This is the accepted manuscript made available via CHORUS. The article has been published as:

Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H_\{2\}^\{+\} subject to tailored $(\omega, 2 \omega)$ counter-rotating laser fields John Heslar, Dmitry A. Telnov, and Shih-I Chu
Phys. Rev. A 97, 043419 - Published 18 April 2018
DOI: 10.1103/PhysRevA.97.043419

Controlling electron quantum paths for generation of circularly polarized high-order harmonics by \mathbf{H}_{2}^{+}subject to tailored $(\omega, 2 \omega)$ counter-rotating laser fields

John Heslar, ${ }^{1, *}$ Dmitry A. Telnov, ${ }^{2, \dagger}$ and Shih-I Chu ${ }^{1,3, \ddagger}$
${ }^{1}$ Department of Physics, Center for Quantum Science and Engineering, Center for Advanced Study in Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan
${ }^{2}$ Department of Physics, St. Petersburg State University,
7-9 Universitetskaya naberezhnaya, St. Petersburg 199034, Russia
${ }^{3}$ Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

Abstract

Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counterrotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω using tailored bichromatic $(\omega, 2 \omega)$ counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H_{2}^{+}molecules in bichromatic $(\omega, 2 \omega)$ counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left and right circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

I. INTRODUCTION

High-order-harmonic generation (HHG) is an attractive table-top source of coherent, bright, and tunable extreme ultraviolet (XUV) and soft X-ray radiation with applications in coherent diffractive imaging, ultrafast holography, and time resolved measurements [1-6]. Moreover, circularly polarized HHG may find additional applications in nanolithography, ultrafast spin dynamics, and magnetic circular dichroism [1, 7-13].
A direct approach for generating circularly polarized HHG was suggested 22 years ago [14, 15], and recently measured by Fleischer et al. [7]. In this scheme, circularly polarized HHG are driven by co-propagating circularly polarized bichromatic fields that rotate in opposite directions (counter-rotating) and interact with argon gas. This experiment [7] opened up the possibility and motivation of generating bright circularly polarized HHG comparable to the flux efficiency of linearly polarized HHG. Recently, Fan et al. [1] did just that, they generated bright circularly polarized soft X-ray HHG beams with photon energies greater than 160 eV and flux comparable to the HHG flux obtained using linearly polarized 800 nm driving lasers. These bright circularly polarized high-order-harmonic beams in the soft X-ray region were generated from He , Ne , and Ar atoms, and used to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup [1]. Previously, such radiation has only been available at large-scale X-ray facilities such as synchrotrons.

[^0]The primary characteristics of the bichromatic circularly polarized HHG spectra can be described in terms of the energy and angular momentum conservation, which gives rise to a doublet structure of the HHG spectrum. The right peak in the doublet has a circular polarization with the same helicity as the driving field with the higher frequency, the left peak has a circular polarization with the same helicity as the driving field with the lower frequency $[1,7-13,16,17]$. The driving laser field parameters determine the spectral, temporal, and polarization properties of the circularly polarized HHG, enabling the creation of tailored circularly polarized HHG waveforms [16]. For instance, the frequencies of the bichromatic laser field can be chosen to tune the photon energy and bandwidth of the emitted harmonics from the XUV to the soft x-ray region $[1,16]$. Also, in the same respect the relative intensity ratio of the bichromatic laser field can be adjusted to preferentially select either the right or left circularly polarized harmonics [16]. In the frequency domain, this enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser.

While an impressive progress has been achieved in generation of bright circularly polarized radiation by atomic targets, this area remains largely unexplored for molecular systems. In this work, we address the problem with the H_{2}^{+}molecule subject to bichromatic counter-rotating circularly polarized intense laser fields and adopt wavelengths (790 nm and 395 nm) reported in a recent experiment [16]. We show through the use of a tailored relative intensity ratio of the bichromatic laser field we can generate radiation with circular polarization and have control over the electronic recollisions in the time domain for the H_{2}^{+}molecule. We control the period of the recollisions with help from the classical trajectory analysis and apply it to a nonperturbative quantum investigation to produce a recollision event that features three 116 and z as follows [18]:

$$
\begin{align*}
& x=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \varphi \\
& y=a \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \varphi \tag{1}\\
& z=a \xi \eta \quad(1 \leq \xi<\infty,-1 \leq \eta \leq 1)
\end{align*}
$$

117 In Eq. (1) we assume that the molecular axis is directed 18 along the z axis, and the nuclei are located on this axis 19 at the positions $-a$ and a, so the internuclear separation ${ }_{120} R=2 a$. The internuclear distance for the $\mathrm{H}_{2}^{+}\left(R_{e}={ }^{15}\right.$ ${ }_{121} 2.00 a_{0}$) molecule is fixed at its equilibrium distance R_{e}. ${ }_{15}$

The organization of this paper is as follows. In Sec. II we briefly discuss our theoretical and computational approach for the general treatment of the multiphoton dynamics of diatomic molecular systems subject to bichromatic counter-rotating circularly polarized intense laser fields. In Sec. III we explore the control of the electronic pathway with use of the standard classical approach. In Sec. IV we study HHG of H_{2}^{+}molecules driven by bichromatic counter-rotating circularly polarized laser pulses. The HHG spectra exhibit a distinct doublet structure, and the harmonics within each doublet possess circular polarizations with opposite handedness. In Sec. V we employ the synchrosqueezing transform (SST) to analyze the time-frequency spectra of the below-, near-, and above-threshold HHG of H_{2}^{+}. We show that the electron returns are controlled with the intensity parameters used, and three dominant returns are seen within one cycle of the 790 nm field. In Sec. VI we provide a proof of perfect circular polarization and opposite handedness of the harmonics within the doublets, by calculating their ellipticity and phase parameters from the dipole acceleration data for below-, near-, and above-threshold HHG regions. We also show that excited-state resonances have effects on neighboring harmonics altering their perfect circular polarization. Section VII contains concluding remarks.

II. THEORY AND NUMERICAL TECHNIQUES

To calculate the HHG spectra, we solve the timedependent Schrödinger equation for the H_{2}^{+}molecule in the bichromatic counter-rotating circularly polarized laser fields. The initial wave function is an unperturbed eigenfunction of H_{2}^{+}. For our calculations, we select the ground $\left(1 \sigma_{g}\right)$ electronic state. The nuclei are fixed at their positions, and the nuclear motion is not taken into account. To describe the diatomic molecular ion H_{2}^{+}, we make use of the prolate spheroidal coordinates ξ, η, and φ which are related to the Cartesian coordinates x, y, ${ }^{29}$ (the charge of each center is unity):

$$
\begin{equation*}
U(\xi, \eta)=-\frac{2 \xi}{a\left(\xi^{2}-\eta^{2}\right)} \tag{4}
\end{equation*}
$$

${ }^{130}$ For the unperturbed molecule, the projection m of the ${ }_{31}$ angular momentum onto the molecular axis is conserved. 132 Thus the wave function $\Psi(\xi, \eta, \varphi)$ can be represented in ${ }^{33}$ a separable form,

$$
\begin{equation*}
\Psi(\xi, \eta, \varphi)=\psi_{m}(\xi, \eta) \exp (i m \varphi) \tag{5}
\end{equation*}
$$

34 and separate eigenvalues problems for different $|m|$ are 35 obtained,

$$
\begin{align*}
-\frac{1}{2 a^{2}} & \frac{1}{\left(\xi^{2}-\eta^{2}\right)}\left[\frac{\partial}{\partial \xi}\left(\xi^{2}-1\right) \frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}\right. \tag{6}\\
& \left.-\frac{m^{2}}{\xi^{2}-1}-\frac{m^{2}}{1-\eta^{2}}\right] \psi_{m}=E \psi_{m}
\end{align*}
$$

To solve Eq. (6), we use the generalized pseudospectral (GPS) method. Note that the exact eigenfunction ψ_{m} behaves as $\left(\xi^{2}-1\right)^{|m| / 2}\left(1-\eta^{2}\right)^{|m| / 2}$ in the vicinity of the nuclei; for odd $|m|$, this is a nonanalytical function of the coordinates. Straightforward numerical differentiation of such a function could result in signicant loss of accuracy. We circumvent this difficulty by choosing a special mapping transformation within the GPS method [19]. Other details of the GPS method in prolate spheroidal coordinates can be found in Refs. [20-24].

Solving the eigenvalue problem (6) for different even and odd m, we obtain unperturbed energy values and eigenstates of H_{2}^{+}, which are used as initial states for time 149 propagation as well as for construction of propagation 150 matrices.

B. Solution of the time-dependent Schrödinger equation in bichromatic circularly polarized laser pulses

The time-dependent Schrödinger equation in the bichromatic circularly polarized laser pulses is solved

156 by means of the split-operator method in the energy ${ }_{18}$ 57 representation $[20-25]$. We employ the following split158 operator, second-order short-time propagation formula:

$$
\begin{align*}
\Psi(t+\Delta t) & =\exp \left(-i \frac{1}{2} \Delta t H_{0}\right) \\
& \times \exp \left[-i \Delta t V_{\mathrm{ext}}\left(\boldsymbol{r}, t+\frac{1}{2} \Delta t\right)\right] \tag{7}\\
& \times \exp \left(-i \frac{1}{2} \Delta t H_{0}\right)+O\left((\Delta t)^{3}\right)
\end{align*}
$$

159

160

161 162 163

Here Δt is the time propagation step, H_{0} is the unperturbed electronic Hamiltonian which includes the kinetic energy and interaction with the nuclei, $V_{\text {ext }}(\boldsymbol{r}, t)$ is the term due to the coupling to the bichromatic circularly polarized external fields, in the following form:

$$
\begin{equation*}
V_{\mathrm{ext}}(\boldsymbol{r}, t)=\left[\boldsymbol{E}_{1}(t)+\boldsymbol{E}_{2}(t)\right] \cdot \boldsymbol{r} \tag{8}
\end{equation*}
$$

164 The laser electric-field strengths $\boldsymbol{E}_{1}(t)$ and $\boldsymbol{E}_{2}(t)$ refer to 165 the two frequency components of the bichromatic field.
166 In what follows, we shall assume that the laser fields ${ }_{167} \boldsymbol{E}_{1}(t)$ and $\boldsymbol{E}_{2}(t)$ propagate along the z axis and have 168 circular polarizations on the $x-y$ plane. The counter${ }_{169}$ rotating fields $\boldsymbol{E}_{1}(t)$ and $\boldsymbol{E}_{2}(t)$ are expressed as follows:

$$
\begin{equation*}
\boldsymbol{E}_{1}(t)=\frac{1}{\sqrt{2}} F_{1}(t)\left[\hat{\boldsymbol{e}}_{x} \cos \left(\omega_{1} t\right)+\hat{\boldsymbol{e}}_{y} \sin \left(\omega_{1} t\right)\right] \tag{9}
\end{equation*}
$$

170

$$
\begin{equation*}
\boldsymbol{E}_{2}(t)=\frac{1}{\sqrt{2}} F_{2}(t)\left[\hat{\boldsymbol{e}}_{x} \cos \left(\omega_{2} t\right)-\hat{\boldsymbol{e}}_{y} \sin \left(\omega_{2} t\right)\right] \tag{10}
\end{equation*}
$$

${ }_{171}$ Since the dipole approximation is well justified in the 172 near infrared and visible wavelength region, the fields are ${ }_{173}$ assumed uniform in space. In Eqs. (9) and (10), ω_{1} and ${ }_{174} \omega_{2}$ denote the carrier frequencies while $F_{1}(t)$ and $F_{2}(t)$ ${ }_{175}$ represent the temporal pulse envelopes. We use the sine176 squared pulse shape:

$$
\begin{equation*}
F_{1}(t)=F_{1} \sin ^{2} \frac{\pi t}{N_{1} T_{1}} \tag{11}
\end{equation*}
$$

177

$$
\begin{equation*}
F_{2}(t)=F_{2} \sin ^{2} \frac{\pi t}{N_{2} T_{2}} \tag{12}
\end{equation*}
$$

${ }_{178}$ where F_{1} and F_{2} are the peak electric field strengths, ${ }_{179} T_{1}$ and T_{2} are the optical cycle durations for each field ${ }_{180}\left[T_{1}=2 \pi / \omega_{1}\right.$ and $T_{2}=2 \pi / \omega_{2}$], and the integer numbers ${ }_{181} N_{1}$ and N_{2} are the total pulse durations measured in 182 optical cycles.
183 The dipole interaction potentials in the length gauge 184 have the following expressions in the prolate spheroidal 185 coordinates:

$$
\begin{align*}
\boldsymbol{E}_{1}(t) \cdot \boldsymbol{r} & =\frac{a}{\sqrt{2}} F_{1}(t) \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \tag{13}\\
& \times \cos \left(\varphi-\omega_{1} t\right) \tag{21}
\end{align*}
$$

220

$$
\begin{align*}
\boldsymbol{E}_{2}(t) \cdot \boldsymbol{r} & =\frac{a}{\sqrt{2}} F_{2}(t) \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \tag{14}\\
& \times \cos \left(\varphi+\omega_{2} t\right)
\end{align*}
$$

In our calculations, we use the carrier wavelengths ${ }_{188} 395 \mathrm{~nm}$ for the field $\boldsymbol{E}_{1}(t)\left(\omega_{1}=0.1153\right.$ a.u. $\left.=3.14 \mathrm{eV}\right)$ 189 190 , , respectively. One cycle of the ω_{1} and ω_{2} ${ }_{91}$ fields are 1.32 and 2.64 fs , respectively. The peak field 192 strengths F_{1} and F_{2} correspond to the intensities $I_{1}=$ $2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and $I_{2}=1.25 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$, respec194

$$
\begin{align*}
a_{x}(t) & =\langle\Psi(\xi, \eta, \varphi, t)| \frac{\partial U(\xi, \eta)}{\partial x}|\Psi(\xi, \eta, \varphi, t)\rangle \tag{15}\\
& +E_{1 x}(t)+E_{2 x}(t) \\
a_{y}(t) & =\langle\Psi(\xi, \eta, \varphi, t)| \frac{\partial U(\xi, \eta)}{\partial y}|\Psi(\xi, \eta, \varphi, t)\rangle \tag{16}\\
& +E_{1 y}(t)+E_{2 y}(t) \\
a_{z}(t) & =\langle\Psi(\xi, \eta, \varphi, t)| \frac{\partial U(\xi, \eta)}{\partial z}|\Psi(\xi, \eta, \varphi, t)\rangle \tag{17}
\end{align*}
$$. The pulse durations are chosen as $N_{1}=34$ and $N_{2}=17$. The total pulse duration for both fields is 45 fs. To obtain converged HHG spectra for the laser field parameters used in the calculations, we set the grid size (for ξ, η, and φ coordinates, respectively) to $160 \times 48 \times 48$ and use 4096 time steps per one $395 \mathrm{~nm}\left(\omega_{1}\right)$ optical cycle in the time propagation process. The spatial and temporal grid parameters have been varied to make sure all the results are fully converged. The linear dimension of the box where the time-dependent equations are solved is chosen as 50 a.u. to ensure accurate description of all important physics for the laser field parameters used in the calculations; between 30 and 50 a.u. we apply an absorber which smoothly brings down the propagated wave functions without spurious reflections from the boundary.

The HHG power spectra can be investigated accurately once the time-dependent wave function $\Psi(\xi, \eta, \varphi, t)$ is available. We calculate the expectation values of the in-

Then the power spectrum $S(\omega)$ (spectral density of the radiation energy) can be obtained by the Fourier transformation of the time-dependent dipole accelerations,

$$
\begin{align*}
& S_{x}(\omega)=\frac{2}{3 \pi c^{3}}\left|\int_{-\infty}^{\infty} a_{x}(t) \exp (i \omega t) d t\right|^{2} \tag{18}\\
& S_{y}(\omega)=\frac{2}{3 \pi c^{3}}\left|\int_{-\infty}^{\infty} a_{y}(t) \exp (i \omega t) d t\right|^{2} \tag{19}\\
& S_{z}(\omega)=\frac{2}{3 \pi c^{3}}\left|\int_{-\infty}^{\infty} a_{z}(t) \exp (i \omega t) d t\right|^{2} \tag{20}\\
& S_{\mathrm{tot}}(\omega)=S_{x}(\omega)+S_{y}(\omega)+S_{z}(\omega)
\end{align*}
$$

We note that for the homonuclear diatomic molecule H_{2}^{+} initially in the state with the definite parity and laser fields polarized in the plane perpendicular to the molecular (z) axis, the contribution $S_{z}(\omega)$ vanishes.

$$
\begin{aligned}
x & =\frac{1}{\sqrt{2}}\left[\frac{F_{1}}{\omega_{1}^{2}} \cos \omega_{1} t+\frac{F_{2}}{\omega_{2}^{2}} \cos \omega_{2} t\right] \\
& +\frac{1}{\sqrt{2}}\left[\frac{F_{1}}{\omega_{1}} \sin \omega_{1} t_{0}+\frac{F_{2}}{\omega_{2}} \sin \omega_{2} t_{0}\right]\left(t-t_{0}\right) \\
& -\frac{1}{\sqrt{2}}\left[\frac{F_{1}}{\omega_{1}^{2}} \cos \omega_{1} t_{0}+\frac{F_{2}}{\omega_{2}^{2}} \cos \omega_{2} t_{0}\right],
\end{aligned}
$$

232

$$
\begin{aligned}
y & =\frac{1}{\sqrt{2}}\left[\frac{F_{1}}{\omega_{1}^{2}} \sin \omega_{1} t-\frac{F_{2}}{\omega_{2}^{2}} \sin \omega_{2} t\right] \\
& -\frac{1}{\sqrt{2}}\left[\frac{F_{1}}{\omega_{1}} \cos \omega_{1} t_{0}-\frac{F_{2}}{\omega_{2}} \cos \omega_{2} t_{0}\right]\left(t-t_{0}\right) \\
& -\frac{1}{\sqrt{2}}\left[\frac{F_{1}}{\omega_{1}^{2}} \sin \omega_{1} t_{0}-\frac{F_{2}}{\omega_{2}^{2}} \sin \omega_{2} t_{0}\right] .
\end{aligned}
$$

The period of this trajectory is equal to the largest of the two optical cycles $\left(T_{2}\right)$, thus in the general case it returns to the origin once per every T_{2} time interval. However, if the field strengths F_{1} and F_{2} satisfy the condition

$$
\frac{F_{2}}{F_{1}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}},
$$

the trajectory may manifest three returns per T_{2} optical cycle (2.64 fs) if a specific release time t_{0} is chosen. The analytic expression of this trajectory for constant F_{1} and F_{2} is as follows $\left(\omega_{2} t_{0}= \pm \pi / 3\right)$:

$$
x=\frac{F_{1} \sqrt{2}}{\omega_{1}^{2}} \cos \left(\frac{1}{2} \omega_{2} t\right) \cos \left(\frac{3}{2} \omega_{2} t\right),
$$

$$
\begin{equation*}
y=\frac{F_{1} \sqrt{2}}{\omega_{1}^{2}} \sin \left(\frac{1}{2} \omega_{2} t\right) \cos \left(\frac{3}{2} \omega_{2} t\right) \tag{28}
\end{equation*}
$$

251 25 253 254

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}} \tag{22}
\end{equation*}
$$

This property (three returns per T_{2} optical cycle) is also preserved for the pulse envelope functions defined in Eqs. (11) and (12). The distance from the origin in the $x-y$ plane is calculated as

A recollision event is detected when r approaches zero. Figure 1(a) shows $x(t), y(t)$, and $r(t)$ for the envelope functions (11) and (12) and peak field strengths F_{1} and F_{2} corresponding to the intensities $I_{1}=2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and $I_{2}=1.25 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The grey filled box shows three returns per T_{2} optical cycle (2.64 fs) in the central part of the pulse (22.0-27.3 fs). In Fig. 1(b) we show the classical electron trajectory that features three returns (three fold rosette shape) for any T_{2} cycle during the laser pulse.
The circularly polarized laser pulses in the x and y domain (E_{x} and E_{y}) using the controlled laser peak intensities I_{1} and I_{2} are shown in Figs. 2(a) and (b). Figure 2(a) shows the time-dependent electric field of the driving laser pulse for peak laser intensities of $I_{1}=$ $2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and $I_{2}=1.25 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ for the total time duration of 45 fs. In Fig. 2(b) we show the counterrotating laser fields in the $x-y$ polarization plane for the 45 fs time duration.

IV. CIRCULARLY POLARIZED HIGH-ORDER HARMONICS IN H_{2}^{+}MOLECULES

The structure of the HHG spectra can be described in terms of the energy and angular momentum conservation in the process of absorption of the driving fields photons and emission of the harmonic photon $[1,6,7,13,14,16,17,26]$. The energy conservation gives $\omega=n_{1} \omega_{1}+n_{2} \omega_{2}$ for the frequency ω of the emitted photon after absorption of n_{1} photons of frequency ω_{1} and n_{2} photons of frequency ω_{2}. The angular momentum conservation requires $n_{2}=n_{1} \pm 1$ or $n_{2}=n_{1}$ for the circularly-polarized counter-rotating driving fields \boldsymbol{E}_{1} and \boldsymbol{E}_{2}. However, for the quantum systems with inversion symmetry such as atoms and homonuclear diatomic molecules, emission of dipole radiation is forbidden in the case $n_{2}=n_{1}$ due to parity restrictions. Then the emitted photon frequency can be represented as $\omega=(2 n+1)\left(\omega_{1}+\omega_{2}\right) / 2 \pm\left(\omega_{1}-\omega_{2}\right) / 2, n$ being a positive integer number. This gives rise to a doublet structure of the HHG spectrum, with the frequency differences $\omega_{1}+\omega_{2}$ between the adjacent doublets and $\omega_{1}-\omega_{2}$ between the photon emission peaks within the same doublet. The right peak in the doublet has a circular polarization with 298 the same helicity as the driving field with the higher fre299 quency $\left(\boldsymbol{E}_{1}\right)$, the left peak has a circular polarization

FIG. 1. (Color online) Classical trajectories for x, y, and r domains versus release time. (a) Scanning the release time t in the interval corresponding to the center of the pulse (22.027.3 fs). The grey filled box shows three returns per T_{2} optical cycle (2.64 fs). (b) The trajectories of the three returns (three fold rosette shape) are shown for the total pulse duration (45 fs) in the x and y domain. The bichromatic frequency components have different peak field strengths corresponding to the intensities of $I_{1}=2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and $I_{2}=1.25 \times 10^{13}$ $\mathrm{W} / \mathrm{cm}^{2}$.
with the same helicity as the driving field with the lower frequency $\left(\boldsymbol{E}_{2}\right)$. If we define the ratio of the two frequencies $q=\omega_{1} / \omega_{2}$, we obtain $\omega=n(q+1) \omega_{2} \pm \omega_{2}$. In the case studied here, $q=2$ and $\omega=(3 n \pm 1) \omega_{2}$. The HHG spectrum consists of odd and even harmonics of the lowest frequency ω_{2} except for the harmonic orders that are multiples of 3 .
In Figs. 3 (a-d), we present the HHG spectrum of H_{2}^{+} for the driving laser pulse shown in Fig. 2. The calculated HHG spectra for H_{2}^{+}in Figs. 3 (a-d), respectively, show the peak positions match well those predicted by the selection rules and specified above. The spectrum displays circularly polarized harmonics up to the $81^{\text {st }}$ harmonic order (H81). The ionization threshold $\left(I_{p}\right)$ for the initially occupied $1 \sigma_{g}$ molecular orbital is marked with the green dashed vertical line at $\sim \mathrm{H} 19\left(19.13 \omega_{2}\right)$.

FIG. 2. (Color online) Time-dependent electric field of the driving laser pulse. (a) The red dotted and blue solid lines represent the electric field in the x and y direction, respectively. The laser pulse has a duration of 34 optical cycles ($\sim 45 \mathrm{fs}$) for the $\omega_{1}(395 \mathrm{~nm})$ component and 17 optical cycles ($\sim 45 \mathrm{fs}$) for the $\omega_{2}(790 \mathrm{~nm})$ component. The bichromatic frequency components have different peak field strengths corresponding to the intensities of $I_{1}=2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and $I_{2}=1.25 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$. (b) The counter-rotating laser fields in the $x-y$ polarization plane for the total time duration of 45 fs .

V. SST TIME-FREQUENCY SPECTRA

To analyze the underlying mechanism from the $a b$ initio simulation, we perform the SST time-frequency analysis of the dipole acceleration for H_{2}^{+}interacting with the applied laser fields. In previous studies [27], several representative time-frequency methods have been compared for the atomic hydrogen system including the short-time Fourier transforms, such as Gabor transform, Wigner-Ville transform [28] and the SST [29, 30], as well as the continuous wavelet transform, the bilinear timefrequency transform and the reallocation method, respectively. They found that both the Gabor and the Morlet ${ }^{382}$ transforms are subject to some obscure spectral features ${ }^{38}$ arising from a window and that the Wigner-Ville transform is accompanied by interference artifacts, resulting in incomprehensible analysis. Among these methods, only the SST can resolve the intrinsic blurring in the Gabor and the Morlet transforms [31]. Apart from the applications in atomic, molecular, and optical physics, the SST was successfully used for analysis of chronotaxic systems [32] and cardiovascular systems [33].
Here we perform the time-frequency SST analysis of the induced dipole accelerations $a_{x}(t), a_{y}(t)$, and $a_{z}(t)$ in the H_{2}^{+}diatomic molecule interacting with the applied laser fields [21, 27, 31, 34]. The synchrosqueezing transforms $\tilde{S}_{x}, \tilde{S}_{y}$, and \tilde{S}_{z} of the corresponding dipole accelerations are defined as follows:

$$
\begin{align*}
\tilde{S}_{x, y, z}(t, \tilde{\omega}) & =\int \frac{1}{\sqrt{\omega}} V_{x, y, z}(t, \omega) \frac{1}{\alpha \sqrt{\pi}} \\
& \times \exp \left(-\left[\frac{\tilde{\omega}-\Omega_{x, y, z}^{f}(t, \omega)}{\alpha}\right]^{2}\right) d \omega \tag{30}
\end{align*}
$$

362 where $V_{x, y, z}(t, \omega)$ is the Morlet wavelet transform, ${ }_{363} \Omega_{x, y, z}^{f}(t, \omega)$ is the reallocation rule function, and α is a 364 smoothing parameter. In this study, $\alpha=2.6$. The Morlet 365 wavelet transform is given as:

$$
\begin{equation*}
V_{x, y, z}(t, \omega)=\int a_{x, y, z}\left(t^{\prime}\right) \sqrt{\omega} W\left(\omega\left(t^{\prime}-t\right)\right) d t^{\prime} \tag{31}
\end{equation*}
$$

56 where

$$
\begin{equation*}
W(\beta)=\frac{1}{\sqrt{\tau}} \exp (i \beta) \exp \left(-\frac{\beta^{2}}{2 \tau^{2}}\right) \tag{32}
\end{equation*}
$$

367 is the mother wavelet. The reallocation rule function is ${ }^{668}$ defined as:

$$
\Omega_{x, y, z}^{f}(t, \omega)= \begin{cases}\frac{-i \partial_{t} V_{x, y, z}(t, \omega)}{V_{x, y, z}(t, \omega)} & \text { for } V_{x, y, z}(t, \omega) \neq 0 \tag{33}\\ \infty & \text { for } V_{x, y, z}(t, \omega)=0\end{cases}
$$

${ }_{369}$ where ∂_{t} denotes the partial derivative in the temporal 370 axis. In Fig. 4 we show the total absolute value of the ${ }_{371}$ SST spectrum $\left|\tilde{S}_{\text {tot }}(t, \tilde{\omega})\right|$ calculated as:

$$
\begin{equation*}
\left|\tilde{S}_{\mathrm{tot}}(t, \tilde{\omega})\right|=\left|\tilde{S}_{x}(t, \tilde{\omega})\right|+\left|\tilde{S}_{y}(t, \tilde{\omega})\right|+\left|\tilde{S}_{z}(t, \tilde{\omega})\right| \tag{34}
\end{equation*}
$$

${ }_{372}$ The time-frequency spectrum $\left|\tilde{S}_{\text {tot }}\right|$ shows a periodic rep33 etition of arches in the above-threshold region ($>\mathrm{H} 19.13$) 374 spanning to the $65^{\text {th }}$ harmonic order (H65). These periodic repetition of arches $(>\mathrm{H} 19.13)$ are comprised of three returns per T_{2} optical cycle $(2.64 \mathrm{fs})$. The quantum SST time-frequency analysis shows the same phenomena (3 returns per T_{2} optical cycle) as proposed by the controlled classical electron trajectories in Figs. 1(a) and (b).

VI. ELLIPTICITY AND RELATIVE PHASESHIFT OF HARMONIC RADIATION

According to the discussion in Sec. IV, generation of high-order harmonics by bichromatic counter-rotating circularly polarized laser fields results in harmonic doublets, where in each doublet the harmonics are circularly polarized with opposite handedness. However, this argument assumes that the driving field frequency components are perfectly monochromatic. In reality, the laser pulse has a finite duration, hence the harmonic peaks have a finite width, and polarization may vary even on the frequency range corresponding to the same harmonic peak. Near-resonant radiation from the excited states may also alter the polarization properties of the HHG spectrum in the below-threshold region. Here, we calculate the polarization properties of the harmonic radiation explicitly from the dipole acceleration data and show to what extent the harmonic peaks within the same doublet possess circular polarizations with left and right handed1 ness.

Suppose we have a monochromatic field with the com${ }^{03}$ ponents along x and y :

$$
\begin{align*}
& F_{x}=a \cos (\omega t) \\
& F_{y}=b \cos (\omega t+\beta) \tag{35}
\end{align*}
$$

${ }^{504}$ Generally, the field amplitudes along x and y are different (with their ratio $r_{y x}=b / a$), and there is a phaseshift β between the field oscillations in x and y directions. Actually, Eq. (35) represents an elliptically polarized field; the orientation of the ellipse in the $x-y$ plane depends on the parameters $r_{y x}$ and β. The angle α which determines the orientation of one of the ellipse axes with respect to the x-axis is calculated as:

$$
\begin{equation*}
\alpha=-\frac{1}{2} \arctan \left(\frac{r_{y x}^{2} \sin (2 \beta)}{1+r_{y x}^{2} \cos (2 \beta)}\right) . \tag{36}
\end{equation*}
$$

12 The second axis has the orientation angle $\alpha+\pi / 2$. As${ }_{13}$ suming the first axis to be the major axis of the ellipse,

FIG. 3. (Color online) HHG spectrum $S(\omega)$ in the x, y, and total domain of the H_{2}^{+}molecule in the counter-rotating circularly polarized laser pulses. Circularly polarized HHG spectrum (a) up to $\sim H 81$, (b) below-threshold (H1-H20), (c) above-threshold; plateau region (H20-H53), and (d) above-threshold; plateau and near cutoff region (H55-H74). The laser pulses have a time duration of 34 optical cycles ($\sim 45 \mathrm{fs}$) for $\omega_{1}(395 \mathrm{~nm})$ and 17 optical cycles ($\sim 45 \mathrm{fs}$) for $\omega_{2}(790 \mathrm{~nm})$. The green vertical dashed line indicates the corresponding ionization threshold (I_{p}) marked by $1 \sigma_{g}$ threshold (H19.13). Resonance A and B in panel (b) correspond to the transitions $1 \sigma_{g}-1 \pi_{u}$ (H11.7) and $1 \sigma_{g}-2 \pi_{u}$ (H15.6), respectively. All spectra show a doublet structure, located at positions predicted by energy and spin angular momentum conservation [filled maroon circles (790 nm) and filled teal squares (395 nm)]. The separation within each doublet is $\omega_{1}-\omega_{2}=\omega_{2}$, and different doublets are separated by $\omega_{1}+\omega_{2}=3 \omega_{2}$. The bichromatic frequency components have different peak field strengths corresponding to the intensities of $I_{1}=2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ and $I_{2}=1.25 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$.

414 the ellipticity parameter is calculated as follows:

$$
\begin{equation*}
\epsilon=\sqrt{\frac{\sin ^{2} \alpha+r_{y x}^{2} \sin ^{2}(\alpha+\beta)}{\cos ^{2} \alpha+r_{y x}^{2} \cos ^{2}(\alpha+\beta)}} \tag{37}
\end{equation*}
$$

If the calculated ellipticity parameter ϵ appears greater than unity, then the first axis is actually the minor axis, and the ellipticity parameter is given by $1 / \epsilon$. From the Fourier transform of the induced dipole acceleration (which represents the harmonic field), one can obtain the parameters $r_{y x}$ and β and calculate the ellipticity for the specific frequency ω. The circular polarization $(\epsilon=1)$ is only possible if $\beta= \pm \pi / 2$ and $r_{y x}=1$.
In Figs. 5-7, the filled maroon circles and filled teal squares indicate the positions of harmonic peaks within each doublet. The circular polarization of the harmonics marked with the teal squares has the same handedness (left-helicity) as that of the driving field $\boldsymbol{E}_{1}(t)$, and the harmonics marked with the maroon circles are polarized with the same handedness (right-helicity) as the driving field $\boldsymbol{E}_{2}(t)$.

$$
5 \tan
$$

Figure 5 shows the phase and ellipticity of the belowthreshold harmonics in the HHG spectrum of the H_{2}^{+} molecule (Fig 3). As one can see in Fig. 5, the ellipticity of the below-threshold harmonics is near unity and the phases are very close to $\pm \pi / 2$, indicating circular polarizations with left and right handedness. The phase and ellipticity of the harmonics are altered in the region where the excited-state resonances start to appear, hence, $1 \sigma_{g}-1 \pi_{u}$ (H11.7) and $1 \sigma_{g}-2 \pi_{u}(\mathrm{H} 15.6)$ labeled by open blue oval marks in Figs. 5(a) and (b). The excitedstate resonances have effects on neighboring harmonics causing the phase and ellipticity to alter from perfect circular polarization. In Fig. 3, the excited-state resonances altered the shape of the neighboring doublets (H10-H20) in the HHG spectra.

In the above-threshold plateau region (Figs. 6 and), the harmonics within the doublets still do not show

FIG. 4. (Color online) SST time-frequency analysis $\left|\tilde{S}_{\text {tot }}\right|$ of the HHG spectra of H_{2}^{+}. The horizontal yellow solid line indicates the ionization potential I_{p} at $\sim \mathrm{H} 19$. The vertical white dashed lines indicates one cycle $\left(T_{2}\right)$ of the ω_{2} field (2.64 fs). Three returns per T_{2} optical cycle are observed, as proposed by the controlled classical electron trajectories in Figs. 1(a) and (b). The laser parameters used are the same as those in Fig. 3. The color scale is logarithmic.

452

FIG. 5. (Color online) (a) Ellipticity and (b) phaseshift between the x and y components of the harmonic field (belowthreshold harmonics) from H_{2}^{+}as a function of harmonic order. The laser parameters used are the same as those in Fig. 3. The filled maroon circles and filled teal squares mark the harmonic peak positions within each doublet. The open blue oval marks the $1 \sigma_{g}-1 \pi_{u}$ (H11.7) and $1 \sigma_{g}-2 \pi_{u}$ (H15.6) excitedstate resonance peaks shown in Fig.3(b).

FIG. 6. (Color online) (a) Ellipticity and (b) phaseshift between the x and y components of the harmonic field (abovethreshold harmonics; plateau region) from H_{2}^{+}as a function of harmonic order. The laser parameters used are the same as those in Fig. 3. The filled maroon circles and filled teal squares mark the harmonic peak positions within each doublet.

HHG spectrum has a doublet structure where the harmonics within the same doublet have opposite (left and right) circular polarizations. The quantum SST analysis of the dipole accelerations shows distinctly three returns per T_{2} optical cycle, agreeing with the proposed controlled classical trajectories analysis. In particular, we reveal that electron recollisions in molecular systems ${ }_{52}$ can be controlled through tailored bichromatic counterrotating circularly polarized intense laser fields.

Furthermore, we find that excited-state resonances in the HHG spectrum can have effects on neighboring harmonics causing the phase and ellipticity to be altered from perfect circular polarization. Our study provides informative findings on the delicate electron dynamics in the below-, near-, and above-threshold harmonic regimes for diatomic molecules. Our findings can also be extended to facilitate the user-defined control of the elec-

522 tron quantum paths for experimental implementation of ${ }_{523}$ ultrashort and intense coherent light sources and fre${ }_{524}$ quency comb source, both in the VUV and soft-x-ray ${ }_{525}$ regime, in the future.

FIG. 7. (Color online) (a) Ellipticity and (b) phaseshift between the x and y components of the harmonic field (abovethreshold harmonics; cutoff region) from H_{2}^{+}as a function of harmonic order. The laser parameters used are the same as those in Fig. 3. The filled maroon circles and filled teal squares mark the harmonic peak positions within each doublet.

ACKNOWLEDGMENTS

This work was partially supported by the Chemical Sciences, Geosciences and Biosciences Division of the ${ }_{29}$ Office of Basic Energy Sciences, Office of Sciences, U. S. Department of Energy under grant No. DE-FG0204ER15504. We also acknowledge the partial support of the Ministry of Science and Technology of Taiwan and National Taiwan University (Grants No. 106R104021 and 106R891701). D.A.T. acknowledges the partial support from Russian Foundation for Basic Research (Grant No. 16-02-00233) and from St. Petersburg State University (Grant No. 11.40.538.2017).
[1] T. Fan, P. Grychtol, R. Knut, C. Hernndez-Garca, D. D. ${ }_{542}$ Hickstein, D. Zusin, C. Gentry, F. J. Dollar, C. A. Man- ${ }^{543}$ cuso, C. W. Hogle, et al., Proc. Natl. Acad. Sci. U.S.A. ${ }^{544}$ 112, 14206 (2015). 545
[2] M. Chini, X. Wang, Y. Cheng, H. Wang, Y. Wu, E. Cunningham, P.-C. Li, J. Heslar, D. Telnov, S. Chu, et al., Nat. Photonics 8, 437 (2014).
[3] I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim,
M. Kling, M. Stockman, and S.-W. Kim, Nat. Photonics ${ }_{583}$ 5, 677 (2011).
[4] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, K. Seung-Woo, and 585 S.-W. Kim, Nature 453, 757 (2008).
[5] J. Heslar, D. A. Telnov, and S. I. Chu, Phys. Rev. A 93, 58 063401 (2016).

588
[6] A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, 589 S. Backus, M. M. Murnane, and H. C. Kapteyn, Science ${ }_{590}$ 280, 1412 (1998).
[7] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Co- 592 hen, Nat. Photonics 8, 543 (2014).
[8] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, ${ }^{59}$ A. Fleischer, E. Bordo, T. Fan, D. Popmintchev, T. Pop- 59 mintchev, et al., J. Phys. B 49, 123501 (2016).
[9] E. Turgut, C. La-o vorakiat, J. M. Shaw, P. Grychtol, ${ }^{59}$ H. T. Nembach, D. Rudolf, R. Adam, M. Aeschlimann, 598 C. M. Schneider, T. J. Silva, et al., Phys. Rev. Lett. 110, 599 197201 (2013).
[10] S. Mathias, C. La-O-Vorakiat, P. Grychtol, P. Granitzka, E. Turgut, J. M. Shaw, R. Adam, H. T. Nembach, M. E. 602 Siemens, S. Eich, et al., Proc. Natl. Acad. Sci. U.S.A. ${ }^{603}$ 109, 4792 (2012).
11] C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. 605 Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, 606 R. Adam, C. M. Schneider, J. M. Shaw, et al., Phys. 607 Rev. Lett. 103, 257402 (2009).
12] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, ${ }^{60}$ D. Popmintchev, T. Popmintchev, H. Nembach, J. M. 610 Shaw, A. Fleischer, et al., Nat. Photonics 9, 99 (2015).
[13] D. B. Milosevic, J. Phys. B 48, 171001 (2015).
[14] S. Long, W. Becker, and J. K. McIver, Phys. Rev. A 52, 2262 (1995).
[15] H. Eichmann, A. Egbert, S. Nolte, C. Momma, 61 B. Wellegehausen, W. Becker, S. Long, and J. K. McIver, ${ }_{616}$ Phys. Rev. A 51, R3414 (1995).
[16] K. M. Dorney, J. L. Ellis, C. Hernández-García, D. D. Hickstein, C. A. Mancuso, N. Brooks, T. Fan, G. Fan,
D. Zusin, C. Gentry, et al., Phys. Rev. Lett. 119, 063201 (2017).
[17] J. Heslar, D. A. Telnov, and S. I. Chu, Phys. Rev. A 96, 063404 (2017).
[18] M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).
[19] D. A. Telnov and S. I. Chu, Phys. Rev. A 80, 043412 (2009).
[20] D. A. Telnov, J. Heslar, and S. I. Chu, Phys. Rev. A 95, 043425 (2017).
[21] J. Heslar and S. I. Chu, Sci. Rep. 6, 37774 (2016).
[22] K. N. Avanaki, D. A. Telnov, and S. I. Chu, J. Phys. B 49, 114002 (2016).
[23] S. K. Son, D. A. Telnov, and S. I. Chu, Phys. Rev. A 82, 043829 (2010).
[24] D. A. Telnov and S. I. Chu, Phys. Rev. A 76, 043412 (2007).
[25] X. M. Tong and S. I. Chu, Chem. Phys. 217, 119 (1997).
[26] E. Pisanty, S. Sukiasyan, and M. Ivanov, Phys. Rev. A 90, 043829 (2014).
[27] Y. L. Sheu, L. Y. Hsu, H. T. Wu, P. C. Li, and S. I. Chu, AIP Adv. 4, 117138 (2014).
[28] P. Flandrin, Time-frequency/time-scale Analysis (Academic Press, 1999).
[29] P. C. Li, Y. L. Sheu, C. Laughlin, and S. I. Chu, Phys. Rev. A 90, 041401(R) (2014).
[30] P. C. Li, Y. L. Sheu, C. Laughlin, and S. I. Chu, Nat. Commun. 6, 8178 (2015).
[31] Y. C. Chen, M. Y. Cheng, and H. T. Wu, J. R. Stat. Soc. Ser. B Stat. Methodol. 76, 651 (2014).
[32] Y. F. Suprunenko, P. T. Clemson, and A. Stefanovska, Phys. Rev. Lett. 111, 024101 (2013).
[33] H. T. Wu, Y. H. Chan, Y. T. Lin, and Y. H. Yeh, Appl. Comput. Harmon. Anal. 36, 354 (2014).
[34] J. Heslar and S. I. Chu, Phys. Rev. A 95, 043414 (2017).

[^0]: * john.heslar@gmail.com
 \dagger d.telnov@spbu.ru
 \ddagger sichu@ku.edu

