1

ω2
1

[cosω1t− cosω1t0]

+
1√
2

F2

ω2
2

[cosω2t− cosω2t0] ,

(24)

241

y =
1√
2

F1

ω2
1

[sinω1t− sinω1t0]

− 1√
2

F2

ω2
2

[sinω2t− sinω2t0] .

(25)

The period of this trajectory is equal to the largest of the242

two optical cycles (T2), thus in the general case it returns243

to the origin once per every T2 time interval. However,244

if the field strengths F1 and F2 satisfy the condition245

F2

F1
=
ω2
2

ω2
1

, (26)

the trajectory may manifest three returns per T2 optical246

cycle (2.64 fs) if a specific release time t0 is chosen. The247

analytic expression of this trajectory for constant F1 and248

F2 is as follows (ω2t0 = ±π/3):249

x =
F1

√
2

ω2
1

cos

(
1

2
ω2t

)
cos

(
3

2
ω2t

)
, (27)

250

y =
F1

√
2

ω2
1

sin

(
1

2
ω2t

)
cos

(
3

2
ω2t

)
. (28)

This property (three returns per T2 optical cycle) is251

also preserved for the pulse envelope functions defined252

in Eqs. (11) and (12). The distance from the origin in253

the x− y plane is calculated as254

r =
√
x2 + y2. (29)

A recollision event is detected when r approaches zero.255

Figure 1(a) shows x(t), y(t), and r(t) for the envelope256

functions (11) and (12) and peak field strengths F1 and257

F2 corresponding to the intensities I1 = 2× 1014 W/cm2
258

and I2 = 1.25×1013 W/cm2, respectively. The grey filled259

box shows three returns per T2 optical cycle (2.64 fs) in260

the central part of the pulse (22.0–27.3 fs). In Fig. 1(b)261

we show the classical electron trajectory that features262

three returns (three fold rosette shape) for any T2 cycle263

during the laser pulse.264

The circularly polarized laser pulses in the x and y265

domain (Ex and Ey) using the controlled laser peak266

intensities I1 and I2 are shown in Figs. 2(a) and (b).267

Figure 2(a) shows the time-dependent electric field of268

the driving laser pulse for peak laser intensities of I1 =269

2×1014 W/cm2 and I2 = 1.25×1013 W/cm2 for the total270

time duration of 45 fs. In Fig. 2(b) we show the counter-271

rotating laser fields in the x−y polarization plane for the272

45 fs time duration.273274

IV. CIRCULARLY POLARIZED HIGH-ORDER275

HARMONICS IN H+
2 MOLECULES276

The structure of the HHG spectra can be described277

in terms of the energy and angular momentum con-278

servation in the process of absorption of the driving279

fields photons and emission of the harmonic photon280

[1, 6, 7, 13, 14, 16, 17, 26]. The energy conservation281

gives ω = n1ω1 + n2ω2 for the frequency ω of the emit-282

ted photon after absorption of n1 photons of frequency283

ω1 and n2 photons of frequency ω2. The angular mo-284

mentum conservation requires n2 = n1 ± 1 or n2 = n1285

for the circularly-polarized counter-rotating driving fields286

E1 and E2. However, for the quantum systems with in-287

version symmetry such as atoms and homonuclear di-288

atomic molecules, emission of dipole radiation is for-289

bidden in the case n2 = n1 due to parity restrictions.290

Then the emitted photon frequency can be represented291

as ω = (2n+1)(ω1+ω2)/2±(ω1−ω2)/2, n being a positive292

integer number. This gives rise to a doublet structure of293

the HHG spectrum, with the frequency differences ω1+ω2294

between the adjacent doublets and ω1 − ω2 between the295

photon emission peaks within the same doublet. The296

right peak in the doublet has a circular polarization with297

the same helicity as the driving field with the higher fre-298

quency (E1), the left peak has a circular polarization299
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FIG. 1. (Color online) Classical trajectories for x, y, and r
domains versus release time. (a) Scanning the release time t
in the interval corresponding to the center of the pulse (22.0–
27.3 fs). The grey filled box shows three returns per T2 optical
cycle (2.64 fs). (b) The trajectories of the three returns (three
fold rosette shape) are shown for the total pulse duration (45
fs) in the x and y domain. The bichromatic frequency com-
ponents have different peak field strengths corresponding to
the intensities of I1 = 2 × 1014 W/cm2 and I2 = 1.25 × 1013

W/cm2.

with the same helicity as the driving field with the lower300

frequency (E2). If we define the ratio of the two frequen-301

cies q = ω1/ω2, we obtain ω = n(q + 1)ω2 ± ω2. In the302

case studied here, q = 2 and ω = (3n± 1)ω2. The HHG303

spectrum consists of odd and even harmonics of the low-304

est frequency ω2 except for the harmonic orders that are305

multiples of 3.306

In Figs. 3 (a-d), we present the HHG spectrum of H+
2307

for the driving laser pulse shown in Fig. 2. The calcu-308

lated HHG spectra for H+
2 in Figs. 3 (a-d), respectively,309

show the peak positions match well those predicted by310

the selection rules and specified above. The spectrum311

displays circularly polarized harmonics up to the 81st312

harmonic order (H81). The ionization threshold (Ip) for313

the initially occupied 1σg molecular orbital is marked314

with the green dashed vertical line at ∼H19 (19.13ω2).315
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FIG. 2. (Color online) Time-dependent electric field of the
driving laser pulse. (a) The red dotted and blue solid lines
represent the electric field in the x and y direction, respec-
tively. The laser pulse has a duration of 34 optical cycles
(∼ 45 fs) for the ω1 (395 nm) component and 17 optical cycles
(∼ 45 fs) for the ω2 (790 nm) component. The bichromatic
frequency components have different peak field strengths cor-
responding to the intensities of I1 = 2 × 1014 W/cm2 and
I2 = 1.25×1013 W/cm2. (b) The counter-rotating laser fields
in the x− y polarization plane for the total time duration of
45 fs.

Figure 3(b) shows the below- and near-threshold region316

(H1-H20). As one can see, the spectrum exhibits a clear317

doublet structure with the spacing between the main318

peaks equal to 3ω2 and subpeak separation of ω2. Ac-319

cording to the general considerations discussed above, the320

components of the doublet (subpeaks within each main321

peak) must have circular polarizations opposite to each322

other. This rule is true except for higher order below-323

threshold harmonics (H10–H20). In this region, excita-324

tion of the bound states and subsequent near-resonant325

emission alters the shape of the neighboring doublets in326

the HHG spectrum. In Fig. 3(b) two resonant peaks327

(marked A and B) are comparable in their height with328

the nearby regular harmonic peaks. The resonances A329

and B correspond to the transitions 1σg − 1πu (H11.7)330
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and 1σg−2πu (H15.6), respectively. Figures 3(c) and (d)331

show the above-threshold circularly polarized harmonics332

up to H74.333334

V. SST TIME-FREQUENCY SPECTRA335

To analyze the underlying mechanism from the ab ini-336

tio simulation, we perform the SST time-frequency anal-337

ysis of the dipole acceleration for H+
2 interacting with338

the applied laser fields. In previous studies [27], sev-339

eral representative time-frequency methods have been340

compared for the atomic hydrogen system including the341

short-time Fourier transforms, such as Gabor transform,342

Wigner-Ville transform [28] and the SST [29, 30], as well343

as the continuous wavelet transform, the bilinear time-344

frequency transform and the reallocation method, respec-345

tively. They found that both the Gabor and the Morlet346

transforms are subject to some obscure spectral features347

arising from a window and that the Wigner-Ville trans-348

form is accompanied by interference artifacts, resulting in349

incomprehensible analysis. Among these methods, only350

the SST can resolve the intrinsic blurring in the Gabor351

and the Morlet transforms [31]. Apart from the applica-352

tions in atomic, molecular, and optical physics, the SST353

was successfully used for analysis of chronotaxic systems354

[32] and cardiovascular systems [33].355

Here we perform the time-frequency SST analysis of356

the induced dipole accelerations ax(t), ay(t), and az(t)357

in the H+
2 diatomic molecule interacting with the ap-358

plied laser fields [21, 27, 31, 34]. The synchrosqueezing359

transforms S̃x, S̃y, and S̃z of the corresponding dipole360

accelerations are defined as follows:361

S̃x,y,z(t, ω̃) =

∫
1√
ω
Vx,y,z(t, ω)

1

α
√
π

× exp

−[ ω̃ − Ωf
x,y,z(t, ω)

α

]2 dω,

(30)

where Vx,y,z(t, ω) is the Morlet wavelet transform,362

Ωf
x,y,z(t, ω) is the reallocation rule function, and α is a363

smoothing parameter. In this study, α = 2.6. The Morlet364

wavelet transform is given as:365

Vx,y,z(t, ω) =

∫
ax,y,z(t′)

√
ωW (ω(t′ − t))dt′, (31)

where366

W (β) =
1√
τ

exp(iβ) exp

(
− β2

2τ2

)
, (32)

is the mother wavelet. The reallocation rule function is367

defined as:368

Ωf
x,y,z(t, ω) =


−i∂tVx,y,z(t, ω)

Vx,y,z(t, ω)
for Vx,y,z(t, ω) 6= 0

∞ for Vx,y,z(t, ω) = 0
,

(33)

where ∂t denotes the partial derivative in the temporal369

axis. In Fig. 4 we show the total absolute value of the370

SST spectrum |S̃tot(t, ω̃)| calculated as:371

|S̃tot(t, ω̃)| = |S̃x(t, ω̃)|+ |S̃y(t, ω̃)|+ |S̃z(t, ω̃)|. (34)

The time-frequency spectrum |S̃tot| shows a periodic rep-372

etition of arches in the above-threshold region (>H19.13)373

spanning to the 65th harmonic order (H65). These pe-374

riodic repetition of arches (>H19.13) are comprised of375

three returns per T2 optical cycle (2.64 fs). The quan-376

tum SST time-frequency analysis shows the same phe-377

nomena (3 returns per T2 optical cycle) as proposed by378

the controlled classical electron trajectories in Figs. 1(a)379

and (b).380381

VI. ELLIPTICITY AND RELATIVE382

PHASESHIFT OF HARMONIC RADIATION383

According to the discussion in Sec. IV, generation384

of high-order harmonics by bichromatic counter-rotating385

circularly polarized laser fields results in harmonic dou-386

blets, where in each doublet the harmonics are circularly387

polarized with opposite handedness. However, this ar-388

gument assumes that the driving field frequency compo-389

nents are perfectly monochromatic. In reality, the laser390

pulse has a finite duration, hence the harmonic peaks391

have a finite width, and polarization may vary even on392

the frequency range corresponding to the same harmonic393

peak. Near-resonant radiation from the excited states394

may also alter the polarization properties of the HHG395

spectrum in the below-threshold region. Here, we calcu-396

late the polarization properties of the harmonic radiation397

explicitly from the dipole acceleration data and show to398

what extent the harmonic peaks within the same doublet399

possess circular polarizations with left and right handed-400

ness.401

Suppose we have a monochromatic field with the com-402

ponents along x and y:403

Fx = a cos(ωt),

Fy = b cos(ωt+ β).
(35)

Generally, the field amplitudes along x and y are different404

(with their ratio ryx = b/a), and there is a phaseshift β405

between the field oscillations in x and y directions. Actu-406

ally, Eq. (35) represents an elliptically polarized field; the407

orientation of the ellipse in the x − y plane depends on408

the parameters ryx and β. The angle α which determines409

the orientation of one of the ellipse axes with respect to410

the x-axis is calculated as:411

α = −1

2
arctan

(
r2yx sin(2β)

1 + r2yx cos(2β)

)
. (36)

The second axis has the orientation angle α + π/2. As-412

suming the first axis to be the major axis of the ellipse,413
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FIG. 3. (Color online) HHG spectrum S(ω) in the x, y, and total domain of the H+
2 molecule in the counter-rotating circularly

polarized laser pulses. Circularly polarized HHG spectrum (a) up to ∼H81, (b) below-threshold (H1-H20), (c) above-threshold;
plateau region (H20-H53), and (d) above-threshold; plateau and near cutoff region (H55-H74). The laser pulses have a time
duration of 34 optical cycles (∼ 45 fs) for ω1 (395 nm) and 17 optical cycles (∼ 45 fs) for ω2 (790 nm). The green vertical
dashed line indicates the corresponding ionization threshold (Ip) marked by 1σg threshold (H19.13). Resonance A and B in
panel (b) correspond to the transitions 1σg − 1πu (H11.7) and 1σg − 2πu (H15.6), respectively. All spectra show a doublet
structure, located at positions predicted by energy and spin angular momentum conservation [filled maroon circles (790 nm)
and filled teal squares (395 nm)]. The separation within each doublet is ω1 − ω2 = ω2, and different doublets are separated by
ω1 + ω2 = 3ω2. The bichromatic frequency components have different peak field strengths corresponding to the intensities of
I1 = 2× 1014 W/cm2 and I2 = 1.25× 1013 W/cm2.

the ellipticity parameter is calculated as follows:414

ε =

√
sin2 α+ r2yx sin2(α+ β)

cos2 α+ r2yx cos2(α+ β)
(37)

If the calculated ellipticity parameter ε appears greater415

than unity, then the first axis is actually the minor axis,416

and the ellipticity parameter is given by 1/ε. From417

the Fourier transform of the induced dipole acceleration418

(which represents the harmonic field), one can obtain the419

parameters ryx and β and calculate the ellipticity for the420

specific frequency ω. The circular polarization (ε = 1) is421

only possible if β = ±π/2 and ryx = 1.422

In Figs. 5-7, the filled maroon circles and filled teal423

squares indicate the positions of harmonic peaks within424

each doublet. The circular polarization of the harmonics425

marked with the teal squares has the same handedness426

(left-helicity) as that of the driving field E1(t), and the427

harmonics marked with the maroon circles are polarized428

with the same handedness (right-helicity) as the driving429

field E2(t).430

Figure 5 shows the phase and ellipticity of the below-431

threshold harmonics in the HHG spectrum of the H+
2432

molecule (Fig 3). As one can see in Fig. 5, the elliptic-433

ity of the below-threshold harmonics is near unity and434

the phases are very close to ±π/2, indicating circular po-435

larizations with left and right handedness. The phase436

and ellipticity of the harmonics are altered in the re-437

gion where the excited-state resonances start to appear,438

hence, 1σg−1πu (H11.7) and 1σg−2πu (H15.6) labeled by439

open blue oval marks in Figs. 5(a) and (b). The excited-440

state resonances have effects on neighboring harmonics441

causing the phase and ellipticity to alter from perfect cir-442

cular polarization. In Fig. 3, the excited-state resonances443

altered the shape of the neighboring doublets (H10–H20)444

in the HHG spectra.445

In the above-threshold plateau region (Figs. 6 and446

7), the harmonics within the doublets still do not show447

perfect circular polarizations with their ellipticities and448

phases deviating from unity and ±π/2, respectively. In449

the lower-energy part of this region (H19–H38, Fig. 6),450

right subpeaks in the doublets (teal squares) exhibit bet-451
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FIG. 4. (Color online) SST time-frequency analysis |S̃tot| of
the HHG spectra of H+

2 . The horizontal yellow solid line
indicates the ionization potential Ip at ∼H19. The vertical
white dashed lines indicates one cycle (T2) of the ω2 field
(2.64 fs). Three returns per T2 optical cycle are observed,
as proposed by the controlled classical electron trajectories in
Figs. 1(a) and (b). The laser parameters used are the same
as those in Fig. 3. The color scale is logarithmic.

ter circular polarization than the left subpeaks (maroon452

circles). In the higher-energy part (H54–H65, Fig. 7), the453

pattern is reversed; here more perfect circular polariza-454

tion is observed for the left subpeaks (maroon circles).455

Generally, perfect circular polarization can be expected456

when the harmonic signals polarized in the x and y di-457

rections have equal strengths. The x and y components458

of the harmonic radiation, in turn, are induced by the459

x and y components of the driving field. Averaged over460

the total pulse duration, the intensities of the x and y461

components of the driving field are the same, but they462

may differ significantly on shorter (subcycle) time inter-463

vals (see Fig. 2). Since the high-order harmonics are pre-464

dominantly generated during short recollision events in465

the central part of the laser pulse, they may be affected466

by the asymmetry between the x and y components of467

the driving field. In our previous work [17], we showed468

that for small frequency difference ω1−ω2 this asymme-469

try can lead to disappearance of the doublet structure470

and circular polarization of the harmonics in the HHG471

spectrum. In the present case ω1 = 2ω2, the doublet472

structure remains distinct but polarizations of the sub-473

peaks may have significantly altered. As one can see from474

Fig. 3c, the x and y contributions to the harmonic signal475

are very close to each other for the right subpeaks (teal476

squares) while considerable difference between these con-477

tributions is observed for the left subpeaks (maroon cir-478

cles). Consequently, perfect circular polarization cannot479

be expected for the left subpeaks, in accordance with the480

results presented in Fig. 6. The pattern is changed for481

the higher-order harmonics, H54–H65. In this part of the482

spectrum (Fig. 3d), the x and y contributions to the har-483

monic signal are closer to each other for the left subpeaks484

FIG. 5. (Color online) (a) Ellipticity and (b) phaseshift be-
tween the x and y components of the harmonic field (below-
threshold harmonics) from H+

2 as a function of harmonic or-
der. The laser parameters used are the same as those in Fig. 3.
The filled maroon circles and filled teal squares mark the har-
monic peak positions within each doublet. The open blue oval
marks the 1σg − 1πu (H11.7) and 1σg − 2πu (H15.6) excited-
state resonance peaks shown in Fig.3(b).

(maroon circles), and their ellipticity is closer to unity485

than that of the right subpeaks (teal squares), as seen in486

Fig. 7. In the cutoff region, H67–74, both left and right487

subpeaks exhibit again almost perfect circular polariza-488

tion. The transformations of the polarization properties489

of the above-threshold harmonics with their order could490

reflect the shifts of their emission times within the same491

optical cycle. With increasing harmonic order, the emis-492

sion time of the harmonic is shifted backwards, as seen in493

the time-frequency spectrum, Fig. 4. Detailed analysis of494

this phenomenon could be a subject of a separate study.495

VII. CONCLUSION496

In this paper, we have presented a detailed investiga-497

tion and analysis of H+
2 diatomic molecules subject to498

bichromatic (ω, 2ω) tailored counter-rotating circularly499

polarized intense laser fields. The intensities used in the500

calculations have been tailored through the use of classi-501

cal trajectory analysis to produce three returns per T2 op-502

tical cycle. The generated high-order harmonics exhibit503

circular polarization up to harmonic orders of H81. The504



9

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Harmonic order

0

0.2

0.4

0.6

0.8

1

E
lli

p
ti
c
it
y

(a)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Harmonic order

P
h
a
s
e
 d

if
fe

re
n
c
e

(b)π

π/2

0

-π/2

-π

FIG. 6. (Color online) (a) Ellipticity and (b) phaseshift be-
tween the x and y components of the harmonic field (above-
threshold harmonics; plateau region) from H+

2 as a function
of harmonic order. The laser parameters used are the same
as those in Fig. 3. The filled maroon circles and filled teal
squares mark the harmonic peak positions within each dou-
blet.

HHG spectrum has a doublet structure where the har-505

monics within the same doublet have opposite (left and506

right) circular polarizations. The quantum SST analy-507

sis of the dipole accelerations shows distinctly three re-508

turns per T2 optical cycle, agreeing with the proposed509

controlled classical trajectories analysis. In particular,510

we reveal that electron recollisions in molecular systems511

can be controlled through tailored bichromatic counter-512

rotating circularly polarized intense laser fields.513

Furthermore, we find that excited-state resonances in514

the HHG spectrum can have effects on neighboring har-515

monics causing the phase and ellipticity to be altered516

from perfect circular polarization. Our study provides517

informative findings on the delicate electron dynamics in518

the below-, near-, and above-threshold harmonic regimes519

for diatomic molecules. Our findings can also be ex-520

tended to facilitate the user-defined control of the elec-521

tron quantum paths for experimental implementation of522

ultrashort and intense coherent light sources and fre-523

quency comb source, both in the VUV and soft-x-ray524

regime, in the future.525
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FIG. 7. (Color online) (a) Ellipticity and (b) phaseshift be-
tween the x and y components of the harmonic field (above-
threshold harmonics; cutoff region) from H+

2 as a function of
harmonic order. The laser parameters used are the same as
those in Fig. 3. The filled maroon circles and filled teal squares
mark the harmonic peak positions within each doublet.
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